Skip to main content

Full text of "Anzeiger"

See other formats


SITE III a 
Marke) N SUCHT ETLICHE AL Are 
HT LI rienreeen hit? aeleetene 

aher ae Beh abe D DeO ee ee 


en DREH T . 
Aasnpahapı ann re 
a RRNE NOHTÄRSTIEITNO NR EEE E T SE 
at, nn vn 
a 


EL 
„ an BB 
Peine ah 
x Mn an 
la aM Een 


lie ECHO 


DIOR 
PCC 


KUREN IL TEN pr Bey er ereen Sehr ee 
Men Sehlih, Yleunehsauarnduhe ee ei ai = Ve RT NT Rate Fur 
Inaslete her tee BE In BOTEREH IRRE TUrtaahete 
Rt N rer he 


ee hr 
» BC haha 
ROCKET EIN 
BE Sa EH 

aurabahhu 
unt) 
HH EYCHTIET UM EN 
be d> Dulba ler HR 
ar 2a Dh du 

Ind Qui ah 


ie 


$ —_ 


er ee Mn hnhchruntumasnhtnrhRNHFeRLMTALPLA HATT ENTE 
0) bh Arsch ae ee een 
. GM erregen 


erw 
Düse bete he han 
ren Ahern 
ee errlenen HS Aether velehen 


Bee EEE REISENDEN Eu 
» rt { 


bett Hehe 
Pur PT 


BERN, 
KARTEN 


I Kart e) 
u „ 
Be v 
Vieh Kane 


ddl Bene 


"} 
Idee re, 
abe ER TERTRR FL HN ww der hese 
hr Br "E} DIETZ he an 07 Lu pB par san 29: voran 
REN are er wrLeehengN a ey‘ ut br Baha BE art BURN haben BrSBSpEbepeannehut: 


BEMER FE UENRIEST ET RUE 
as 


BENITEHEERH LEIESRRHRRRSIIRRERRR SOSSEIRRR 
Hhabapıhaparahı ham Sata x Jelaihie herehe nn ge Pet 
ERLGENE en BES ENÜIRHHER ORT COEEEINCEUR IRRE 


a. u Kehlgerseieden 


ned e® 


et 
Aue a tn da da 
ee 


u Di 
MEERE FEN Be 


[H Ü I Nhrhrüssehrbe ickenafehuheinhngene 


Wikia aa Krank BRORLEER Kan er urn. 
WB ahnebheieihe ee eine ih 
LE EN ne heteael 
ee de ler asdttn KL nu ve yaped Dale, eo re LUN Mean, 
Karla ea nn EItrEr Kat .. 
4 EHRE de. CHEN LELLELIET Mapsbonsnenns 
br ee De 
red ar Pech ne dede hehe hen nahen in 


IHK E, BITTE EFT ie 


was ae RENHIREE 


PH Kader 

ich an 

a ala KERN LIE TE 

re Bene nad DR rin 
er pelereinheg m 

beide Fat a 

Dion Ba De Dan halt Dada de 
ERHICHRISRIEIRHEIER 


» 
Eon Kan 


Mu) L 17 n Nahe aan r 
Be en Mer beachsbaße Se BEEHERIHN = 
rue) Lv I} Us Deltehdee Dad ode Mahn daniel 
ae KEN NEE Ah I Bi Kuna ESTER ERRE REN 
ch RE Denen Kinemah Hearts ERST! BEHIEGE serien 
habe Be 
De te Ab Sn br24 el Ku BaRe 
rn ec Eee IH Seyaihe Race wo 
= jopehehe he Bunt Ai BEER SEE 


Dede) ae 


AN 

ne eh MEHLHEE ai 

„ % ! rer 
VERTRIEB BERATER een 


2 ee H nd he 
IE) 


Hann 22T I BERENEE 
nu Bean 
ort Ba a 


L 
Au 


.- 
KERN Be 


AR GRESH RER SEERERERGER 
” KyehEia 2 er N Behanedet a Mlsblte)e 


en De er 


hehe He ter eremh SRISHRE 
ra eRtetn, Ka NS 


alarm 


yes 
Fe 
an! 
Rune et abe ne da re 6 


IR 
ie 
erg K Sp 
? H 
Neo he henehe bohadı BRERREN 


a 


EL UE! 


DuIT} 
ALETFEI TEN 
DE DENT IL ET 


tits 


Tekala in 
+. aapioele 
Dahs her Beet 


dee ie 


vs 


la at 
hi 

Aa 4 Da ER Kin 

Da ba da fan Ya ha na da de 


Mb! 
Kibahndes Lt anbresahe üate jadehı yapalal u VER ERSTE RS 
ERTL TTEM HEN x N nn Sieh Sales huhein ht yeadnie BaereITE 
Are a Ne » A 4 Velalstahgar aaa in 'e 
Erens be 
BER IT HT 
Id = ebrins. 


5) Yadapsred in 
iin 


Sr uhebt) 
FErSPUE FED, 


er 


Ha 
AERERNE LT 


ta 
wa ee 4 “in 
Verne ade en 
wie ehe he eye 
n Ya N ah a ee 
ans je te 


s » 
a KOrRrt “ 


HH 

Ile ale mn are t 

aaa ae beheben Bu 
a 


Verena sem ad 
“hr 


et Indeig 


EERNIRETTEET LEE Yurerı 
DOPRIUBERPRTERTTFEFERELNSTESTT ER EI ET ET 
site Wade halte u a m DR Du Des Ja ee he ta 

Jap ala aaa Dead 


Ay * DEE en ja} 
Lara rre N I KOREERRFRELRSHTERENGERN Ahern 
A N inne 
UELTSRSERESETE DENETT IE BLEI BT SU IE ETUI hen. isn 
DCBLILEITETLHLEETE DIR WIEN ELLIIERE REN BEITEE Frege 
ae lehiahnin, 


DILEEERIZET TI 
Eee EM RR 
ee da ba tahanı mn Aare ah rigen ” 
ITELELE LU TeT ara he In eine Pape EUER TECH 
PLDYETU IT ESS SPET Era re ati I heaheh inne lie lan he 
LTEEN LEITEN DELETE SEIEN IE PETE EEE 


BaRE IE 
vachebsickevchtien 


DIE IE TE TEE 


aa are 


int 


ei Klein age 6 
Dr) ee REN 


Wnadniele nn 


a 
abe behene 68 Jepahefmdeirirdebrie sinn hebagadık 


LEBE ISDN PER ERS I TEN 


Aue lehasna bae sn.nag eine nheunn. 
DBESEREE TASTE rZESE BE TE 


DIERBLITTIIE TEE EN 
yeah man dran 


Nun Aeisitahat aan nahe Dada N vr 
IEELDERTEITTERRTIENTESDITE ET TEC ELEEZE ren Kyn 
haradparasadılı miehrdene Pi tr Hr her m a Erin 
dedr ra eh Ba ei Da Belange da Dale be aa Arien: EH TEN EN 
PORSTUDENBEL EFT TIER SEIT BETSITETEPETETTER FETTE EEE TE EEE SETZE En 
0 WG na ee a lan pn 3= Dahn 

DELOHIEEreIn Par eT Clndı lu he iadie elek Mrs hehe the 
vie anhalhe hm ha san Je a Danıy 


eübines- 

ern . 

\ninsedr sa sen lpeinne 
dene 


Ge una Bao be 
PÜRHR FURL ETTUL UN, 


See herren 

ir mai 
Dadehıde 
eheteie 


W a re regnen 
Pabhaa Ze UL III IE EIS 
LE EL 573 


EEE PIE ET 225 
Rrerere Tore IE 

cn an mo Dun an hate da ie Den Haie er 

umminee 

in 


r 


ae 


KaLLEE Teer 
Eher ra 


Worb abe Fe ha hr Per 


ET a 
IE EEE 


DItIEE 
PEST LEITET SEIEN 
ELLE IEIEtEISET Teen 


” 
PIPPI ELTEN 
DE 


IITEUTEIET TIP Error 
arena en > 


" 
ri he aaa hr 
METITTEEITTFEN 


unse undede a 
sr bebeelehrän behnde kehrhnih baden 
kbaärbade 


Das £ Magrbereorbehe 
BIT ÜLLERBETEN 
Dean ind alas br pn pen 


a an hin Annan hen 
Muhr Yh 


En 
RP CUT Per Seen Wrand debsbaneseiie in 
ALEDTSITEEETETS TILL DLEITErENT ET 

A, 22 yeoissomsn a. ALLA I 


vr TARAARIN 
DONNA N) 


| | | 5 ( \ A 
NAAPr AAR \ Raanan 


W FEN A VE 3 


ANA ROAR ANN, Ä 
r Pr AARAU Nolan IAMARan ERROR 
AN 


AAAAAAAA Aa r R 
ARAAAN AAA, HAAMAM» ANA 
INA 
A 


ARRArR Ir 


AAAAARAAAR AAIARAR AANANA 
AA VrIVTYAAAAAARR AAA AARA AAARARR 


AANNNYNNNVNNYYILI TI IYYYYY VARIIEREN a) 


nn ARAARA AAA ARRARARAAAAAA CT, 
\AllalamAn, JAAZAAA AIR AR 
AR ARABE SEA ANA ANARAAAARARRARARAUTN 


NAAR, AAIPRREATAARRRRANAR, 


AAAR 


AN 


I N T\ [ } 
BANAER 
AR AATM? 


SARARAMAAAAAAAR 
Ver RER! 


ARHAR Aa anan 
IARIIIESAG Na Naar 
ARAARA BOT 


AMAMAG = 
ANANAR 


1, m Ma er 
A a m j E 
Bat nr > 


Pel) 
HL 
er 


R = 
a R 
E P 
= 
Me 
u, 
* . 
I 2 - 
B 
4 
“ 


0 
ng 
u ui 


4,9 


m, 2277 Do ac: Au 
” T u 
N + 
a 
. u 
= 
[j 
Sy 20 
r 
Fri “ N 2 
e 
au 
; 
nn © L) U 
u; 
F 
- R 
B 


Anzeiger : 


756. Jahrgang — 1919 — Nr. 1 bis ne. 


Be . Wien, 1919 


ae Aus der Staatsdruckerei 
ne ıE 
Fe 


In Kommission bei Alfred Hö ke 
ER Universitätsbuchhändler Cr 
indler der Akademie der ‚Wissenschaften 


Akademie der Wissenschaften in Wien 
Mathematisch-naturwissenschaftliche Klasse 


Anzeiger 


56. Jahrgang — 1919 — Nr. 1 bis 27 


Wien, 1919 
Aus der Staatsdruckerei 


In Kommission bei Alfred Hölder 
Universitätsbuchhändler 


Buchhändler der Akademie der Wissenschaften 


er 
A Be 


4 . 
Ir,sie 


cr TA 2 u 
rau... 
TORE a 


ee 


Apel, E.: 


Il 


A. 


Abhandlung »Kinetik der Wasserstoffsuperoxyd-Jod-Reaktion. I.«. 


Nr. 20, p. 301. 
— Abhandlung »Kinetik der 
Nen2l, pP, 802. 
Adler, E.: Versiegeltes Schreiben 
schrift: »Die Selbsterregung des Induktionsgenerators«. Nr. 10, p. 116. 
Albrecht, E.: Abhandlung »Mitteilungen aus dem Institut für Radium- 
forschung. Nr. 123. Über die Verzweigungsverhältnisse bei RaC, 
AcC, ThC und die Zerfallskonstanten der C"-Produkte«. Nr. 15, 


Wasserstoffsuperoxyd-Jod-Reaktion. Il«. 


zur Wahrung der Priorität mit der Auf- 


B 200. 


Alexander, G.: Abhandlung »Die Histologie der typischen hereditär- 


degenerativen Taubheit«. Nr. 4, p. 56. . 


Almanach: 
— Vorlage von Jahrgang 68, 1918. Nr. 15, p. 193. 
Anzeiger: 
— Vorlage von Jahrgang 55, 1918. Nr. 4, p. 47. 
Arthaber, G.v.: Abhandlung »Studien über Flugsaurier und Bearbeitung 
des Wiener Exemplares von Dorygnathus banthensis Theod. sp.«. 
Nr28, B298: 


B. 


Bamberger, M.: Dankschreiben für die Verleihung der Hälfte des Haitinger- 
Preises4Nr.,15; p. 193. 

— und J. Nußbaum: Abhandlung »Wasserstoffsuperoxyd als Lösungs- 
mittel«. Nr. 27, p. 340. 

‚Basch, A.: Abhandlung »Zur Bewegung eines materiellen Punktes unter 
Einwirkung einer im umgekehrten Verhältnis des Quadrates. des Ab- 
standes stehenden Zentralkraft«. Nr. S, p. 95. 

‘Bauer, A, w. M. der philos.-histor. Klasse: Mitteilung von seinem am 
12. Jänner 1. J. erfolgten Ableben. Nr. 2, p. 20. 

Baumgarlnerpreis” Ausschreibung der Preisaufgabe für 1920. Nr. 15, p. 214. 


IV 


Bayer, J.: Bericht über die wissenschaftlichen Ergebnisse seines zweiten 
- Palästina-Aufenthaltes (1918). Nr. 1, p. 1. 

Becke, \.: Versiegeltes Schreiben zur Wahrung der Priorität mit der Aut- 
schrift: »Farben und Farbensehen«. Nr. 19, p. 272. 

Bergström, S.: Druckwerke »Om korrelationsmetoden: När är linjär sam- 


g: 
bandsekvation tillräcklig?«. — »Om utjämning vid bekant funktions- 
form«. Nr. 14, p. 191. 

Berwald, L.: Abhandlung »Zur Geometrie in einer speziellen Kongruenz 


erster Ordnung und erster Klasse«. Nr. 21, p. 305. 

Biach, Ph.: Versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schrift: »Beweis des sogenannten großen Fermat’schen Satzes«. 
Nr. 26, P. 887. 


Biologische Versuchsanstalt der Akademie: 


— Mitteilungen: 


— — Vorlage von Nr. 36. Nr. 11, p. 132. 
— — Vorlage von Nr. 37. Nr. 11, p. 135. 
—  — Vorlage von Nr. 38. Nr. 11, p. 138. 
— — Vorlage von Nr. 39. Nr. 11, p 
— — Vorlage von Nr. 40. Nr. 18, p 
une Vorlage von Nr. 41. Nr. 1S, p. 

— — Vorlage von Nr. 42. Nr. 18, p. 249. 
— — Vorlage von Nr. 43. Nr. 18, p 
—  — Vorlage von Nr. 44. Nr. 18, p 

— — Vorlage von Nr. 45. Nr. 18, p. 

— .— Vorlage von Nr. 46. Nr. 20, p. 302. 


Blättier, H.: Abhandlung »Über Trimethylsulfoniumverbindungen«. Nr. 27, 
p. 340. 

Brecher, E.: Bewilligung einer Subvention zum Abschluß ihrer Unter- 
suchungen über die Färbung der Schmetterlingspuppen. Nr. 6, p. 76. 

— „Mitteilungen aus der Biologischen Versuchsanstalt. Nr. 40. Die 
Puppenfärbungen des Kohlweißlings, Pieris brassicae L. \. Teil: 
Kontrollversuche zur spezifischen Wirkung der Spektralbezirke mit 
anderen Faktoren«. Nr. 18, p. 244. 

—  »Mitteilungen aus der Biologischen Versuchsanstalt. Nr. 41. Die Puppen- 
färbungen des Kohlweißlings, Pieris brassicae L. VI. Teil: Chemismus 
der Farbenanpassung«. Nr. 18, p. 246. 

Bukowski, G.v.: Abhandlung »Beitrag zur Kenntnis der Conchylienfauna 
des marinen Aquitanien. von Davas in Karien (Kleinasien)«. Nr. 8, 
en alle 

Burgerstein, A.: Abhandlung »Mitteilungen aus der Biologischen Versuchs- 
anstalt. Nr. 46: Änderungen der Spaltöffnungsweite unter dem Ein- 
flusse: verschiedener. Bedingungen«. Nr..20, p. 302. 


TC: 


Conrad, V.: Abhandlung »Der tägliche Gang der Temperatur in Belgrade. 
3 > ta) > D 
Nor De 100. 

Crinis, M. de: Versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schrift: »Ein neues Verfabren zur quantitativen Bestimmung wässeriger 


Lösungen«: Nr. 19, p. 272. 


D» 


Dafert, ©. A.: Abhandlung »Über die Einwirkung von Acetylen auf Arsen- 
trichlorid«. Nr. 13, p. 168. 

Daublebsky v. Sterneck, R.: Abhandlung »Die Gezeitenerscheinungen 
in der Adria. II. Teil. Die theoretische Erklärung der Beobachtungs- 
tatsachen«. Nr. 1, p. 13. 

Denkschriften: 

— Vorlage von Band 94, 1918, Nr. 12, p. 149. 
— ‚Vorlage von Band: 95,. 1918, Nr. 21, p. 305. 

Deuisches Museum in München: Druckwerk »Verwaltungsbericht über das 
fünfzehnte Geschäftsjahr 1917—1918«. Nr. 19, p. 273. 

Diener, (., w. M.: Bericht über seine geologischen Untersuchungen im 


Bereiche der ehemaligen Südwestfront. Nr. 1, p. 11. 

— : Abhandlung »Nachträge zur Kenntnis der Nautiloidenfauna der 
Hallstätter Kalke<. Nr. S, p. 92. 

— Abhandlung »Neue „limmonoidea leiostraca aus den Hallstätter Kalken 
des Salzkammergutes«. Nr. 15, p. 199. 

— Bewilligung einer Subvention für geologische Studien der Hallstätter 
Kalke im Gebiete des kRöthelstein. Nr. 18, p. 257. 

— Abhandlung »Neue „Immonoidea trachyosiraca aus den Hallstätter 
Kalken des Salzkammergutes. I. Abteilung: Tropiloidea«. Nr. 20, p. 304. 

Doelter, C., k. M.: Bewilligung einer Subvention zur Vollendung seines 

\WVerkes: »Chemie der Minerale«. Nr. 20, p. 304. 


9 


Eder, J.M., w.M.: Abhandlung »Photometrie der sichtbaren Lichtstrahlen 
mit lichtempfindlichen Leukobasen organischer Farbstoffe sowie mit 
Chlorsilber- und Chromatpapier«. Nr. 10, p. 117. 

Ehrenhaft, F.: Bewilligung einer Subvention zur Fortführung seiner Unter- 
suchungen über das elektrische Elementarquantum und die Photo- 
phorese. Nr. 18, p. 258. 

— Dankschreiben für die Bewilligung dieser Subvention. Nr. 19, p. 262. 
— und D. Konstantinowsky: Versiegeltes Schreiben zur Wahrung 
der Priorität mit der Aufschrift: »Radioaktivität«. Nr. 7, p. 86. 


VI 


Elsner, B.: Abhandlung »Notiz über das Brenzkatechin«. Nr. 18, p. 241. 

Emich, F., k. M.: Druckschrift »Einrichtung und Gebrauch der zu chemi- 
"schen Zwecken verwendbaren Mikrowagen«. Nr. 8, p. 97. 

Ettenreich, R.: Abhandlung »Reaktionszeit von Kontaktdetektoren, I. Teil«. 
Nr. .18,.,.p. 242. 

Exner, F., w. M.: Abhandlung »Zur Kenntnis des Purkinje’schen Phäno- 
mens«. Nr. 3, p. 30. 

Exner, F. M.: Abhandlung »Zur Theorie der Flußmäander«. Nr. 24, p. 324. 

Exner, S., w.M.: Abhandlung »Über den Klang einiger Sprachen«. Nr. 18, 
pP. 239. 

— Abhandlung »Über eine geometrisch-optische Täuschung«. Nr. 18» 

pP. 239. 

Expedition auf den Pic von Teneriffa: Bewilligung einer Subvention für die- 
selbe.. Nr. 16, p. 220. 


F. 


Ficker, H.: Abhandlung »Veränderlichkeit der Temperatur, und Anomalie 
der Monatsmittel«. Nr. 4, p. 51. 
— Abhandlung »Untersuchungen über die meteorologischen Verhältnisse 
der Pämirgebiete«. Nr. 15, p. 195. i 
—  Druckfehlerberichtigung hierzu. Nr. 17, p. 233. 
— Abhandlung »Veränderlichkeit des Luftdruckes und der Temperatur in 
Rußland zwischen dem Eismeer und 37° Nordbreite«. Nr. 19, p. 263. 
Fischer, E.: Dankschreiben für seine Wahl zum Ehrenmitgliede im Aus- 
lande.. Nr. 12,p.1492 
— Mitteilung von seinem am 14. Juli 1. J. erfolgten Ableben. Nr. 19) 220% 
— Druckwerk »Untersuchungen über Depside und Gerbstoffe (1908 bis. 
1919)<. Nr. 26, PD. 337. 
Flach, E. und k.M. A. Skrabal: Abhandlung Ȇber Polyjodidverbindungen. 
der Oxalsäureester«. Nr. 27, p. 340. 
Fonovits, H.: Abhandlung »Mitteilungen aus dem Institut für Radium- 
forschung. Nr. 117. Über die Erreichung des Sättigungsstromes für! 
#-Strahlen im Plattenkondensator«. Nr. 4, p. 53. 
Forchheimer, Ph., k. M.: Abhandlung »Zur Theorie der Grundwasser- 
strömungen«. Nr. 18, p. 235. 
Fritsch, K.: Abhandlung »Blütenbiologische Untersuchungen an einigen 
Pflanzen der Ostalpen«. Nr. 11, p. 129. 
Fuchs, W. und M. Hönig: Abhandlung »Untersucbungen über Lignin. 
Il. Kalischmelze der Lignosulfosäuren«. Nr. 18, p. 241. 
Furlani,J.: Abhandlung »Über den Einfluß von Bestrahlung auf Baclerium 
pvocyaneum (Gessard, Flügge) und seine Pigmente«. Nr. 4, p. 55. 
— Abhandlung »Beobachtungen über die Beziehungen zwischen Intensität 
der chemischen Strahlung der Luftbewegung«. Nr. 9, p. 99. 


Vu 


Furlani, M.: Abhandlung »Studien über die Triaszonen im Hochpustertale, 
Eisack- und Pensertal in Tirol«. Nr. 9, p. 101. 
— Bewilligung einer Subvention für geologische Studien über die Jura- 
bildungen in den Nordtiroler Ralkalpen. Nr. 18, p. 257. 
— Vorläufige Mitteilung »Stratigraphische Studien in Nordtirol (Jura- 
Neokom)«. Nr. 27, p. 339. 
Furtwängler, Ph., k.M.: Abhandlung »Über die Führer von Zahlringen«. 
Ni..6, PD. 
— Abhandlung »Über die Ringklassenkörper für imaginäre quadratische 
Körper (l Mitteilung)«. Nr. 6, p. 7». 


&. 


Genau, A.: Druckwerk »Mathematische Überraschungen für Lehrer und 
Rechenfreunde«. Nr. 19, p. 273. 

Geographisches Institut der Universität Berlin: Druckwerk »Karte der Ver- 
breitung der Deutschen und Polen längs der Warthe—Netze-Linie und 
der unteren Weichsel sowie an der Westgrenze von Posen«. Nr. 19, 
2.127713. 

Geyer, G., k.M.: Bericht über die Untersuchung der künstlichen Kriegs- 
aufschlüsse entlang der aufgelassenen Südwestfront am Kamm der 
Karnischen Hauptkette in Kärnten und Tirol. Nr. 3, p. 31. 

Gmeiner, A.: Abhandlung »Über die reduzierten binären quadratischen 
Formen mit positiver nichtquadratischer Determinante«. Nr. 15, p. 195. 

Greger, J.: Abhandlung »Untersuchungen über die Lichtbrechung einiger 
Harze«. Nr. 22, p. 309. 

Grobben, K., w. M.: Abhandlung Ȇber die Muskulatur des Vorderkopfes 
der Stomatopoden und die systematische Stellung dieser Malakostraken- 
gruppe«. Nr. 10, p. 116. 

Groer, F. und A.F. Hecht: Versiegeltes Schreiben zur Wahrung der Priorität 
mit der Aufschrift: »Klinisch-pharmakologische Untersuchungen an der 
menschlichen Haut«. Nr. 18, p. 237. 

Grosspietsch, O©.: Bewilligung einer Subvention zur Untersuchung über 
Vorkommen, .. Darstellung und Konstitution der Tonerdephosphate. 
Ni-#18,.p. 208. 

Gurley, R.R.: Druckwerke »Extra-individuai reality: its existence«. — 
»Overleap of the intermediate zone«. Nr. 26, p. 337. 


HH, : 


Haeckel, E, k. M.: Mitteilung von seinem am 8. August 1. J. erfolgten 
Ableben. Nr. 19, p: 261. 


VIN 


Handel-Mazzetti, H. Freiherr v.: 16. Bericht über den Fortgang seiner 
botanischen Forschungen in Südwestchina. Nr. 10, p. 112. 

— Abschließender 17. Bericht über seine botanischen Forschungsreisen 
in Südwestchina nebst zwei nachträglichen Berichten (14a und 15a). 
Nr..15, p. 209. 

— Abhandlung »Neue Aufnahmen in NW-Jünnan und S-Setschuan«. 
Ne LI pP. 2 

— Bewilligung eines Kredites zur Heimbeförderung des in China ge- 
sammelten Materiales. Nr. 20, p. 305. 

— Dankschreiben für die Bewilligung dieses Kredites. Nr. 19, p. 262. 

— Bewilligung einer Subvention zur Diucklegung seiner Karte des 
chinesischen Flußsystems. Nr. 21, p. 305. 

Hann, J. v.,, w. M.: Abhandlung »Die ganztägige (24-stündige) Luftdruck- 
schwankung in ihrer Abhängigkeit von der Unterlage (Ozean, Boden- 
gestalt)«. Nr. 1, p. 4. j 

— Dank für die Glückwunschadresse anläßlich seines 80. Geburtstages. 
Nr. 10, please 


Hansgirg, F. und A. Zinke: Abhandlung »Eine neue Synthese des Perylens 
(vorläufige Mitteilung)«. Nr. 1, p. 16. 

Harms, W.: Druckwerke »Drüsenähnliche Sinnesorgane und Giftdrüsen in 
den Ohrwülsten der Kröte«e. — »Ergänzende Mitteilung über die Be- 
deutung des Bidder’schen Organes<. — »Über die innere Sekretion 
des Hodens und Bidder’'schen Organs von Bufo vulgaris Laur.«. 
Nr. 24, p..325. 

Hecht, A.F. und F. Groer: Versiegeltes Schreiben zur Wahrung der Priorität 
mit der Aufschrift: »Klinisch-pharmakologische Untersuchungen an der 
menschlichen Haut«. Nr. 18, p. 237. 


Heritsch, F.: Abhandlung Ȇber Brontidi der Ranner Erdbebenserie des 
Jahres 1917 nebst Bemerkungen über Erdbebengeräusche«. Nr. 10, 
lo ’ f 

— und R. Schwinner: Abhandlung »Über die Drehungen beim Ranner 
Erdbeben vom 29. Jänner 1917«e. Nr. 19, p. 270. 

— und F. Seidl: Abhandlung »Das Erdbeben von Rann an der Save. 
7weiter Teil. Die Tektonik der Bucht von Landstraß und ihre Be- 
ziehungen zu den Erderschütterungen«. Nr. 4, p. ö4. 

Hertzka, J.: Versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schrift: »Singuläre Stellen des Weltäthers«. Nr. 17, p. 227. 

Hess, V. F.: Dankschreiben für die Verleihung des I. L. Lieben-Preises. 
Nr. 15, p. 193. 

— Abhandlung »Mitteilungen aus dem Institut für Radiumforschung. 
Nr. 124. Über den Ionenwind«. Nr. 17, p. 227. 

— und St. Meyer: Abhandlung »Nlitteilungen aus dem Institut für 
Radiumforschung. Nr. 122. Über die Konstanz des Verhältnisses von 
Actinium zu Uran in natürlichen Erzen«. Nr. 15, p. 199. 


bis 


Hibsch, J.E., k.M.: Bewilligung einer Subvention zur Herausgabe einer 
geologischen Karte des Pyropengebietes. Nr. 20, p. 304. 

— Dankschreiben für die Bewilligung dieser Subvention. Nr. 19, p. 262. 

Hochstetter, F., w. M.: Bewilligung einer Subvention zur Herausgabe 
seines Werkes: »Beiträge zur Entwicklungsgeschichte des menschlichen 
Gehirnes«. Nr. 7, p. 89. 

Höhnel, F.v., k. M.: Abhandlung »Fragmente zur Mykologie (XXIII. Mit- 
teilung, Nr. 1154 bis 1188)«. Nr. 17, p. 227. 

Hönig, M. und W. Fuchs: Abhandlung »Untersuchungen über Lignin. 
II. Kalischmelze der Lignosulfosäuren«. Nr. 18, p. 241. 

Hofbauer, L.: Bewilligung einer Subvention für Versuche zur Lösung der 
Fragen über den Einfluß von Änderung des Atemweges und experi- 
menteller Störungen von seiten der Atemmuskulatur auf die Atem- 
funktion und die Atemorgane. Nr. 6, p. 76. 

Holetschek, J.: Abhandlung Ȇber die in der Verteilung der uns bekannten 
Kometen nachgewiesenen Perihelregeln und ihre Bestätigung durch die 
Kometen seit 1900«. Nr. 10, p. 113. 

Holl, M., k.M.: Abhandlung »Der Seitenfortsatz der Lendenwirbel«. Nr. 2, 
p- 25. 

— Abhandlung »Vergleichende Anatomie der hinteren Fläche des Mittel- 
stückes der Unterkiefer«. Nr. 5, p. 67. 

— Abhandlung »Das Rippenrudiment des siebenten Halswirbels«. Nr. 15 
PIL93:. 

Holiuta, J.: Abhandlung »Über eine neue Methode zur maßanalytischen 
Bestimmung des Nickels«. Nr. 13, p. 16%. 

Hopfgartner, K.: Abhandlung »Die Überführungszahl des Chromions in 
violetten Chloridlösungen«. Nr. 1, p. 8. 

Hufnagel,_L.: Abhandlung »Die Bahn des großen Septemberkometen 1882 II 
unter Zugrundelesung der Einstein’'schen Gravitationstheorie«, Nr. 18, 
p. 240. 


r 
Institut für Hirnforschung: 


— Vorlage des Berichtes für 1918. Nr. 7, p. 55. 
Institut für Radiumforschung: 

— Mitteilungen: 

— -— Vorlage von Nr. 116. Nr. 4, p. 51. 

— — Vorlage von Nr. 117. Nr. 4, p. 53. 

— -— Vorlage von Nr. 118. Nr. 7, p. 86. 

— — Vorlage von Nr. 119. Nr. 11, p. 130. 

— — Vorlage von Nr. 120. Nr. 12, p. 153. 

— — Vorlage von Nr. 121. Nr. 13, p. 167. 

— — Vorlage von Nr. 122. Nr. 15, p. 199. 

—  — Vorlage von Nr. 123. Nr. 15, p. 200. 

— —  Vonlaseivon Nr.1124°Nr117,7 pP: 227 


--ir 


J. 


Jäger, G,, k. M.: Abhandlung »Zur Theorie der Brown’schen Bewegung.« 
Nr. 24, p. 323. 


3 


Kämpf, J.: Druckwerk »Urkraft und Urstoff oder Wärme als alleinherrschende 
Macht im Weltall<. Nr. 20, p. 304. 

Kailan, A.: Abhandlung »Mitteilungen aus dem Institut für Radiumforschung. 
Nr. 119. Über die chemischen Wirkungen der durchdringenden Radium- 
strahlung. 11. Der Einfluß der durchdringenden Strahlen und der des 
ultravioletten Lichtes auf Toluol allein, sowie auf Toluol bei Anwesen- 
heit von Wasser<. Nr. 11, p. 180. 

Kammerer, P. und E. Steinach: »Mitteilungen aus der Biologischen Ver- 
suchsanstalt. Nr. 45. Klima und Mannbarkeit«. Nr. 18, p. 252. 
Kerner v. Marilaun, F. k. M.: Abhandlung »Zur Kenntnis der zonalen 
\Wärmeänderung im reinen Land- und Seeklima«. Nr. 10, p. 122. 

— Abhandlung »Die zonale Änderung des jähriichen Ganges der Luft- 

warmee. Nr. 10, p. 122. 

Knoll, F.: Bewilligung einer Subvention für Untersuchungen über Wechsel- 
beziehungen zwischen Blumen und Insekten, für Ausführung von 
Zeichnungen und Photographien für die Reproduktion. Nr. 6, p. 7b. 

Kober, L.: Bewilligung einer Subvention für stratigraphische Untersuchungen 
im Radstädter Gebiete und an der Südseite der nördlichen Kalkalpen. 
NS, Dm2978 B 

Kögel, P. R.: Druckschriften »Die Konstitution organischer Farbstoffe und 
ihre Lichtempfindlichkeit unter dem Einflusse von Anethol und 
mehrerer Sensibilisatoren.«e — Über die photolytischen und photo- 
dynamischen Wirkungen eines #-Furo-3-diazols«. Nr. 4, p. 69. 

Koerber, E. v., E.M.: Mitteilung von seinem am 5. März-l. J. erfolgten. 
Ableben. Nr. 7, p. 83. 

Kövesdy, A.: Versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schrift: »\inemonik«. Nr. 19, p. 272. 

Kohlrausch, F.: Abhandlung »Mitteilungen aus dem Institut für Radium- 
forschung. Nr. 120. Über die harte Sekundärstrahlung der 7-Strablen 
von Radium, 2. Mitteilung«. Nr. 12, p. 153. 

Konstantinowsky, D. und F. Ehrenhaft: Versiegeltes Schreiben zur 
Wahrung der Priorität mit der Aufschrift: »Radioaktivität«e. Nr. 7, 
P-86: 

Kowalewski, A.: Abhandlung »Studien zur Buntordnungslehre«. Nr. 20, 
p. 301. r 

Krames, J.: Abhandlung »Die Striktionslinie der Normalenfläche des. 
Torus längs eines Loxodromenkreises«. Nr. 11, p. 130. 


xT 


Krasser, F.: Abhandlung »Studien über die fertile Region der Üycadophyten: 
aus den Lunzer Schichten: Makrosporophylle«. Nr. 12, p. 155. 

— Abhandlung »Ein neuer Typus einer männlichen Williamsonia-Becher- 
blüte aus der alpinen Trias«. Nr. 22, p. 309. 

Kremann, R.: Bewilligung einer Subvention zu Untersuchungen über- 
Energieänderungen binärer Gemische durch Untersuchung der Absorp- 
tionsspektren. Nr. 6, p. 76. 

— Dankschreiben für die Bewilligung dieser Subvention. Nr. 4, p. 47. 

Kubart, B.: Mitteilung »Ein tertiäres Vorkommen von Pseudolsuga in 
Steiermark«. Nr. 11, p. 125. 

Kuratorium der Schwestern Fröhlich-Stiftung: Kundmachung über die Ver- 
leihung von Stipendien und Pensionen aus dieser Stiftung. Nr. 3, p. 29.. 


197 


Lämmermayr L.: Abhandlung »Legföhrenwald und Grünerlengebüsch«. 
Nt„13,:p4 167. 

Lawson, R. W.: Abhandlung »Mitteilungen aus dem Institut für Radium- 
forschung. Nr. 118. Der Aggregatrückstoß als Begleiterscheinung des. 
Zerfalls «-strahlender Substanzen«. Nr. 7, p. S6. 

Lerch, F.: Abhandlung »Über langsame Veränderungen der 3-Strahlung 
radiumhaltiger Präparate. III. Mitteilung«. Nr. 13, p. 167. 

Lihotzky, E.: Abhandlung »Verallgemeinerung der Abbe'schen Sinusbedin- 
gung (als Bedingung für das Verschwinden der Koma in der unmittel-- 
baren Nachbarschaft der Achse)«. Nr. 7, p. 86. 


M. 


Marchet, A.: Abhandlung »Der Gabbro-Amphibolitzug von Rehberg im. 
niederösterreichischen Waldviertel«. Nr. 3, p. 29. 

— Abhandlung »Zwillings- und Lageverzerrung beim Staurolith«. Nr. 18,. 
P-237, 

— Bewilligung einer Subvention für die Untersuchung von Amphibolit- 
typen aus dem niederösterreichischen Waldviertel. Nr. 18, PR25.. MM. 

Marenzeller, E.v., k. M.: Mitteilung von seinem am 6. Dezember 1918 er- 
folsten Ableben. Nr. 1, p. 1. 

Matlhemalisch-nalurwissenschaftliche Klasse: Bewilligung einer Dotation für 
die Herstellung von Illustrationen zu eingereichten Arbeiten geologisch- 
paläontologischen Inhaltes. Nr. 15, p. 257. 

Mayer, C.: Druckwerk »Zur Kenntnis der Gelenkrefllexe der oberen Glied- 
maben«. Nena p: [o7: 

Meißner, O.: Druckwerk »Isostatische Reduktion von 34 Stationen, aus- 
geführt am Geodätischen Institut von Dr. E. Hübner? und O, Meiß- 
ner, bearbeitet von O. Meißner«. Nr. 5, p. 74. 


XU 


Meitner, L.. und ©. Hahn: Dankschreiben für die Überlassung von 200 kg 
Rückrückständen der Uran-Radium-Verarbeitung. Nr. 19, p. 262. 
Melan, E.: Abhandlung »Die Berechnung von senkrecht zu ihrer Ebene 

belasteten rostförmigen Tragwerken«. Nr. 24, p. 324. 
Merk,.L.: Versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schrift: »Ätiologie verschiedener Geschwulstformen«. Nr. 1, p. 9. 
Mertens, F., w. M.: Abhandlung »Über einige diophantische Aufgaben«. 
Nr..11,7p..146: 

— Abhandlung »Über die Form der Wurzeln einer rationalzahligen irre- 
duktibelen zyklischen Gleichung von gegebenem Grade n«. Nr. 11, 
pP. +6. 

Meyer, St.: Abhandlung »Mitteilungen aus dem Institut für Radium- 
forschung. Nr. 121. Thor- und Urangehalt einiger Erze; nebst Anhang: 
Über die zeitliche Änderung von Th B-Th C«. Nr. 13, p. 167. 

— und V. F. Hess: Abhandlung »Mitteilungen aus dem Institut für 
Radiumforschung. Nr. 122. Über die Konstanz des Verhältnisses von 
Actinium zu Uran in natürlichen Erzen«. Nr. 15, p. 199. 

Michaelsen, W.: Abhandlung »Expedition S. M. Schiff ‚Pola‘ in das Rote 
Meer 1895/6 und 18978. Zoologische Ergebnisse. Ascidia Kriko- 
branchia des Roten Meeres: Clavelinidae und Synoicidae<«. Nr. 15, 
p. 198. 


Mitteilungen der Erdbebenkommission: 
— . Vorlage von Nr. 52, Neue Folge. Nr. 4, p. 47. 
— Vorlage von Nr. 53, Neue,Folge. Nr. 16, p. 217. 
— Vorlage von Nr. 54. Neue Folge. Nr. 13, p. 165. 


Möller, A.: Dankschreiben für die in Aussicht gestellte Unterstützung der 
Herausgabe der Werke Fritz Müller's. Nr. 4, p. 47. 

Mohr, H.: Bewilligung einer Subvention für seine Studien an dem Nord- 
ostende der Grauwackenzone im Gebiete von Vöstenhof bei Ternitz. 
Nr. 18, p. 297. 

Molterer, J.: Mitteilung über einen an der Flugbahn von Geschossen beob- 
achteten stroboskopischen Effekt bei Beleuchtung derselben durch 
einen mit Wechselstrom betriebenen Scheinwerfer. Nr. 22, p. 307. 


a 


-Monalshefle für Chemie: 
— Band 38: 


— :— Vorlage des Registers. Nr. 15, p. 193. 
— Band 39: 


— — Vorlage von Heft 9. Nr. 1, p. 1. 
— — Vorlage "von reit 10, Neebepstr. 


— Band 40: 


— .— Vorlage von Heft 1...Nr. 10, p. 111. 
—  — Vorlage von Heft 2..Nr. 15, .p. 198. 


Al 


Monatshefle für Chemie: 
— Band 40: 
— _—_. Norlage von Heft 3. Nr. 18, p. 235. 
— -— „Vorlage von Heft 4 und 5. Nr. 19, p. 261. 
—  — Notlase von Heit 6 und 7. Nr. 26, p. 387. 


Müller, E., w. M.: Druckwerk »Geschichte der darstellenden Geometrie, ihre 
Lehre und Bedeutung an den technischen Hochschulen Österreichs«. 
Ne.115, 2.210: 

Müller, L.: Abhandlung »Über Hydathoden bei Araceen«. Nr. 19, p. 272. 


N. 


Naturhistorische Gesellschaft des Osterlandes in Altenburg: Einladung zu 
der am 29. und 30. November 1. J. stattfindenden Feier ihres hundert- 
jährigen Bestandes. Nr. 25, p. 327. 

Naturwissenschaftlicher Verein in Magdeburg: Einladung zur Feier seines- 
fünfzigjäbrigen Bestandes. Nr. 19, p. 262. 

Nielsen: Abhandlung »Der Ausfluß aus einem ursprünglich nicht vollen 
Rohre«. Nr. 18, p. 232. 

Niessl: G.v., k. M.: Abhandlung »Über die Bahn des großen detonierenden 
Meteors vom 29. Juni 1917, 9h 1m m. e. Z.«e. Nr. 1, p. 7. 

— _Dankschreiben für die Beglückwünschung der Akademie anläßlich 
seines 80. Geburtstages. Nr. 4, p. #7. 

— Mitteilung von seinem am 1. September 1. J. erfolgten Ableben. Nr. 19, 
p- 261. 

Nußbaum,J. und M. Bamberger: Abhandlung »Wasserstoffsuperoxyd als 
Lösungsmittel«. Nr. 27, p. 340. 


O. 


Oppenheim, $.: Abhandlung »Statistische Untersuchungen über die Bewe- 
gung der kleinen Planeten«.' Nr. 9, p. 101. 
— Abhandlung »Über die Eigenbewegungen der Fixsterne. IV. Mitteilung. 
Das Verteilungsgesetz der Eigenbewegungen«. Nr. 9, p. 102. 


r 


Pascher, A.: Bewilligung einer Subvention für Studien über die Stämme 
des Pflanzenreiches niederer Pflanzenformen unter besonderer Berück- 
sichtigung der Geschlechtsverhältnisse der Algen. Nr. 6, p. 76. 

Perusek, M.: Abhandlung Ȇber Manganspeicherung in den Membranen 


von Wasserpflanzen«. Nr. 8, p. 92. 


XIV 


Pesta, ©.: Bewilligung einer Subvention für die Fortsetzung seiner Unter- 
suchungen über die Zusammensetzung des Zooplanktons der Gebirgs- 
seen. Nr. 18, p. 258. 

Pfaundler, L.v., w. M.: Dank für die ihm zu seinem 80. Geburtstage von, 


der Akademie ausgesprochenen Glückwünsche. Nr. 6, p. 75. 


-Phonogrammarchiv: 
— Mitteilungen: 
— _—-. Vorlase vonNnoESNEelSERE2839: 
— _ — ‚ Vorlase von Nua92NT26 pP do: 

Pia, J.: Bewilligung einer Subvention zur Fortsetzung seiner stratigrapischen 
und tektonischen Arbeiten im Gebiete von Nötsch und Saalfelden. 
Nr. 18, p. 257. 

‚Pöch, R., k. M.: Bewilligung einer Subvention zur Anschaffung neuer Kassetten 
zum photo-stereoskopischen Apparat der Akademie der Wissenschaften. 
N:. 18, Py228, 

— Bewilligung einer Subvention zur Vollendung seiner Untersuchungen 
in den Kriegsgefangenenlagern. Nr. 1S, p. 258. 

"Pöch-Schürer, H.: Bewilligung einer Subvention zur Fortsetzung ihrer 
Untersuchungen über Vererbung (Haarfarbe und Kopfformen) in 
wolhynischen Flüchtlingsfamilien. Nr. lO,.p. 298. 

— Dankschreiben für die Bewilligung dieser Subvention. Nr. 19, p. 262. 

Pollak, W.: Abhandlung »52. Mitteilung der Phonogramm-Archivs-Kommis- 
sion. Phonetische Untersuchungen. I. Akzent und Aktionsart«. Nr. 6, 


m= 


p- (D. 

Präsident der Nationalversammlung: Bestätigung der diesjährigen Wahlen. 
Nr. 230p23 1% 

Preisaufgabe für den Baumgarlnerpreis für 1920. Nr. 15, p. 214. 

Priesner, H.: Abhandlung »Zur Thysanopterenfauna Albaniens«. Nr. S, p. 91. 

‚Przibram H.: »Mitteilungen aus der Biologischen Versuchsanstalt. Nr. 42. 
Einwirkung der Tyrosinase auf »Dopa« (zugleich: Ursachen tierischer 
Farbkleidung 1V.)«. Nr. 18, p. 249. 

—  »Mitteilungen aus der Biologischen Versuchsanstalt. Nr. 43. Tem- 
peraturunabhängigkeit der weiblichen Periode und Gravidität bei 
Ratten, Mus decumanus und M. rallus (Die Umwelt des Keimplasmas 
VO) NeMl8jep. 251: 

— »Mitteilungen aus der Biologischen Versuchsanstalt, Nr. 44. Die 
Bruchdreifachbildung im Tierreiche«. Nr. 18, p. 252. 

'Przibram, K.: Abhandlung »Über die Ladung der elektrischen Figuren«. 
Nenlsep: 241. 


R. 


Radon, J.: Abhandlung Ȇber lineare Funktionaltransformationen und 
Funktionalgieichungen«. Nr. 14, p. 189. 
— Abhandlung »Über die Randwertaufgaben beim logarithmischen Pöten- 
tial«. Nr. 14, p. 190. 


AV 


Raith, E. und A. Zinke: Abhandlung »Synthese des 2, 3-Pyridinoace- 
naphtens«. Nr. 12, p. 153. 

Rayleigh, J. W., k.M.: Mitteilung von seinem am 3. Juli 1. J. erfolgten 
Ableben. Nr. 19, p. 261. 

Reach, F.: Bewilligung einer Subvention für seine Studien über die Ableitung 
der Galle in den Darm. Nr. 18, p. 258. 
Reichel, K.: Versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schrift: »Graphische Tafel mittelst Rhombus«. Nr. 15, p. 198. 
Reininghaus, F.: Druckwerk »Neue Theorie der Biegungsspannungen«. 
Null 3,n pa 

Reitler, R. und H. Robicsek: Versiegeltes Schreiben zur Wahrung der 
Priorität mit der Aufschrift: »Über eine biologische Eigenschaft des 
Sehens«. Nr. 7, p. 86. 

Rektorat der Technischen Hochschule in Wien: Preisausschreibung aus der 
Karoline und Guido Krafft-Stiftung. Nr. 10, p. 111. 

Retzius, G., E.M.: Mitteilung von seinem am 21. Juli I. J. erfolgten Ableben. 
Nr. 19, p. 261. 

Richter, G.: Abhandlung »Mitteilungen aus dem Institut für Radium- 
forschung. Nr. 116. Messungen im Schutzringplattenkondensator mit 
Ra F nebst eingehender Diskussion der Verwendung des Binanten- 
und Quadrantenelektrometers als Strommeßinstrument«e. Nr. 4, p. 51. 

Richter, ©.: Vorläufige Mitteilung »Anwendung selektiver Nährhöden bei 
der Reinzucht von Algen«. Nr. 15, p. 201. 

— Bewilligung einer Subvention für seine Studien über ermährungsphysio- 
logisch interessante Algen. Nr. 18, p. 258. 
— Dankschreiben für die Bewilligung dieser Subvention. Nr. 24, p. 323. 

Robiesek, H. und R. Reitler: Versiegeltes Schreiben zur Wahrung der 
Priorität mit der Aufschrift: »Über eine biologische Eigenschaft des 
Sehens«. Nr. 7, p. 86. 

Rogel,P.: Abhandlung »Darstellung einer Strecke im Raume«. Nr. 26, p. 337. 

Rosenberg, H.: Druckwerk »Sammlung von Vorschriften über die Verwen- 
dung von Asbestpulvern und von Talkum«, Nr. 21, p. 305. 


S- 


Salzer, J.: Versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 

schrift: »Electrominor 19«. Nr. 15, p. 198. 
—  Versiegeltes Schreiben zur Wahrung der Priorität mit der Aufschrift: 

»Electrominor 19 (Nachtrag)s. Nr. 18, p. 237. 

Scherer, R.v., w.M. der phil.-hist. Klasse: Mitteilung von seinem am 
21. Dezember 1918 erfolgten Ableben. Nr. 1, p. 1. 

Scheuble, H.: Abhandlung »Beiträge zur Kenntnis der atmosphärischen 
Elektrizität. Nr. 58. Das atmosphärische Potentialgefälle in Triest nach 
den Beobachtungen von Juni 1905 bis Juni 1907«. Nr. 15, p. 199. 


XVI 


Schlenk, W., w. M.: Begrüßung als neu eintretendes wirkliches Mitglied durch 
den Vorsitzenden. Nr. 5, p. 67. . 

Schmid, Th.: Druckwerk »Darstellende Geometrie. I. Band«. Nr. 25, p. 327. 

Schnarf. K.: Abhandlung »Beobachtungen über die Endospermentwicklung 
von Zieracium auranliacume«.Nr. 25, p. 327. 

Schorn, J.: Dank für die ihm als Erdbebenreferenten ausgesprochene An- 
erkennung der Akademie. Nr. 7, p. 89. 

Schreiner, H. und w.M. R. Wegscheider: Abhandlung Ȇber Amyl- 
sulfoniumverbindurgen«. Nr. 18, p. 241. 

Schrödinger, E.: Abhandlung »Wahrscheinlichkeitstheoretische Studien 
betreffend Schweidler'sche Schwankungen, besonders die Theorie der 
Meßanordnung«. Nr. 2, p. 27. : 

Schrötter, H.v.: Übersendung von neun Separatabdrücken seiner Arbeiten 
über das Niltal und den Sudan. Nr. 6, p. 75. 

Schürer v. Waldheim, H.: Vorläufiger Bericht über die 1917 und 1918 
in dem Flüchtlingslager von Niederalm vorgenommenen rassenanthröpo- 
logischen und vererbungswissenschaftlichen Untersuchungen an wolhyni- 
schen Flüchtlingsfamilien. Nr. 10, p. 119. 

Schumann, R.: Vorläufige Mitteilung »Einige Ergebnisse aus Schwere- 
wagenmessungen in Zillingsdorfer Kohlengebiet«. Nr. 27, p. 339. 
Schwab, Tb.: Dank für die ihm als Erdbebenreferenten ausgesprochene An- 

erkennung der Akadzmie. Nr. 7, p. 85. i 

Schweidler, E. v.: Abhandlung »Beiträge zur Kenntnis der atmo- 
sphärischen Elektrizität. Nr. 60. Über das Gleichgewicht zwischen 
ionenerzeugenden und ionenvernichtenden Vorgängen in der Atmo- 
sphäre (II. Mitteilung)«. Nr. 18, p. 240. 

Schwendener, $., k.M.: Mitteilung von seinem am 27. Mai 1. J. erfolgten 
Ableben. Nr. 16, p. 217. 

Schwinner, R. und F. Heritsch: Abhandlung »Übeı die Drehungen beim 
Ranner Erdbeben vom 29. Jänner 1917«. Nr. 19, p. 270. j 

Seidl, F.: Dank für die ihm als Erdbebenreferenten ausgesprochene Aner- 
kennung der Akademie. Nr. 7, p. 85. 

— und F. Heritsch: Abhandlung »Das Erdbeben von Rann an der Save. 
Zweiter Teil. Die Tektonik der Bucht von Landstraß und ihre Be- 
ziehungen zu den Erderschütterungen«. Nr. 4, p. 54. 

Silberstein, F.: Abhandlung »Gasbrand und malignes Ödem, bakterio- 
logische, toxikologische und serologische Studien«. Nr. 17, p. 230. 

Singer, E. und A. Skrabal: Abhandlung Ȇber die alkalische Verseifung 
des Weinsäureesters«. Nr. 18, p. 242. N 


Sitzungsberichte: 


— Band 126: 


— — Abteilung I: 
— te an WVotlage’ von -Heit-107 Nr 2: 


XV 


Sitzungsberichte: 
— Band 127: 
— 3 WAbteilung‘T: 
di ee Moatlage won\kefitsNr“2,p: 25. 
— 9-2 Vorlage vom Heft .21und?3.,Nr«3, P>29, 
—..—— 7— 1. Vorlage von. Heft 4 und 5. Nr. 4, p. 47. 
— „— zu Vorlage: von Heft.6rund 7.! Nr. 21, pP: 305. 


- — — Vorlage von Heft 8 und 9. Nr. 21, p. 305 
— — '— Vorlage von Heft: 10. Nr. 21, p. 305. 


— — Abteilung IlIa. 


—; —., ——. ’Vorlage von. Heft 1. Nr.f, ps. 
ls — 5 Vorlages von; Heft..2., Nr.,;3,.P:2% 
— — .— ; Vorlage von Heft 3. Nr. 3, p. 22. 
=. „1 Varlage, von, Lleft,4, Nr; %,Ps8%: 
—_ı 1. Vorlage von,Heft; 5.:,Nr:. L1,,D4, 225. 
— .—. — Vorlage von Heft 6. Nr. 11, p. 125. 
— — — Vorlage von Heft 7. Nr. 11, p. 125. 
— — -— Vorlage von Heft 8. Nr. 18, p. 235. 
— .— . — Vorlage von Heft 9. Nr. 19, p. 261. 
— — — Vorlage von Heft 10. Nr. 20, p. 301. 
— — Abteilung IIb: 

= — — Vorlage von Heft 5. Nr. 2, p. 25. 
= — — Vorlage von Heft 6. Nr. 4, p..47. 
-— _— .— ‚Vorlage von Heft 7. Nr. 11, p. 125. 


— — — Vorlage von Heft 8. Nr. 11, p. 125. 
=, — „— Vorlage von Heft 9. Nr. 13, p. 165. 
=- — ._— Vorlage von Heft 10. Nr. 19, p. 261. 


Band 127 und. 128: 


— — Abteilung III: 
= — — Vorlage von Heft 1 bis 3. Nr. 26, p. 337. 


=_ Band:i28: 


— — Abteilung Ila: 

2 =, Vorlage von Heft i. Nr. 20, p. 301. 
= u. = Worlage. von Heft 2. Nr. 20, p. 301. 
= — — Vorlage von Heft 3. Nr. 26, p. 337: 


Skrabal,A.,k. M, und E: Flach: Abhandlung Ȇber Polyjodidverbindungen 
der Oxalsäureester«. Nr. 27, p. 340. 
— und E. Singer: Abhandlung »Über die alkalische Verseifung des 
\Veinsäureesters«. Nr. 18, p. 242, 


xViil 


Smekal, A.: Abhandlung »Zur Theorie der Röntgenspektren. (Zur Frage der 
Elektronenanordnung im Atom)«. Nr. 11, p. 126. 

Sobotka, S.: Druckwerk »Die Feile. Neuartige Deutung des Weltgeschehense. 
Nr. 18, 9239. 

SocielE Provinciale des Arts et Sciences in Utrecht: Druckwerk »Hugo de Vries 
Opera e periodieis collata. Vol. Is. Nr. 7, p. 89. 

Sommerfeld, A.: Dankschreiben für seine Wahl zum auswärtigen korrespon- 
dierenden Mitgliede. Nr. 15, p. 199. 

Späth, E.: Abhandlung »Die Identität des Aribins mit dem Harman«. 
Nr. 13, p. 242. 

Sperlich, A.: Abhandlung »Die Fähigkeit der Linienerhaltung (phyletische 
Potenz), ein auf die Nachkommenschaft von Saisonpflanzen mit festem 
Rhythmus ungleichmäßig übergehender Faktor. Auf Grund von Unter- 
suchungen über die Keimungsenergie, Rhythmik und Variabilität in 
reinen Linien von “leclorolophus hirsulus All.«. Nr. 13, p. 165. 

— Abhandlung: »Über den Einfluß des Quellungszeitpunktes, von Treib- 
mitteln und des Lichtes auf die Samenkeimung von Aleclorolophus 
hirsutus All.; Charakterisierung der Samenruhe«. Nr. 15, p. 194. 

— Bewilligung einer Subvention zur Fortsetzung seiner Untersuchungen 
über die Keimungsenergie. Nr. 18, p. 258. 

Slaatsratsdirektorium: Bestätigung der Wahlen von 1918. Nr. 7, p. 84. 

Steinach, E.: »Mitteilungen aus der Biologischen Versuchsanstalt der Aka- 
demie der Wissenschaften in Wien. Nr. 36. Die antagonistisch- 
geschlechtsspezifische Wirkung der Sextalhormone vor und nach der 
Pubertäte. Nr. 11, p. 132. 

=— »Mitteilungen aus der Biologischen Versuchsanstalt der Akademie der 
Wissenschaften in Wien. Nr. 37. Künstliche Zwitterdrüsen bei Säugern 
und Vögeln«. Nr. 11, p. 135. R 

— >Mitteilungen aus der Biologischen Versuchsanstalt der Akademie der 
Wissenschaften in Wien. Nr. 38. Experimentelle und histologische 
Beweise für den ursächlichen Zusammenhang von Homosexualität und 
Zwitterdrüse«. Nr. 11, p. 138. 

— »Mitteilungen aus der Biologischen Versuchsanstalt der Akademie der 
Wissenschaften in Wien. Nr. 39, Histologische Beschaffenheit der 
Keimdrüse bei homosexuellen Männchen«. Nr. 11, p. 142. 

— und P. Kammerer: »Mitteilungen aus der Bioiogischen Versuchs- 
anstalt. Nr. 45. Klima und Mannbarkeit«. Nr, 18, p. 252. 

Steindachner, F., w. M.: Mitteilung von. seinem am 10. Dezember 1919 
erfolgten Ableben. Nr. 27, p. 339. 

Sterneck, R.: Mitteilung »Über eine ergänzende Rechnung zur Theorie der 
Adriagezeiten«. Nr. 19, p. 265. 


Subventionen: 
— aus der Boue-Stiftung: Nr. 18, p. 257. 
— aus der Erbschaft Czermak: Nr. 7, p. 89. 
= aus der Erbschaft Strohmayer: Nr. 6, p. 76; — Nr. 18, $. 258; 


XIX 


Subventionen 
— aus der Erbschaft Treitl: Nr. 20, p. 304; — Nr. 21, p. 305. 
— ' aus dem Legate Scholz: Nr. 6, p. 76; — Nt.'18, p. 258. 
— aus dem Legate Wedl: Nr.6, p. 76; — Nr. 16, p. 220;- — Nr. 18, 
p- 258. 
— aus der Ponti-Widmung: Nr. 6, p. 76. 
— aus der v. Zepharovich-Stiftung: Nr. 18, p. 258. 
— aus Klassenmitteln: Nr. 16, p. 220. 


Suess, F.E., w.M.: Bewilligung einer Subvention für geologische Studien 
in den niederösterr. Alpen. Nr. 20, p. 304. 
—  Dankschreiben für die Bewilligung dieser Subvention. Nr. 19, p. 262. 


Szekely, A.: Abhandlung »Beobachtungen an elektrolytischen Detektoren « 
Nr. 24, p. 323. 


Szombathy, J.: Dankschreiben für die Bewilligung eineı Subvention zu 
prähistorischen Ausgrabungen beim Orte Gemeinlebarn in Nieder- 
österreich. Nr. 18, p. 235. 


T: 


Tagger, J.: Versiegeltes Schreiben zur Wahrung ‘der Priorität mit der Auf- 
schrift: »Prometheus Nr. 1. Versuche mit dem Farbenkreiseis. Nr. 19 


p- 270 


„lo 


Tertsch, H.: Bewilligung einer Subvention für chemische Untersuchungen 
von Gesteinen aus dem Granulitgebiet des Dunkelsteiner Waldes.‘ 

Nr. 18, p. 258. 
— Dankschreiben für die Bewilligung dieser Subvention. Nr, 19, p. 262. 


Todesanzeigen: 
— Bauer, w. M. d. phil.-hist. Kl, Nr. 2, p. 25. 
— ischer BANG ENTE 10, p220% 
—nHlaeckel, & M, Nr. 19, p. 261. 
— Koerber,v., E.M., Nr. 7, p. 83. 
— Marenzeller, v., kaMesNr up. 
— Niessi-Mayendorf, k.M., Nr. 19, p. 361. 
— Rayleigh, k.M., Nr. 19, p. 261. 
-— eRetz1us, B.M...Nr. 19, p. 261. j 
— Seherer, v., w. M. d. phil.-hist. KL, Nr. 1, p. 1. 
— Schwendener, k.M., Nr. 16, p. 217. 
— Steindachner, w.M., Nr. 27, p. 339. 


Toldt, K, w. M.: Abhandlung »Anthropologische Untersuchungen der 
menschlichen Überreste aus den altägyptischen Gräberfeldern von 
El-Kubanieh«. Nr. 1, p. 0. 


xx 


Toldt, K, w. M.: Bewilligung einer Subvention für die Fertigstellung. des 
Manuskriptes zu seinen Untersuchungen der menschlichen Überreste 
aus den altägyptischen.Gräberfeldern von EI-Kubanieh. Nr. 6, p. 76. 
Toldt, K., jun.: Vorläufige Mitteilung »Symmetrische Zeichnung der Säuge- 
tierhaut infolge des Haarkleidwechsels«. Nr. 23, p. 312. 
Tschermak, A., k.M.: Dankschreiben für die ihm in Aussicht gestellte 
Subvention. Nr. 11, p. 125. i 
— Bewilligung einer Subvention für elektro- und thermogastrographische 
Studien. Nr. 16, p. 220. 
—  Dankschreiben für die Bewilligung dieser Subvention. Nr. 16, p. 217. 
— Druckwerke »Bioelektrische Studien an der Magenmuskulatur. I. Mit- 
teilung: Das Elektrogastrogramm (Egg) bei Spontanrhythmik des iso- 
lierten Froschmagens«. — >»Die finanz- und baugeschichtliche Ent- 
wicklung der deutschen und tschechischen Universität in Prag seit 
der Teilung«. — »Julius Bernstein’s en Zugleich ein Beitrag. 
zur Geschichte der neueren Biophysik«. Nr. 19, p. 273. 
Tschermak, G., w.M.: Abhandlung »Der Eee in chemischer Beziehung«- 
Nr. 18, p: 235. 


U. 


Ulinski, F. A.: Versiegeltes Schreiben zur Wahrung der Priorität mit der‘ 
Aufschrift: »Das Problem der Weltraumfahrt«. Nr. 19, p. 272. 

Universität in Basel: Akademische Publikationen für 1917—1918. Nr. 22, 
p. 310. 

Universität in Rostock: Einladung zur Feier ihres 500-jährigen Bestandes. 
Nr. 19, p. 262. 

Unterkreuter, E, und A. Zinke: Abhandlung Ȇber einige neue Derivate 
des Perylens«. Nr. 1, p. 16 


V” 
Versiegelte Schreiben: 
— Adler, Nr. 10, 9.116 
— Becke, Nr. 19, p. 272, 
— Biach, Nr. 26, p. 337. 
— Crinis, de, Nr. 19, p« 272. 
— Ehrenhaft und Konstantinowsky, Nr. 7, p. 86. 
— Groer und Hecht, Nr. 18,.p. 237. j 
— Hecht und Groer, Nr. 18, p. 237. 
— Hertzka, Nr. 17, p. 227, 
"— Kövesdy, Nr. 19, p. 2727 . . ar 
— ea und Ehrenhatt, "ah 7, en Boasdolidsei 
—- Merk, Nr. 1, p. ®. BET IRETRRIENS 


Versiegelte Schreiben: 


— Reichel, Nr. 15, p..198. 

— Reitler und. Robicsek, Nr. 7, p. 86. 

— Robiesek und Reitler, Nr. 7, p. 86. 
— Salzer, Nr. 15, p. 2: — Nr. 18, p. 237. 
— Tagger, Nr. 19,.p.2 12 

— Ulinski, Nr. 19, p. 272. 


Verzeichnis der von Anfang April 1918: bis Anfang. Apyil- 1919 an -die 
malhematisch-nalurwissenschaflliche Klasse gelangten - periodischen 
Druckschriften. Nr. 13, p. 171. vr mi 5“ 

Vierhapper, F.: Bewilligung einer Subvention für die Bearbeitung der 
Flora der Insel Kreta. Nr.-6, p. 76.- 

Vries, H.: Dankschreiben für seine Wahl zum Ehrenmitgliede jm Auslande. 
Nr. 12,°p. 149. | 


wir or yandoisiylei 


Wagner, A.: Abhandlung »Beitrag zu den Temperaturverhältnissen in Spitz- 
bergen nach fünfjährigen Registrierungen in Greenharbour«. Nr. 12, 
B2190. 

Wagner, A,J.: Vorläufige Mitteilung »Beschreibungen neuer und bisher 
wenig gekannter Clausiliiden (I. Teil)<. Nr. 4, p. 57.: 

— Mitteilung »Beschreibungen neuer oder bisher wenig gekannter Clau- 
siliiden (Il: Teil)«. Nr.-5, p. 70. Fe 

Wagner, R.: Mitteilung »Über die Existenz von Fächelzweigen«. Nr, 14, 
PelS7T. j 

— Mitteilung »Verzeichnis von Sapindaceengattungen, die acarophile 
Arten enthalten«. Nr. 15, p. 195. 

— Inhalt dieser Mitteilung. Nr. 16, p. 217. 

— Abhandlung »Vorblattdornen als Klettereinrichtung bei Celastrus 
flagellaris Max.«. Nr. 19, p. 269. 

— Abhandlung »Zur Geschichte der Spigelia mary vlandica L.«. Nr. 19, 
p. 269. : N 
Waßmuth, A,, “Abhandlung . »Studien. “über Jourdain's FEnp der 

ee a 4, p. 48. age = 
—  Druckfehlerberichtigung. hierzu. Nr. 7, = 89.- 
— Abhandlung »Über das Phäsenvolumen«. Nr. 18,:p. 236. 

Weese, J.: Abhandlung »Beiträge .zur- Kenntnis der Bee äeaneen Al. Mit- 
teilung)«. Nr. 18, P. 237: 

Wegscheider, R., w.M.; und ‘.H. Ecker: Söhinalung „Über 
sulfoniumverbindungene. Nr. 18, p. 241. el 

Weiß, R.: AR »Ein Beitrag‘z zur Bräge der asgmnpstiischer: Synthese?. 
Nr:-92, p. OB .E BEA Lietoilß) TE SI ar “> ‘ 


XXI 


Weitzenböck, R.: Abhandlung » Über Bewegungsinvarianten (X, Mitteilung)«. 
Nr. 3, p. 30 

Abhandlung »Über Bewegungsinvarianten (XI. Mitteilung)«. Nr. 7, p. 89. 

— Abhandlung »Über Bewegungsinvarianten (XII. Mitteilung)«. Nr. 7, p. 89, 

-—— Abhandlung »Über Bewegungsinvarianten (XIII. Mitteilung)«, Nr. 10, 


p- 116. 

— Abhandlung »Über Bewegungsinvarianten (XIV. Mitteilung)«. Nr. 10, 
pld7, y 

— Abhandlung »Über Bewegungsinvarianten (XV. Mitteilung)«. Nr. 10, 
prHl7. 


Weitstein, R. Ritter v., w. M.: Übernahme des Vorsitzes als Vizepräsident. 

Nr. 7, p. 83. 
— Vizepräsident: Begrüßung der Mitglieder bei Wiederaufnahme der 

Sitzungen. Nr. 19, p. 261. 

Wimbersky, F.: Abhandlung »Über den freien Fall im luftleeren Raume«. 
Nr. 24, p. 325. 

Wirtinger, W., w. M.: Abhandlung »Über eine spezielle Lösung der Diffe- 
rentialgleichung yy'' = mx2«, Nr, 1, p. 11, 


Z. 


Zehenter, J.: Abhandlung »Über Metaoxytolylsulfone«. Nr. 19, p. 271. 
Zellner, J.: Abhandlung »Zur Chemie der heterotrophen Phanerogamen, 
III. Mitteilungs. Nr. 12, p. 149. 
— Dankschreiben für die Verleihung der Hälfte des Haitinger-Preises. 
Nr. 15, p. 193. 


Zentralanstalt für Meteorologie und Geodynamik: 


— Monatliche Mitteilungen: 

— — Jahr 1918: 

— — — Vorlage von Nr. 11 (November). Nr. 1, p. 17. 
— —  — Vorlage von Nr. 12 (Dezember). Nr. 3, p. 35. 


— — Jahr 1919: 

—= en. "Vorlage von Nr. 1: (Jänner). Nr. 6, p. 77. 
— —  — Vorlage von Nr. 2 (Februar). Nr.’9, p. 105.. 
= —  — Vorlage von’'Nr. 3 (März). Nr. 12, p. 159. 
— —- — Vorlage von Nr. 4 (Apsil).. Nr. 13, p. 181]. 
=. ==. ‚Vorlage von Nr. 5 (Mai). Nr. 16,:p. 221. 
= — Vorlage von Nr. 6 (Juni). Nr. 19, p. 275. 
eure  Varläge von Nr.-7 (Juli). Nr. 19,.p. 281. 


= u — Vorlage von Nr. 8.(August). ‚Nr. 19, p. 293. .: 
= on ‚Vürlage von Nr. 9 (September). Nr..23, p. 315. 
” m == Vorlage von Nr. 10 (Oktober). Nr. 25, p. 328. 


NK 


Zinke, A.: Abhandlung »Zur Kenntnis von Harzbestandteilen. 5. Mitteilung. 

Notiz über den Abbau der d-Sumaresinolsäure«. Nr. 12, p. 153. 

— und H. Hansgirg: Abhandlung »Eine neuen Synthese des Perylens 
(vorläufige Mitteilung)«. Nr. 1, p. 16. 

— und E. Raith: Abhandlung »Synthese des 2, 3-Pyridinoacenaphtens«. 
Nr. 12,'p.'158. 

— und-E. Unterkreuter: Abhandlung »Über einige neue Derivate des 
Perylens«. Nr. 1, p. 16. 


ullauiiid hir A 
i ORAL? TE a Dr 


RR & re u . x r 
D En Fa BruNze - ö ee 'oys 
Haie; 
Pr De 


EL, 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr. 1 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 9. Jänner 1919 


—— 
Erschienen: Sitzungsberichte, Abt. I, Bd. 126, Heft 10; — Abt. lla, 
Bd. 127, Heft 1. — Monatshefte für Chemie, Bd. 39, Heft 9. 


Der Vorsitzende-Stellvertreter macht Mitteilung von dem 
Verluste, welchen die Akademie durch das am 21. Dezember 1918 
erfolgte Ableben des wirklichen Mitgliedes der philosophisch- 
historischen Klasse, Hofrates Prof. Dr. Rudolf R. v. Scherer, 
sowie durch das am 6. Dezember 1918 erfolgte Ableben des 
korrespondierenden Mitgliedes dieser Klasse, Prof. Dr. Emil 
Edlen v. Marenzeller, em. Kustos I. Kl. am Naturhistorischen 
Hofmuseum, erlitten hat. 

Die anwesenden Mitglieder geben ihrem Beileide durch 
Erheben von den Sitzen Ausdruck. 


Universitätsdozent Hauptmann Dr. Josef Bayer, Kustös- 
adjunkt am Naturhistorischen Museum, übersendet einen vor- 
läufigen Bericht über die wissenschaftlichen Ergebnisse 
seines zweiten Palästina-Aufenthaltes (1918). 

Die anfangs März 1918 gemeinschaftlich mit Leutnant 
Dr. Otto Antonius unternommene Reise nach Palästina wurde 
durch einen dreiwöchigen Aufenthalt in Konstantinopel unter- 
brochen, welcher Gelegenheit zu eingehendem Studium des 


e 1 


dortigen Museums gab. Die mir von maßgebender Stelle an- 
gebotene Publikation prähistorischer Funde dieses Museums 
mußte der Kürze der Zeit wegen auf später verschoben 
werden. 

Bei Aleppo machte ich eine flüchtige Untersuchung an 
einem nördlich der Stadt gelegenen Tell, der sehr reiche Aus- 
beute an neolithischen und bronzezeitlichen Funden verspricht 
und dessen Abgrabung später einmal ernstlich ins Auge zu 
fassen wäre, da seine Lage am Kreuzungspunkt der Linien 
Troja— Mesopotamien und Kaukasus—Palästina wichtige Auf- 
schlüsse über die urgeschichtlichen Beziehungen dieser Gebiete 
erwarten. läßt. 

Weitere Steinzeitfunde machte ich u. a. in der Gegend 
von Deraa im Ostjordanland. 

Mitte Mai übernahm ich die Stelle des österreichisch- 
ungarischen Verbindungsoffiziers bei der VII. türkischen Armee 
in Nablus, dem biblischen Sichem. Bei der Begehung der 
wissenschaftlich hochinteressanten Umgebung fand ich bei 
Bet Uden, eine Gehstunde westlich von der Stadt, einen 
Lagerplatz aus dem Campignien mit einer Anzahl typischer 
Steinwerkzeuge. 

Kurze Zeit darauf entdeckte ich unweit der Stadt Nablus 
beiderseits eines im Sommer trockenen Wassergrabens, der 
sich dort zu einer Mulde erweitert, einen großen Campignien- 
Wohnplatz mit mehreren hundert prächtigen Faustkeilen in 
verschiedenster Größe. 


Dieser Entdeckung dürfte größere Bedeutung dadurch 
zukommen, daß damit ein gewisser Grad von Seßhaftigkeit 
für den Campignien-Menschen wahrscheinlich gemacht wird, 
denn die große Anzahl gleichartiger Stücke läßt auf längeres 
Verweilen an dieser Stelle schließen. 


Schon nach 14-tägiger Anwesenheit in Nablus wurde 
mir durch den k.u.k. Militärbevollmächtigten in Konstantinopel 
jede weitere wissenschaftliche Tätigkeit eingestellt und meine 
Kommandierung nach Nazareth verfügt, während Dr. Antonius 
als Verbindungsoffizier zur IV. türkischen Armee nach Es Salt 
ins Ostjordanland abging. 


(db) 


Von Nazareth aus, wo ich im August die Stelle des 
k. u. k. Verbindungsoffiziers beim Heeresgruppenkommando 
Liman von Sanders übernahm, konnte ich kleinere Exkursionen 
in die Umgegend machen, wobei ich an verschiedenen. Stellen 
Spuren des Steinzeitmenschen antraf. 

Der in Salt inzwischen erkrankte Dr. Antonius ging in 
das österr.-ung. Reservespital in Damaskus ab, von wo er in 
das Rekonvaleszentenheim auf den Libanon übersiedelte. Als 
es sein Gesundheitszustand zuließ, betraute ich ihn in Beirut 
mit der Aufgabe, die in meinem am 6. Februar 1918 in der 
Wiener Anthropologischen Gesellschaft gehaltenen Vortrag 
angedeutete wichtige Frage, ob diese Campignien- und älteren 
neolithischen Steinwerkzeuge hier in Syrien mit der Rhino- 
ceros tichorhinus-Fauna vorkommen, durch Studium der Bei- 
ruter Museen (Sammlungen), eventuell durch neue Grabungen 
zu klären. Leider konnte dieses Problem nicht entschieden 
werden, da die Sammlungen keinen sicheren Aufschluß ge- 
währten und es zu den bei Antelias projektierten Grabungen 
infolge der kriegerischen Ereignisse nicht mehr kam. 

Immerhin sammelte Dr. Antonius beim Nahr el Kelb 
und bei Chamur nächst Beirut eine Anzahl auf der Oberfläche 
gefundene Keile, Schaber etc. 

Von meinen Funden bei Sichem ging leider der wert- 
vollste Teil beim Straßenkampf in Nazareth am 20. September 
1918 verloren. Ich wollte die Kisten im letzten Moment noch 
retten, es war aber bei dem heftigen Maschinen- und Infanterie- 
gewehrfeuer unmöglich. Sie blieben auf der Straße in Nazareth 
liegen. Nur die Funde von Bet Uden und eine Kiste mit 
Petrefakten aus dem Libanon konnte ich auf ein Lastauto 
bringen und nach Konstantinopel transportieren, wo ich sie 
(dem Leutnant Dr. Christian von der ethnographischen. Ab-- 
teilung unseres naturhistorischen Museums: zur Weiterbeförde- 
rung übergab. Dr. Christian ist noch nicht in Wien ein- 
getroffen. Die Funde des Dr. Antonius sind deızeit in 
Mährisch-Ostrau deponiert. 


Das w. M. Dr. Julius v. Hann überreicht eine Abhandlung 
mit dem Titel: »Die ganztägige (24-stündige) Luftdruck- 
schwankung in ihrer Abhängigkeit von der Unterlage 
(Ozean, Bodengestalt).« 

Die Grundlagen, auf welchen die Berechnungen des Ver- 
fassers, betreffend den täglichen Barometergang an einer 
größeren Anzahl von Orten in seinen beiden vorausgegangenen 
Abhandlungen (über die dritteltägige und über die halbtägige 
Luftdruckschwankung; Denkschriften, Bd. 95, Februar 1917, 
und Sitzungsber., Bd. 127, Februar 1918), beruhen, sind an 
diesen Orten nicht veröffentlicht worden, deshalb werden 
sie jetzt in einem Anhange zu der vorliegenden Arbeit nach- 
getragen. Diese Arbeit selbst ist einer gründlicheren Unter- 
suchung der ganztägigen Luftdruckschwankung ge- 
widmet. Eine solche mit Berücksichtigung des Zusammen- 
hanges mit allen zugrunde liegenden Umständen ist bisher 
nicht geleistet worden. Dies kommt wohl daher, daß die ganz- 
tägige Luftdruckschwankung des Reizes entbehrt, welcher der 
halbtägigen Druckschwankung infolge ihres an die Einfachheit 
und Gesetzmässigkeit kosmischer Erscheinungen erinnernden 
Auftretens anhaftet. i 

Im Gegensatze dazu haftet die ganztägige Druckschwan- 
kung in ihren auffallenden Erscheinungen, man darf geradezu 
sagen, am Boden, an der Unterlage, über welcher sich selbe 
abspieleni Die Art ihres Auftretens ist im hohen Grade in 
höheren Breiten ganz von der Örtlichkeit bedingt, daher die 
Manniefaltigkeit ihrer oft gesetzlos scheinenden Formen. 
Es gibt aber doch auch eine der halbtägigen Luftdruck- 
schwankung so zu sagen ebenbürtige ganztägige Druckwelle 
von allgemeinen, sagen wir terrestrischen, Charakter, welche 
aber, wie gezeigt wird, nur eine relativ kleine Amplitude hat. 
Sie verschwindet deshalb schon in mittleren Breiten nahezu, 
in den höheren Breiten ganz, unter den ihr aufgesetzten, lokal 
bedingten ganztägigen Druckwellen mit ihren im allgemeinen 
viel größeren Amplituden und ihren mannigfaltigen Formen. 

Um die wahre Phasenzeit und die Amplitude der reinen 
ganztägigen Luftdruckschwankung von universellem Charakter 
feststellen zu können, muß man sie dort aufsuchen, wo die 


iokalen Störungen, denen ganztägige Druckschwankungen über- 
haupt infolge der ganztägigen Perioden aller meteorologischen 
Erscheinungen, namentlich der täglichen Bodenerwärmung, 
unterliegen, den. geringsten Einfluß haben, das ist über den 
Ozeanen, entfernt von den. Küsten. 

Deshalb hat deı Verfasser mit Hilfe von. Schiffsbeob- 
achtungen auf den Ozeanen, speziell den außeroidentlich wert- 
vollen stündlichen Beobachtungen (aller meteorologischen Ele- 
mente) an Bord der »Novara«, dann jener anderer Schiffe der 
österreichischen Kriegsmarine (»Zrinyi«, »Donau«, »Aurora«, 
»Saida« etc.) die ihm seinerzeit schriftlich mitgeteilt worden 
sind, sowie der zweistündigen Aufzeichnungen an Bord des 
»Challenger« die Amplituden: und Phasenzeiten der ganztägigen 
Luftdrucksehwankung über den Ozeanen berechnet. 

Die Registrierungen des Luftdruckes auf einigen rein 
ozeanischen Inseln, namentlich auf zwei niedrigen Korallen- 
inseln (Mangarewa und Jaluit) konnten daneben mit großem 
Vorteile benutzt werden. Diese Inselbeobachtungen gestatteten 
auch, die jährliche Periode der Phasenzeiten und Amplituden 
der reinen ganztägigen Druckwelle festzustellen, wozu auch 
die Mittelwerte bloß vierstündiger älterer Schiffsbeobachtungen 
im äquatorialen Atlantischen Ozean und im Süden der Bai 
von Bengalen verwendet werden konnten. 

Beobachtungen auf großen Ebenen von gleichförmiger 
Bodengestalt könnten gleichfalls dazu dienen, die Form 
der ganztägigen Luftdruckwelle zu untersuchen. Derartige, 
wenigstens ein Jahr umfassende stündliche Luftdruckaufzeich- 
nungen scheinen aber gänzlich zu fehlen, Der Verfasser 
möchte auf den wissenschaftliichen Wert solcher Beob- 
achtungen ganz besonders aufmerksam machen. 

Aus der Berechnung der Beobachtungen auf dem offenen 
Ozean und auf einigen ozeanischen Inseln im Tropengebiet 
ergibt sich, daß die reine, sozusagen universelle, ganztägige 
Luftdruckschwankung ünter dem Äquator durch den Aus- 
druck gegeben ist 

0:3 sin (O’+n). 
Die Amplitude beträgt (rund)nurO 3 mn, d.i.ein Drittel der Ampli- 
tude der halbtägigen Luftdruckschwankung in gleicher Breite, 


> 


5 


die Phasenzeiten sind: 6" a. m. Maximum, 6" p. m. Minimum, 
nahezu die umgekehrte tägliche Temperaturwelle, wie man 
sie (genähert) in den höheren Schichten der Atmosphärezone 
voraussetzen darf.! Die Theorie der ganztägigen Luftdruck- 
schwankung gilt eine Phasendifferenz derselben von 180° 
gegen die erzeugende ganztägige Temperaturwelle. 

Diese reine ganztägige Druckwelle scheint über 40° 
Breite hinaus zu erlöschen. 

Sie wird dort jedenfalls durch die lokal bedingten ganz- 
tägigen Luftdruckschwankungen überdeckt und unkenntlich 
gemacht. Diese durch die Verschiedenheiten der Unterlage 
der Atmosphäre bedingten und der Verschiedenheit der Er- 
wärmung derselben ganztägigen Druckwellen werden in drei 
Abschnitten näher beschrieben auf Grund der Beobachtungen 
an sehr zahlreichen Stationen. Der erste Abschnitt enthält. 
eine Zusammenstellung der Amplituden und Phasenzeiten 
von 92 Orten an den Küsten, der zweite desgleichen an 
83 Stationen auf den Kontinenten, der dritte spezieller die 
Eigentümlichkeiten der ganztägigen Luftdruckschwankung in 
den Gebirgstälern. 

Die so stark ausgesprochene. lokale Bedingtheit der 
Phasenzeiten und Amplituden gestattet nicht, allgemeinere 
Gesetze über den Einfluß der geographischen Breite auf diese 
Konstanten der täglichen Druckschwankung aufzustellen, am 
wenigsten bei den Phasenzeiten. Die Amplituden nehmen 
allerdings mit der Breite ab, aber zu unregelmäßig, um für 
diese Abnahme einen mathematischen Ausdruck ableiten zu 
können. Die Amplituden sind, wie zu erwarten, auf den Kon- 
tinenten größer als an den Küsten. Es wird auch gezeigt, 
daß eine Reduktion dieser Amplituden auf das Meeresniveau 
(wie Angot sie vorgenommen hat) unzulässig erscheint. Auch 
der jährliche Gang dieser Elemente läßt sich nicht allgemein 
feststellen, er unterliegt zu sehr örtlichen Unterschieden, welche 
besonders aufgezeigt werden. 


1 Schon auf dem Eiffelturm, 300 m über dem Boden, ist die Gleichung 
der täglichen Temperaturwelle 1°8 sin (207°-+-x), nach Beobachtungen auf 
hohen Berggipfeln in den unterhalb liegenden Luftschichten a (sin 192° + x), die 
Phasenzeit also nur um 12°, d.i. 0'8 Stunden von diesem Postulat enifernt. 


Zum Schlusse werden verschiedene interessante und 
extreme Typen des beobachteten täglichen Barometerganges, 
die durch ihre Verschiedenheiten und Abweichungen von dem 
normalen Bilde desselben oft so befremdend gewirkt haben, 
durch die Trennung der ganztägigen Druckwelle von der 
halbtägigen mittels der harmonischen Analyse erklärt und auf 
ihre Ursachen zurückgeführt. 

Der Anhang enthält den beobachteten täglichen Baro- 
metergang in Form der Abweichungen der Stundenmittel von 
dem Tagesmittel in den zwölf Monaten und im Jahre an 
16 Orten auf der südlichen und an 22 Orten auf der nörd- 
lichen Hemisphäre und vervollständigt so die früher vom 
Verfasser und von Angot veröffentlichten derartigen Grund- 
lagen für Untersuchungen der täglichen Luftdruckschwankung. 


Das k.M. Prof. G. v. Niessl übermittelt eine Abhandlung 
mit dem Titel: »Über die Bahn des großen detonierenden 
Meteors vom 29. Juni 1917 9% 1” m.e. Z.)« 


Ein am 29. Juni 1917 um 9% 1" m. e. Z. über Wien gegen 
NNW hingezogenes Meteor, das sich zuletzt unter bedeutenden 
Lichterscheinungen und weithin vernehmbaren Detonationen 
südöstlich von Görlitz aufgelöst hat, gab zur Sammlung von 
Berichten Veranlassung, die dem Verfasser aus einem Beo- 
bachtungsgebiete von nicht weniger als 680 km Durchmesser 
für die Ableitung der kosmischen Bahn zur Verfügung gestellt 
wurden. Im Verlaufe der hierüber durchgeführten Untersuchung 
ergab sich zunächst der End- oder Hemmungspunkt der 
Bahn in der Atmosphäre zu 18°4 km 1:5 Höhe über einem 
Punkt der Erdoberfläche in 32°49-3’ östlich von Ferro und 
51°3°5’ nördlicher Breite. Gestützt auf diese Feststellungen 
wurde aus 2] beobachteten, günstig gelegenen scheinbaren 
Bahnbogen der Strahlungspunkt der Feuerkugel in 249°0° — 
—+ 0'8° Rektaszension und 20°4° — 1:5° südlicher Deklination, 
unweit des hellen Sternes » Antares« im Sternbild des »Skorpion« 
abgeleitet. Die Orientierung der Bahnlage auf der Erdoberfläche 


5 
ergab sich zu 16° östlich von Süd und 17° 
den Horizont des Endpunktes. 

Für das früheste Aufleuchten in dieser Bahn wurde 
eine Höhe von 89:4 km über der Gegend zwischen Budischau 
und Neuhöfen bei Trebitsch nachgewiesen. Aus nicht weniger 
als 21 Angaben der sogenannten Laufzeit konnten geeignete 
Schlüsse auf die Geschwindigkeit in der gesehenen 229 kın 
langen Bahn gezogen werden, die annehmen lassen, daß sie 
beim Eintritte in die irdische Atmosphäre und relativ zur 
Erde mindestens 37 km in der Sekunde betragen hatte. Es 
wurde ferner auch in diesem Falle neuerdings nachgewiesen, 
daß die Verluste an Geschwindigkeit in den untern atmo- 
sphärischen Regionen den Beobachtungen nach sich als nicht 
unbedeutend herausstellen, wenigstens im Vergleiche mit 
älteren theoretischen Annahmen. In bezug zur Sonne als 
planetarischer Zentralkörper ergab sich die sogenannte helio- 
zentrische Geschwindigkeit hieraus mindestens zu 57km, 
wodurch nachgewiesen ist, daß auch diese Erscheinung in 
einer hyperbolischen Bahn aus dem fernen Weltraum in das 
Sonnensystem gelangt ist. Sie stellt ein Glied des verhältnis- 
mäßig reichen Stromes dar, über den der Verfasser in der 
Rlassensitzung vom 17. Oktober 1912 übersichtlich berichtet 
hat und liefert durch die genaue Bestimmung der Hauptfak- 
toren einen neuerlichen Beitrag zu dessen völligen Erforschung. 

In der vorgelegten Abhandlung wird ein ausführliches 
Zahlenmaterial auch über die beobachteten Licht- und Schall- 
erscheinungen geboten. Das Meteor hinterließ nach Ver- 
schwinden des »Kopfes« in der Atmosphäre noch Residuen 
längs der Bahn in Form eines mehr als 160 km langen, zu- 
erst glühenden, geradlinigen, dann .durch 7 bis 10 Minuten 
rauch- oder nebelähnlichen verschiedenartig gestalteten Streifen 
zurück. 


Neigung gegen 


Prof. Dr. Karl Brunner übersendet eine im Chemischen 
Institut der Universität in Innsbruck von Prof. Dr. Karl 
Hopfgartner ausgeführte Abhandlung mit dem Titel: »Die 


Überführungszahldes Chromiionsin violettenChlorid- 
lösungen.« 


9 


Die Hittorfsche Überführungszahl des Chromiions in 
violetten Chloridlösungen wurde bei drei Konzentrationen, 
und zwar immer in Gegenwart von Salzsäure bestimmt. 

Die gefundenen Mittelwerte sind: 0318 (Konzentration 
1 Äquivalent Chrom auf 1000 g Lösung), 0:357 (0:32 Äqui- 
valent) und 0414 (0:075 Äquivalent). 


Prof. Dr. Ludwig Merk in Innsbruck übersendet ein 
versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schrift: »Ätiologie verschiedener Geschwulstformen.« 


Das w. M. Hofrat C. Toldt legt eine Abhandlung vor 
mit dem Titel: »Anthropologische Untersuchung der 
menschlichen Überreste aus den altägyptischen 
Gräberfeldern von EI-Kubanieh.« 


Im Juli des Jahres 1911 hat das Treitl-Komitee über 
Empfehlung der mathematisch-naturwissenschaftlichen Klasse 
den Betrag von 7000 K bewilligt, um dem Herrn Prof. Junker 
zu: ermöglichen, gelegentlich seiner im Auftrage der philo- 
sophisch-historischen Klasse unternommenen archäologischen 
Arbeiten in Öberägypten aus den von ihm blosgelegten 
Gräbern die menschlichen Überreste zu bergen und nach 
Wien zu schicken. Im Mai 1912 ist das von Junker ge- 
sammelte Material in Wien eingetroffen und wurde in der 
anthropologisch-ethnographischen Abteilung des naturwissen- 
schaftlichen Hofmuseums, woselbst es aufbewahrt ist, unter 
Aufsicht des Herrn Regierungsrates J. Szombathy gereinigt, 
konserviert und für die weitere Bearbeitung vorbereitet. 

Von der mathematisch-naturwissenschaftlichen Klasse mit 
der wissenschaftlichen Untersuchung dieses Materials betraut, 
hat sich der Verfasser zunächst mit dem weitaus wichtigsten, 
aus den Gräberfeldern von EI-Kubanieh stammenden 
Teile desselben beschäftigt, welcher 192 Schädel und 16 Ske- 
lette umfaßt. 


10 


Die vorliegende Abhandlung enthält eine eingehende ver- 
gleichende Darstellung der anthropologischen Eigenschaften 
dieser Schädel, nach dem Geschlechte getrennt und nach den 
beiden hauptsächlichsten Gräberfeldern: El-Kubanieh Nord und 
El-Kubanieh Süd geschieden. Die Einzelnheiten dieser Dar- 
stellung eignen sich nicht für eine kurze Wiedergabe; es 
möge hier nur hervorgehoben werden, daß es sich nahezu 
ausnahmslos um langgebaute Schädel handelt, von welchen 
die verschiedenen Grade der Dolicho- und Mesokephalie in 
verschiedenem Maße gemengt auftreten und auch die Ge- 
schlechtsunterschiede deutlich ausgeprägt sind. Im ganzen 
lassen sich aber unter ihnen zwei durch Schädel- und Ge- 
sichtsbildung gut charakterisierte Formen feststellen, welche 
der Verfasser unvorgreiflich als Typus I und Typus I be- 
zeichnet hat. Zwischen diesen beiden Typen, von welchen 
der erste in weitaus größerer Zahl vertreten ist, stehen ver- 
schiedene Übergangs- oder Mischformen. Es konnte erwiesen 
werden, daß die beiden Schädeltypen in allen Zeitperioden, 
aus welchen die Friedhöfe von El-Kubanieh stammen, vor- 
kommen, jedoch in sehr ungleichem Maße miteinander ver- 
mengt sınd, während sich die Mischformen auf einzelne von 
diesen Perioden beschränken. Um positive Schlüsse auf die 
Rassenzugehörigkeit dieser Schädeltypen zu ziehen, fehlen die 
nötigen Voraussetzungen, jedoch hat sich aus den Unter- 
suchungen des Verfassers das Folgende ergeben: 


1. In den Gräbern von EI-Kubanieh sind Überreste einer 
ausgesprochen kurzköpfigen Rasse nicht enthalten; 

2. eine irgendwie erhebliche Beimengung von negerartigen 
Elementen in denselben ist nicht erweisbar; 

3. die Bevölkerungen, deren Überreste aus diesen Gräber- 
feldern vorliegen, sind keineswegs von einheitlicher Abstam- 
mung, sondern in jedem von diesen sind wenigstens zwei 
verschiedene Rassenelemente nachweisbar, deren Spuren sich 
in der Schädel- und Gesichtsbildung offenbaren. 


In letzterer Hinsicht stehen die Erfahrungen des Ver- 
fassers mit der seit Blumenbach allgemein herrschenden 
Annahme in Einklang, daß in der ägyptischen Bevölkerung 


11 


mindestens zwei Rassentypen vertreten sind, welche man nach 
dem Vorgange von Pruner-Bey als »feinen« und »groben« 
Typus zu bezeichnen pflegt. Jedoch stimmen die Autoren 
bezüglich der Grundlagen zur Feststellung dieser beiden 
Rassentypen und infolgedessen auch. in der anatomischen 
Charakteristik derselben keineswegs überein und der Ver- 
fasser selbst kann nur sagen, daß die von ihm als Typus II 
bezeichnete Form im allgemeinen dem »groben« Typus von 
Pruner-Bey nahesteht. Andrerseits haben sich manche For- 
scher veranlaßt gesehen, in der ägyptischen Bevölkerung eine 
größere Zahl von Rassentypen — bis zu sieben — zu unter- 
scheiden. Eine Klärung der weit auseinandergehenden An- 
schauungen und damit eine befriedigende Lösung des schwie- 
rigen ägyptischen Rassenproblems scheint noch in weiter Ferne 
zu stehen. 

Am Schlusse dieser Abhandlung werden die an den unter- 
suchten Schädeln vorkommenden Anomalien und Varietäten 
kurz zusammengefaßt und einige höchst merkwürdige post- 
mortale Veränderungen der Knochensubstanz besprochen, 
welche offensichtlich durch die besondere Beschaffenheit des 
Bodens, in welchem diese Schädel Jahrtausende hindurch 
gelegen waren, ihre Erklärung finden. 


Das w.M. W. Wirtinger legt eine Abhandlung vor: 
»Über eine spezielle Lösung der Differentialgleichung 
NY" — mMEE.s 

Es wird gezeigt, daß die von Herrn F. Mertens durch 
eine Potenzreihe in der Umgebung der Nullstelle dargestellte 
Lösung, welche den Anfangsbedingungen v=0,y =a, für 
x=—0 entspricht, für alle reellen positiven Werte regulär ist 
und daß für unendliches x der Grenzwert von y” gleich 


\V 2m ist. 


Das w. M. Prof. C. Diener erstattet den nachfolgenden 
Bericht über seine geologischen Untersuchungen im 
Bereich unserer ehemaligen Südwestfront. 


12 


Die im Sommer, 1918 im Auftrag der Akademie aus- 
geführten Begehungen erstreckten sich auf die drei folgenden, 
räumlich getrennten Abschnitte unserer ehemaligen Südwest- 
front: 1. Das Gebiet zwischen Raibl und Chiusaforte, 2, das 
Becken von Agordo bis zum Vallespaß, 3. das Frontstück 
Sellajoch— Kreuzbergpaß. Neue geologische Aufschlüsse sind 
hier vielfach durch die Anlage von Straßen, Saumwegen, 
Schützengräben, Artilleriestellungen,. gelegentlich auch durch 
größere Sprengungen von Minen geschaffen worden, doch ist 
die Bedeutung derselben für das Studium der regionalen 
Stratigraphie und Tektonik im allgemeinen nur eine geringe, 
da sie neben den natürlichen Aufschlüssen im Gebirge stark 
in den Hintergrund treten. So haben die neuen Straßen- 
bauten im Raccolanatal, die Straßenzüge Canazei — Sella- 
joch — Grödenerjoch — Corvara, St. Vigil— Pederü — Fannes- 
alpe, Pederü— Som Pauses — Peutelstein, endlich die Um- 
legung der Straße im Abteital zwischen Stern und St. Cassian 
keinerlei Schichtgruppen entblößt, deren Anwesenheit nicht 
bereits früher hätte festgestellt werden können. Das gleiche 
gilt von den Veränderungen des Terrains durch die gewaltigen 
Minensprengungen am Vallespaß (Porphyr), bei Fort San 
Martino in der Cordevoleschlucht (Hauptdolomit) und auf 
dem Augitporphyrkamm Monte Sief—Col di Lana, die das 
Landschaftsbild dieser beiden Berggipfel vollständig verändert 
haben. Nur am Westrande des Beckens von Agordo hat die 
Herstellung einer neuen Straße in einem bisher durch Wiesen- 
matten vollständig maskierten Terrain vorzügliche Aufschlüsse 
enthüllt, die die Anwesenheit eines auffallenden, meridional 
streichenden Längsbruches zu erkennen gestatteten. 

Die Anlage von Schützengräben, Unterständen und 
Geschützstellungen hat insbesondere in der Umgebung des 
sogenannten Richthofen-Riffes (Feldwache 5) zwischen Sief- 
sattel und Set Sass interessante Aufschlüsse geliefert, die für 
eine zutreffende Beurteilung der vielumstrittenen Beziehungen 
des Schlerndolomits zu den Cassianer Schichten von Wichtig- 
keit sind. Die künstlichen Aufschlüsse, die das Grenzgebiet 
zwischen den beiden genannten Schichtbildungen in den 
mannigfaltigsten Richtungen zerschneiden und bloßlegen, 


zeigen deutlich, daß Schlerndolomit und Cassianer Schichten 
sich hier — wie es der Annahme von E. v. Mojsisovics 
entspricht — gegenseitig vertreten und miteinander verzahnt 
sind, :so daß die Grenzfläche zwischen denselben eine sehr 
unregelmäßige, vielfach gebrochene und zickzackförmig ver- 
laufende Fläche, aber keine Verwerfung darstellt. Der neue 
Weg von hier über Pralongia nach Incisa schließt nur 
Cassianer Mergel, aber keine Klippen des Schlerndolomits auf. 


Das w. M. Prof. E. Brückner legt eine Abhandlung 
von Prof. Dr. R. Daublebsky v. Sterneck in Graz vor mit 
dem Titel: »Die Gezeitenerscheinungen in der Adria. 
I. Teil. Die theoretische Erklärung der Beobachtungs- 
tatsachen.« 


Auf Anregung des Präsidiums der österreichischen Adria- 
kommission unternimmt es der Verfasser der vorliegenden 
Arbeit, jenes reichhaltige Material theoretisch zu verarbeiten, 
das Herr Konteradmiral W. v. Kesslitz im ersten Teile ver- 
öffentlicht hat. Es enthält die Ergebnisse der harmonischen 
Analyse von 16 Beobachtungsstationen und gestattet daher, 
nicht bloß die vereinigte Sonnen- und Mondflut zur Zeit der 
Syzygien, die den Gegenstand der bisherigen Untersuchungen 
des Verfassers über die Adriagezeiten bildeten (Sitzungs- 
berichte 1914 und 1915), sondern jede einzelne Partialtide in 
ihrem Verlaufe innerhalb der Adria theoretisch zu unter- 
suchen. Die wichtigsten dabei erhaltenen Ergebnisse sind die 
folgenden: | 


1. Jeder einzelnen Partialtide gehört eine 'Längs- und 
eine Querschwingung der Adria zu, deren Phasen um ein 
Viertel der Periode voneinander verschieden sind. Die Längs- 
schwingung entspringt dem Mitschwingen mit der äußeren 
Gezeitenbewegung des Ionischen Meeres, die Querschwingung 
aber der Einwirkung der Erdrotation auf die sich in der 
Längsschwingung periodisch verschiebenden Wasserteilchen. 


14 


2. Die Anwendung der Differentialgleichung des bloßen 
Mitschwingens 


wo & und 7, die Amplituden der horizontalen und vertikalen 
Verschiebungen der Wasserteilchen in der Entfernung x vom 
Nordende und 7 die Periode bedeuten, führt bei Festhaltung 
der Beobachtungsdaten in der Gegend von Ragusa bereits zu 
einer durchaus befriedigenden Übereinstimmung mit den 
beobachteten Amplituden der Längsschwingungen. Namentlich 
ergibt: sich dabei "auch ‘die Lase der Knotenlinie, die DEI 
allen Halbtagstiden in der Nähe der Nordspitze der Isola 
lunga entsteht, mit großer Exaktheit. 


3. Die Übereinstimmung mit den beobachteten Amplituden 
wird am nördlichen Ende der Adria eine noch etwas voll- 
kommenere, wenn man auch die Einwirkung der einzelnen 
fluterzeugenden Kräfte auf die Längsschwingungen berück- 
sichtigt, also die Differentialgleichung in der Form 


do ER a E 
— IE COSI Was‘ 
dx hi & 


der Rechnung zugrundelegt, wo fcos® die der betreffenden 
fluterzeugenden Kraft in der Breite 2 zugehörige Be- 


schleunigung und m den Neigungswinkel der Mittellinie der 
Adria gegen die Parallelkreise bedeutet. 


4. Die theoretischen Amplituden der Querschwingungen 
ergeben sich zunächst in gleichem Ausmaße wie die unter 
dem Einfluß der Erdrotation entstehenden periodischen 
Neigungen der Niveaufläche, nämlich im Betrage 

tan = AALEN v, 


og 
{e) 


wo ® die Winkelgeschwindigkeit der Erde und v die beim 
Durchgang durch die Ruhelage erreichte maximale Ver- 
schiebungsgeschwindigkeit der Wasserteilchen infolge der 
Längsschwingung bedeutet. Bei Berücksichtigung des ver- 


größernden Einflusses, den die Trägheit des Wassers auf die 
nach dieser Formel berechneten Amplituden — «4 ausübt, 
erweisen sie sich gleichfalls in so genauer Übereinstimmung 
mit den beobachteten Werten, daß wohl kein Zweifel darüber 
bestehen kann, daß wir in der Einwirkung der Erdrotation 
in der Tat die alleinige Ursache dieser Querschwingungen 
zu suchen haben. 

5. Die Zusammensetzung der Längs- und Querschwingung 
führt bei den halbtägigen Tiden, bei denen eine Knotenlinie 
der Längsschwingung vorhanden ist, zu je einer Amphidromie, 
d. h. zu einer Umkreisung des Meeres durch das betreffende 
Hochwasser im Laufe der zugehörigen Periode. Jene für M, 
wurde genau durchgerechnet und erwies sich in vollem 
Einklang mit den in den einzelnen Stationen beobachteten 
Kappazahlen. Bei den ganztägigen Tiden haben wir gewisser- 
maßen nur den nördlichsten Abschnitt einer solchen Amphi- 
dromie vor uns. 

6. Für die Mündungsstelle der Adria ergeben sich nach 
der genaueren Rechnung zwar bei den Halbtagsgezeiten die 
gleichen, bei den ganztägigen aber bedeutend kleinere Ampli- 
tuden als unter der Annahme bloßen Mitschwingens, woraus 
zu folgern ist, daß die direkte Einwirkung von Sonne und 
Mond auf die Eintagskomponenten in der ganzen Adria einen 
ziemlich stark vergrößernden Einfluß ausübt. Für die Mün- 
dungsstelle liegen leider keine Beobachtungen vor. Die Ampli- 
tuden, die man durch Fortsetzung der numerischen Integration 
an der Mündungsstelle erhält, stimmen in ihren Verhältnissen 
ziemlich genau mit den in Malta beobachteten überein; das- 
selbe gilt auch von den Kappazahlen. 

7. Man kann zusammenfassend sagen, daß alle heute 
vorliegenden Beobachtungsdaten über die Adriagezeiten auf ' 
Grund der einfachsten Gesetze der Hydrodynamik sozusagen 
restlos erklärbar sind, soweit es sich um den Verlauf der 
Amplituden und Kappazahlen innerhalb der Adria selbst 
handelt; dagegen muß die theoretische Erklärung der für die 
Mündungsstelle der Adria gültigen Konstanten als ein Problem, 
das ausschließlich die Mittelmeergezeiten betrifft, der Zukunft 
vorbehalten bleiben. 


16 


Das w. M. R. Wegscheider überreicht folgende zwei 
Abhandlungen aus dem Chemischen Institut der Universität 
Graz: 


1. »Eine neue Synthese des Perylens (Vorläufige Mit- 
teilung)«, von Fritz Hansgirg und Alois Zinke. 


Es wird gezeigt, daß man durch Erhitzen von .2, 2/- 
Dioxy-1, 1/-dinaphtyl mit Halogenverbindungen des Phosphors 
(PCl,, PCl,, POCI,, ‚PBr,) auf höhere Temperatur Perylen in 
guter Ausbeute erhält. 


2. »Über einige neue Derivate des Perylens«, von 
Alois Zinke und Erna Unterkreuter. 


Es werden einige Derivate des Perylens und des Perylen- 
chinons beschreiben. 


1918 Nr. 11 


Monatliehe Mitteilungen 


der 


Zentralanstalt für Meteorologie und Keodynamik 


Wien, Hohe Warte 


48° 14:9’ N-Br., 16° 21°7’ E. v. Gr., Seehöhe 202-5 m 
Zeitangaben, wo sicht anders angemerkt, in mittlerer Ortszeit; Stundenzählung 
bis 24, beginnend von Mitternacht = 0b. 


November 1913 


Anzeiger Nr. 1. 


18 


Beobachtungen an der Zentralanstalt für Meteorologie 
48°14°9' N-Breite. im Monate. 


Tl 


Luftdruck in Millimetern | Temperatur in Celsiusgraden 
- = : er 
7 Abwei- | | Abwei- 
ag Im 
5 |Tages- chungv.| _ Tages- chung 
7) 1 oıhl oO h h sıh 5 
E 1a? = | mittel  Normal- . 24 - mittel? |Normal« 
| ı stand stand 
— I — m = = — — — m 
| 
739.5 7399 741.1 | 40,2 | — 4.2 6.0 7.4 9.46 6.21 0.2 
2 441.09 20 858 AO ANEORND IE 81 9.4 Dan 2.8 2.00 = RE 
35395,,..3957. 70.8 | 39.93 - 46 5.6 7.6 6.0 6.4 
4 42.9 44.5 15.2.) 42’ 0.8 (a 8.9 9.0 s.1!i+ 2.4 
5 | 47,7.48,6 49:70 48.2 2 402 0726.,010.0 9,4 9.01+39 
6 0.6 49.6 49.8 DORIS ET 9.2 10.9 10.6 10.2 1-9 
7 AONDTFASTaN AS Be relsmnn ee re] Sk 12.0 10.6 10.5 + 5.7 
8 47.9 48.1 49, 48.4 | 1.3.8 wir En 9.4 9.3 | AT 
9 Di 2, er ee) 9.2 10.1 10.2 lc en mel 
10.1.55:2 56:0: 55.9) 55.7 !411.1 1042 11.9 9» 10.5 + 6.1 
11 | 53.6 51:8 Bossa 6.5 9,3 7.0 7.6 (a 
12 48.6 PASTE ErIEEne s.4 TaRar? 4.9 6.8 == 238 
3 a a! Dr eg 3.4 DZ DE 3:9: ER 
14 51.3: 50.3. 51.0.7909 1170 241=-00.8 RT ieeTı 1:7 ee 
15 N 20.9 Dale 0.2 1.4 0.8 OS 
16 | 51.6 51.0. 50.85] Sl.o)l 60 002 1.47 706 0.6 
17 48.1 ee oe el 0.0 0.8 — 0.4 Or ! 
ee | 0.01— 0.4 0.3 0.8 ee ei 
19 45.7 46.1 48.0.1 2630 1 ee le 0.6 DZ Zn 1.6. er 
20) 496 7 20W9EE506 N D0ROF Era 0.3 3.4 2.8 2.2|— 0.8 
21 len 2.0 Sy else | se ee! 77 3.4 — 0.3 il 
22 55.2 3a ara our er Area 2 ae 
215 Do 52.6. 52,2 452,68 1.2 7,8 I 2.8, 0 1.4 Tee 
24 50.4 48.0 46.5 | 48.3 1 3.4ll= 4.8 = 0.3. — 1.7 | 2922256 
25 | 44.6 43.3 48.0 430 | al 1.6 —=.1.2 0 — 4.4 N A 
26 |] 43.1 44.0 44.7 | 43:9 | =.1.01- 1.72 =.1.8 —#1r7r | Tee Ba 
Bart 42.8 40.7 :41.2 | 41.6 | — 3.31— 1.4 — 1.4.0 2.8 | 10927 829 
2 42.5. 43.5 "44.7.143,.6 | 1321 2,7 =.0,.8 — 0,80 See ee 
29 42.6 423 22.6 | 42221) = 2.8 1.17 0.6 270282 OST 
30, | 42.0 42.57 Anona2 a E2 0.9.- 2,6 043 1.3 1 2088 
Mittel 747.59 747.41 747..89|747.63| —+2.93 De, 4.2 32 3.4 | — 0.8 


Höchster Luftdruck: 756.0 mm am 10. 
Tiefster Luftdruck: 739.5 mm am 1. u. 3. 
Höchste Temperatur: 12.1°C am 7. 
Tiefste Temperatur: — 5.0°C am 24. 
Temperaturmittel: 3.3° C. 


: ur 5 2, 9). 
214(2,7.9,9. 


und Geodynamik, Wien, XIX., Hohe Warte (202-5 Meter), 
November 1918. 16°21°7' E-Länge v. Gr. 


Be _ — - —|| | 


Da 
| Sehwarz- Blauk- | Aus- 


Max. Min. | Kugel! kugel ie | 7uh 14h 9yh lages- zh {4h oyh Tages- 
' [ung | mittel | mittel 
Max.  Nax. | Min, | 

_— = ——— III ——— 1 — - _ _ — | ——— —— — _—- — =— 
7.3 n.Br 10. *7 31 6A | az, gaske ga I. .di 04 
6.1 De NZ 6 4| 6.5 6.7 6.7 6.6 Er 97 
| ZWER N so ) 5) B.Z 6.4 6,5 (ne 99 S2 0 90 
9,1 EN) 9) e Tl Su2 Sr 7.9 97 99 99 98 
10.2 7.44.25, 66 A| 7.6 8.3 8.6 SE 979590) 98 95 
ur.2 Sl. 110 818.5 ES | 9,1 97. 98° 99 98 
| 12.1 3.4729 19 Zul BROT C 5:9 1. 9a 9977981798 97 
| 18 Be ET 9 BB 8.5 8.7 8.6 97.7197, 298 98 
| 10.2 O9-TmT> al 7 s.6 9.0 3.9 8.8 99 38 95 97 
| 12.0 SuBHSI 20 zu 8.0 7.9 1.5 1:8 SH zo st 82 
| Sr A ER A; | ech BIRyBRA HG 2 Arm Tb Sao Man S2 
8.5 3a, El. 316.3 6.6 8 Dr 76 87 70 78 
De) 18128020 15 0 4.0 3.6 8 3.8 68 54 66 63 
Be PN un eann 2; 3.9 3.7 Da 03 75 72 
137 TB ul 8. ee) 3.5 3.5 74% 369% ' 78 72 
| En JOTENR SEN (a: 3.2 4.0 3:5 Tin 64° 2198 78 
ee 2 MB .9 99.14. gi s6' 8 98 sg 
Ve :0.6 5 a 3.5 3.6 sa O5 MITTE“  7 83 
ae l.0027 dt a1 a5 NR EZ RZ N os Zi 
Sea. 0.21.28. 11. 1228| 8,1 3.7 8.7 375 67.1164 :1,66 66 
3.6 1.2129 15 - 2|-Blo3rga 1.84 gli] ls | a 
il. 13.728 Zee U eh Ze 2 rameuny,” 73 
B- 0.3 — 2.9) 19 Br er Dr) 2.9 2.8 2.9 79966 87 71 
022 5.0) 20 671 1811729 0) 33 3 9] 068 80 so 
az Ne 2 3.0 3.7 au 387. 021 490 90 
= 14-1905 1,0) 05,135, 9 8.8 3.8 a ee art 95 
Bet 3.090, 0. Ole 3.8 3.5 2 7.1,951091° Fe 93 
BT 2.8: 5.840 ul. Hg tag 1 Volk I 96.82.88 39 
u 0.4-1.3 2 1 j- 83] 4.1 2.07 a. Er 97 93 95 
ir all AL 21 aa Al; 5 3 
4.5 2.0116.5 9:.11-032|| 5.1 5.2 5.83 5.2 37 80 86 s4 


Höchster Stand des Schwarzkugelthermometers: 36°C am 11. 


Temperatur in Celsiusgraden | Dampfdruck in mm | Feuchtigkeit in Prozenten 


Größter Unterschied zwischen 'Schwarz- und Blankkugelthermometer (stärkste‘- 


Strahlung): 18°C am 14.- 
Tiefster Stand des Ausstrahlungsthermometers: — 3°C am 24. 
| Höchster Dampfdruck: 9.9 mm am 7. 
Geringsier Dampfdruck: 2.5 mm am 22. 
fseringste relative Feuchtigkeit: 54%, am 13. 


' in luftieerer Glashülle. 
® Blankes Alkoholthermometer mit gegaheltem Gefäß. 0.0 m.über einer freien Rasenfläche. 


2 
>0 | 
Beobachtungen an der Zentralanstalt für Meteorologie 
48°14'9' N-Breite. im Monate | 
: = er wi Bere: m 
Windrichtung und Stärke  Windgeschwindigkeit | Niederschlag, 12 
n. d. 12-stufigen Skala in Met. in d. Sekunde | in mm gemessen 18 | 
Tag | | BI 
zu 14h 2]h | Mittel | Maximumiı || 7h 14h 218 un 
ee) N 
1 NW -3--W 1° ESE 1 | 2.9) wNw 412 7.90 49 3.006 |— 
2 SB 104,88 Nm, I 1S wem 3.0e . 2.1e . Ideen 
3 N TINNEH.| 0. 0.702 2800 4°5.801.) 1.02 no 
4 5, 0 SE „all 2 Sud 1,001 5SE 6.1| 0.2e 0.1= 0.9e=| — 
5 — 0 — .0 'SSE 1 0.7 SSE 34] 1.le= 0.0= — 1-1. 
6 SE 1!SE\i 'SSE 1.2.6 |. SSE 10.81) O.5s= O.be= 7 eye 
7. || SSE 2...SE.,3 .SSE 1 8.0% 2isen 1.6 De - 1 
8 SE 17,858.2.) SEND SIEH 0.0= 0.1e — |—|% 
9 E, 1°,.—.,0 !NW 2. 0.3 |. NW 7 9.3) u 0.8=: 70 ,0e=2, 0-0 
10 |WNW3 NW2 N 2\ 3.2| NW 11.4 — 0.10 u 
| £ N { 
11 — O0 WNwW3 NNEi| 1.1 |wnw 80| - — u 
2. IWNW3 .NW.2 N A|. 4.1 NNW.142| -, ..0.06 Or 
13, | NW 3..Nw,2 |NW'3|, 4.3 |.Imw 512.0] —, 0.08 200 
14 N, 1,.N WB NErZ ZN ln — 16 MORE 
15 N. 35, N ar, ange 0 NeA3.A 0.0 —- 0.%|-— 
16 N: 2. EBENEN IBSB.1 ‚n.2.2 | Anm 7,840 0.0.08 Be 
17 SE 3..SE,1 SSE 2 | 5.7 |.. SE 14.0 | — 9.0.08 \ 
18 S: 1..NW.0. WNWI 2.11 SSE.. 9.41" 3.0% es | 
19 NW 3. WNW8 NW 3|| 5.1 | wNw 13.1| = = 0.0A 
20 NW 4 WNW3 WNW3 | 5.4| Nw '14.7| = er : 
21 |WNW3 NNE 2 NNE2| 3.3 | NNW 8.9 ı u Er 
22. |. SSB 4.- SEI SE A| 5.7 ı nNHuls.zu — —_ u: 
23 SE 3 SE 3 SE 4| 6.7| sE ‚2.7 = er Ne 
24 SE 3 /Bn aM. SE 20 BE -- _ — = 
25 SE 2. ‚SE .1..8SSE 1 || 3.9 |, SE 10.8 - 1.Ay ara 
30° | SSw 1.10 | ISE nl. 5 em 0 oe ee 2 
27 SE 1... SHs al S.. 1 2.0 SE 6.7.) 0.0= 0.0x Hi 
28, [ESE 1, —- 0, —0O|: 0.61 NE. A.27,, 1 770-0Sume 
28 5, 15» —%0- NNWE B  Are Tze _ 
30 NW 1 NW 3 NNW3| 2.8|In00wW 15.3| — ER URGE E 
Mittel | 1.8 jur 1.8* 78.0 10.8.1°18.0.010.8° dlz | 
| 


N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNWI 
BORN 139 ga a ee 7°" 17° 6351007 Fa 
510 247 50 21 18 250 1597 1882 66 53 34° 34 118 906 1557 7085| 
28 2.4 1.1 1.000.6.,1.6- 8,6 4.2 Ilönuluss 1.4: IbuanintsBil u DIrasD 


BA 5.0.2.5 2.2 14 36 7.5 95 25 1.0.22 1.9 47.0.0 7a 


Ergebnisse der Windaufzeichnungen (nach dem Schalenkreuz): 


Häufigkeit, Stunden 


Gesamtweg, Kilometer 


Mittlere Geschwindigkeit. Meter i. d. Sekunde J 
Höchste Geschwindigkeit, Meter i. d. Sekunde 
Anzahl der Windstillen (Stunden) —= 45. N 


Größter Niederschlag binnen 24 Stunden: 15.8 mm am 1, 
Rn Niederschlagshöhe: 41.4 mm. 


® Den Angaben des Dines’schen Druckrohr-Anemometers entnommen. 4 


un 


und Geodynamik, Wien, XIX., Hohe Warte (202:5 Meter), 


November 1918 169217 V'E:L.ängeiv.Gr 
En. Bewölkung in Zehnteln des 
2.8 sichtbaren Himmelsgewölbes* 
SS kuns eat 
Ss Bemerkungen Fe 52 
Say „ ? 100 
Ss zu j4h Sjh Ei 5 

. Er 1 EBEN BEFREIEN = Bchrkle: DE u 

| 
ugggg | el 150 bis mittags, dann e' =1— | 10lel 10160 10180 110.0|10.0 
egggg | el71l ganzen 1% mit Unterbr.;=! ganzen Tag. |lWl=1el I01=1el IW180=1[10.0|10.0 
le =1 bi 5 om ol , 10%, 10.0110. 
egefg | =:? mgns., =! bis vorm. 140 ) 3 .0 
geege =:071 g2. Tag ztw., =172 82.T.; e0 11530 — | 102=2 101=1 401=181[10.0|10.0 
gegfg | e® bis vorm., =" abds.; =! nachm. b. nachts. ı 101 90-1 101=1| 9.7| 9.7 
ggfeg | e'=:172 bis 1050; =! bis nachm. IN0le0=0 101=1 30 Pen 
ggmba | =:0"1 mgns.,=! bis mittags; a! nachts. I [Ole ., 7071 10 6.01 5.3 
ggggg | al mgns., 60 =0 mittags zeitw.; =! vorm. ı 10071 10160 101 - |10.0/10.0 
ggggg | @® =172 730 bis mittags, =:0 abds.; =! ganz. Tag, | 101=! 101=1 101=1|10.0]10.0 
ggmec | e) S—10%5 zeitw; a" nachts. [a1 nachts. || 101 g1 Bu=1| 8.3] 8.3 
denig | al mgns., a0 nachts. | 80 101 Qi SAU 7.7 
gggmb | e’ vorm. u. nachm. zeitw. ı 101 101e0 31 VAN Ge? 
smfmb | 0 x0 mgns. u. 1845 — 1915. | 101 90T 74 Sun 887 
bbndd | x! 1555 — 1608, «0 abends zeitw. I nat 30r1 \.101 5.8) 448 
ddggg | A" 63°, x0 15% bis nachts. | 10 101 101x0| 7.0) 7.0 
ggggg | * mgns. | 101 101 101 110.0110.0 
ggggg | x vorm., #1 1840 bis nachts, 101 101 101x1[10.0|10.0 
ggggg | x" mgns.;=! vorm. ' 101 101 101. 110.0]10.0 
smfgf | A 19— 1902, ı 204 gu 101 9.31 9.3 
dfmff = | 101 801 9071| 9.01 87 
ıl 

feceb - I, 100-1 . 31 a NER, 
baaaa | yO mgns. j 70 0) 0 0.3| 0.3 
bndgm | 0 mgns. I, 22° "80 101 4.7) 4.7 
bnddn | yO mgns. | 20 70-1. .30 4.0) 3.3 
fgggg | #1 1030 — 1825, x0 21 his nachts. | 100-1 101x1  101x0 110.0]10.0 
ggggg | =! ganz. Tag. j | 101=! 101=1 10! 110.0/10.0 
ggggg | =!" mgns., x0 945 — 11; =! ganz. Tag. | 101=1 101=1 101=1|10.0[10.0 
ggggg | =" mttgs. ztw.,.x0 abds. u. nachts; =! gz. Tag. 10i1=1 101=1 101x9 110.0110.0 
ggggg | #71 bis 5; =1 ganzen Tag. 101=! 101=1 101=1|10.0[10.0 

| 0 


gdngg | #071 1545 bis ganze Nacht. 10974 ı,.97071 401x020) 9.0| & 


Schlüssel für die Witterungsbemerkungen: 


a= klar. | f = fast ganz bedeckt. | k = böig. 

b = heiter. g = ganz bedeckt. | 1.= gewitterig. 

c = meist heiter. h = Wolkentreiben. , m= abnehmende Bewölkung. 
d = wechselnd bewölkt. | i = regnerisch. | n = zunehmende » 


e — größtenteils bewölkt. 
Der erste Buchstabe gilt für morgens, der zweite für vormittags, der dritte für nachmittags, 
‚der vierte für abends, der fünfte für nachts. : 


Zeichenerklärung: 
Sonnenschein ©, Regen e, Schnee x, Hagel s, Graupein A, Nebel =, Nebelreißen =: 
Tau a, Reif —, Rauhreif VW, Glatteis V ru, Sturm 9, Gewitter K, Wetterleuchten <, Schnee- 
gestöber #, Dunst ©o, Halo um Sonne ®, Kranz um Sonne (P), Halo um Mond U, Kranz 
m Mond W, Regenbogen .. 
eTr. = Regentropfen, «Fl. = Schneeflocken, Schneeflimmerchen. 


4 * Tagesmittel A aus den mit Index versehenen Beobachtungen; Tagesmittel B aus solchen 
ne Index. 


29 


Beobachtungen an der Zentralanstalt für Meteorologie und 
Geodynamik, Wien, XIX., Hohe Warte (202°5 Mana) 
im Monate November 1918. 


| 


| 4 . 0% | Bodentemperatur in der Tiefe von 
Ver- \|Dauerds|$<cg| Far 

7% dun- | Sonnen- #558) 10.50m 1.00m 2.00 3.0m 4.00 m 

a8 stung |scheinsin| z ne Ö Tee 
in mm Stunden S SE a mittel 14h 14h 14" 

Tu eye 0.0 ws a al 12.2 12.4 11.8 
2 0.0 0.0 a 8.1 10.4 2.1 12.4 11.8 
3 0.1 0.0 4,0 8.1 929 2 12.4 1188 
| 0.0 0.0 48 342 9,9 12.0 RD 1178 
De 2.9 0.0 8.5 Ei 11.9 ee) 11.8 
6 Ve 0,0 3.0 9.0 9,8 1) 12,18 1158 
7 0.1 Bd 0.0 9.4 47 11.8 12.8 Lis8 
8 0.1 0.0 0.0 9.5 9.9 I 2 198 
8) OR 0.0 0.0 9.5 9.9 ST 2 mer 
10 0.6 0.6 8.0 DAN OH 11.6 ar 1197 
Kal. 18 (06) 6.0 3 9,6 10.1 11985 2 1lsetı 
12 .d 0.0 9.3 2 0) a0 ManzE 132% ET 
13.8 0.9 Re) DT 8.8 10.0 11.+ 1 Jule 
14 1.0 oT 11.0 7.18 9.9 112% Sl) AR 
15 | 0.5 ER) 9.8 6.4 HD 11.3 - Er ERRT 
16 I) v 0.2 9.0 4.3 5.8 9.2 11.8 12.0 TEN; 
IR 0.3 0,0 1083 5.4 SE il 1 1.457 
18 0283 0.0 028 4.9 8.4 at. Ile) 1786 
19 EZ 228 O8 4.6 ) lat 11.8 1126 
20 OS 12) 8.8 4.8 Tel, 0) Naiıa 116 
21 |. 0.6 5.6 8.7 4.2 72 10.9... ul 11.6 
| 0.7 3.0 0.0 Bm8 TR 10.8 la tla«6 
Sal 0.3 2,6 3.7 EINE 7.0 10.6 leer, 1.1023 
% 0.8 3.4 0.0 BT, 6.6 10 11.20 17298 
Ban... 00 0,0 2.0 2.5 6.4 10.4 117.6 11.8 
AB. 0%] 0.0 0.0 2.4 6.8 10.8 135) 11.4 
AT. 0.0 0.0 Ba 2,4 5.9 10:2 5) 11.4 
28 0.0 0.0 0,0 219. 5:7 10.1 Bes 11.4 
29 Vep 0.0 0.0. 2.4 5.5 10.0 11.4 11.4 
30 02 3 De 2,4 Se 9.9 11.4 11.4 

Mittel 0.3 147 4.1 6.1 8.5 1003 11.9 11.6 

Monats- : 3 

Summe | 10.1 | 51.2 


Größte Verdunstung: 1.0 mm am 12. u. 14. 

Größte Sonnenscheindauer: 5.0 Stunden am 22. 

Prozente der monatlichen Sonnenscheindauer von der möglichen: 180, von 
der mittleren: 780, 


Größter Ozongehalt der Luft: 11.0 am IH. 


Vorläufiger Bericht über Erdbebenmeldungen in Österreich 
im November 1918. 


| | Zeit, 


| 
Ne 
= A b | M.E.Z. | = 
© Kronland Omit | =3 Bemerkungen 
= = [A I 
E| 3 | | Se 
2 S h m |< e 
96 1/1X Krain Krainburg 2| 4 1 | Nachträge zum Sep- 
57 | ı/X > Träie | En ee 
| heft dieser. Mittei- 
58 | 21/X Dalmatien Viganj tar nl l lungen. 
59 | 21/X Steiermark Rann 6 | 10 1 
60 2/XI | Oberösterreich [Klaus, Zell, Neuhofen. |233 ‚| — 8 
a. d. Krems 
61 2 Zell bei Zelihof | 23] 50 | 1 
62 6 Krain Laibach 161/,| — ) 
63 6 Salzburg Taxenbach | | 
2) a) 
Kärnten Viktring, Gmünd j 2 
Tirol Brixen, Vintl 20 1261| 2 
Oberösterreich Öberwang 20 | 830 1 
Krain Laibach, Krainburg, 
Stein 201lo)| — 3 
64 6 Kärnten Vietring 21 | 08 l 
65 9 Steiermark Rann 19 | 47 l 
Krain Munkendorf, Land- 
straß 20 |. — 2 
> Puschendorf 20,10 1 
66 13 Steiermark Rann 5.1790 1 
67 18 Tirol Eben, Achenkirch 16-17) — 2 
> \Viesing 17 | — 1 


Aus der Staatsdruckerei. 50819. 


Pet 


amade doing ee 


vn Be sh: Sl A WAT u J 


Tee 
2 “a 
' 


ha Bi 


Pla 2; Br "> Pi) 
1:0 PT PRIMSREEEFE 

e er gu Tag Fri x 

\ a su b 5 ee ale 2 


IT ER an ea ee 


3 ua ES { 4 4 FR “ 
u enge | eh He " WHAT EN 
ei, A ec Pb.) I a 
A u, NR 
Be 

Ey 


Be 


Tr Br i 
LEER la BIER“ eimiit Ben, 
1 19] 5.2 Saab a 1 TB 


u da ia ie 
Yeah Dr IDaRN 
Ina, H E 'wiaas 

ih ur 


Bi 
Ai, un 
"AR PR BI .. m be; 
Dr j Peg "} i Di : » Kr werte » I; ur 
B i f ee. IE ee ee ie ha 
| SER | \ “ Al hen Ba ‚ns 
i BR N Fi u | N h I 
BU. a LEE DR 
F u 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 | Nr. 2 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 16. Jänner. 1919 


ie nn en 


Erschienen: Sitzungsberichte, Abt. I, Bd. 127, Heft 1. — Abt. IIb, Bd. 127, 
Heft 5. 


Der Vorsitzende-Stellvertreter macht Mitteilung von dem 
Verluste, welchen die Akademie durch das am 12. Jänner 1.]J. 
erfolgte Ableben des wirklichen Mitgliedes der philosophisch- 
historischen Klasse, Hofrates Dr. Adolf Bauer, Professors für 
Geschichte des Altertums an der Universität in Wien, er- 
litten hat. 

Die anwesenden Mitglieder geben ihrem Beileide durch 
Erheben von den Sitzen Ausdruck. 


Das k. M. Hofrat Dr. Moritz Holl in Graz übersendet 
eine Abhandlung mit: dem Titel: »Der, Seitenfortsatz der 
Lendenwirbel.« 


Die Seitenfortsätze der fünf Lendenwirbel weisen ver- 
schiedene Größe, Gestalt, verschiedenes Verhalten zum Bogen 
und Körper der Wirbel auf. Verschiedene Wirbelsäulen zeigen 
nicht immer einen gleichen Befund hinsichtlich der Form- 
zustände der Seitenfortsätze eines bestimmten Wirbels; an 
einer und derselben Wirbelsäule sind Verschiedenheiten 
zwischen techter tind linker Seite vorhafden. Eine Be- 
schreibung, die: für die Förmzustände der Seitenförtsätze aller 


3 


26 


Lendenwirbel gelten soll, ist daher nicht ausführbar. Ohne 
Rücksicht auf ihre genetische Wertigkeit können die seit- 
lichen Fortsätze der Lendenwirbel als »Seitenfortsatz« (Rosen- 
berg), Processus lateralis (Gegenbaur) bezeichnet werden. 

Beim Embryo enthalten die Seitenfortsätze aller Lenden- 
wirbel die Anlage eines den Brustwirbeln homodynamen Pro- 
cessus transversus und die einer rudimentären Rippe; sie 
sind demnach Processus costotransversarii. Gegen das Ende 
des Verknöcherungsprozesses ist das laterale Ende des Pro- 
cessus costotransversarius noch knorpelig; die Epiphyse des- 
selben erhält sich gegen das 18. Lebensjahr, worauf ihre 
Verknöcherung erfolgt. 

Die Seitenfortsätze aller Lendenwirbel der erwachsenen 
Wirbelsäule sind Processes costotransversarii mit vorwiegender 
Ausbildung des costalen Elementes (Rosenberg); das costale 
Element ist bei den verschiedenen Lendenwirbeln verschieden 
stark entwickelt; beim 2. bis 4. Lendenwirbel ist das verte- 
brale Ende häufig stark oder vollkommen reduziert. Das 
costale Element des 1., 2. und 5. Lendenwirbels zeigt inso- 
ferne Verschiedenheiten, als bei besonderer Entwicklung des- 
selben aus dem des 1. und 2. Wirbels eine den thorakalen 
Rippen ähnliche, bei dem 5. Lendenwirbel eine der sacralen 
Rippe gleichende Rippe entsteht. 

Die Fovea costalis (mit ihrer Basis) der Brustwirbel ist 
das ursprüngliche vertebrale Ende der Rippe und als so- 
genannter »Rippenträger« im Sinne der vergleichenden Ana- 
tomie aufzufassen. 

Die Basis der Fovea costalis begrenzt mit ihrem Rande 
und der Bogenwurzel die'Fovea arco-costalis. An den Lenden- 
wirbeln hat der .»Rippenträger« die Geienkfläche verloren, 
der Rest aber begrenzt wie bei den Brustwirbeln die auch 
bei den Lendenwirbeln vorhandene Fovea arco-costalis medial- 
wärts. Namentlich die Processus costotransversarii des ersten 
und fünften Lendenwirbels. zeigen einen Sulcus costotrans- 
versarius, ein Analogon des Foramen costotransversarium. 

Die freie Lendenrippe des ersten ‚Lendenwirbels kann 
alle Eigenschaften der 12. Rippe aufweisen bei gleichzeitigem 
Vorhandensein. eines (niedrigen) Processus transversus, dem 


Analogon des Processus transversus der Brustwirbel. In allen 
anderen Fällen ist. die Lendenrippe rudimentär, wobei die 
Reduktion beim vertebralen (und ventralen) Ende erfolgte. 
‘ Wenn die Rippe mit dem Bogen artikuliert, so ist die Fovea 
costalis nicht auf den Bogen gewandert, sondern der ent- 
sprechende beim 12. Brustwirbel auf seinem Bogen vorfindliche 
Anteil der Fovea costalis ist erhalten geblieben, während der 
vordere Anteil reduziert wurde. 

Die Epiphyse des Processus costotransversarıus kann 
selbständig werden und mit dem schräg abgestutzten Ende des 
Strunkes des Processus costotransversarius in gelenkige Ver- 
bindung treten. Auch bei dieser Art von Lendenrippe handelt 
es sich um keine Wanderung der Fovea costalis auf den 
Processus costotransversarius, denn das vertebrale Ende der 
Rippe ist erhalten, mit dem Wirbelkörper und dem Processus 
transversus zum Strunke des Processus costotransversarius 
verbunden. Bei der epiphysalen Lendenrippe ist von der 
Rippenanlage nur der laterale Anteil beweglich geworden und 
mit dem Strunke des Processus costotransversarius in ge- 
lenkige Verbindung getreten. Die epiphysale Lendenrippe kann 
bis 4cm lang werden oder auch nur ein kleines Plättchen 
darstellen. 


Das w.M. Hofrat Franz Exner legt eine Abhandlung 
vor: »Wahrscheinlichkeitstheoretische Studien be- 
treffend Schweidler'sche Schwankungen, besonders 
die Theorie der Meßanordnung«, von E. Schrödinger. 

Im ersten Teil derselben werden folgende Fragen er- 
örtert: 

a) Kann die Abgleichung zweier Präparate gegeneinander 
durch die Zerfallsschwankungen in störender Weise ver- 
schlechtert werden? (Nein). 

b) Ist bei der Bildung der quadratischen Mittelwerte 
durch »ns oder durch »n—1« zu dividieren? (durch n—1). 

c) Wenn der Einzeleffekt, z. B. infolge ungleicher Aus- 
nützung topographisch verschiedener Strahlenbündel, variabel 
ist, wie beeinflußt das die (absolute) Integraleffektschwankung?’ 


28 


(annähernd so, als wären die Einzeleffekte konstant, und zwar. 
gleich ihrem quadratischen Mittelwert). 

Im zweiten Teil wird eine vom Verfasser kürzlich ent- 
wortene Theorie der Meßanordnung! weitergeführt. Er begreift. 
alle wirklich verwendeten Anordnungen unter einen Typus, 
unterscheidet aber drei wesentlich verschiedene statistische - 
Verfahren, je nachdem man HE 

I. die stationäre Wahrscheinlichkeitsverteilung der Zeiger- 
stellungen; 

II. die Schwankung des in einer bestimmten BR zurück-, 

gelegten Zeigerweges oder e 

Ill. umgekehrt die Schwankung der zu einem bestimmten . 
Weg erforderlichen Zeit bestimmt. 

Die von Campbell? theoretisch ski behandelte 
Methode I ist nach Ansicht des Verfassers, weil sie den: zeit- 
lichen Ablauf der Schwankungen ignoriert, unzulänglieh. 
Darum ergänzt er sie durch die Theorien von II und IIl, die 
er aus der zu dem System gehörigen Fokker’schen partiellen 
Differentialgleichung®? gewinnt. Methode Ill wird wegen ihrer 
mathematischen Kompliziertheit nur für ein ideales, trägheits- 
freies Elektrometer, Methode Il dagegen vollständig abgehandelt _ 
und es werden dafür auch einfache Näherungsformeln ent- . 
wickelt. 


1 Wiener Ber. (Ila), 127, 237, 1918. 
2 N. Campbell, Phys. Zeitschr., 71, 826, 1910. 
3 M. Planck, Berl. Ber., 1917, p- 324. 


Aus der Staatsdruckerei. 50919: _ A 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr. 3 


Sitzung der mathematisch-naturwissenschaftlichen 
‚ Klasse vom 23. Jänner 1919 


u un 


Erschienen: Sitzungsberichte, Abt. I, Bd. 127, Heft 2 und 3. — Abt. Ila, 
Bd. 127,: Heft 2; |Heft 3. 


Das Kuratorium der Schwestern Fröhlich-Stiftung 
übersendet eine Kundmachung über die Verleihung von 
Stipendien und Pensionen aus dieser Stiftung. 


Das w. M. F. Becke legt eine im Mineralogisch-petro- 
graphischen Institut der Universität Wien von Dr. Artur Marchet 
ausgeführte Arbeit vor: »Der Gabbro-Amphibolitzug von 
Rehberg im niederösterreichischen Waldviertel.« 

Die Arbeit enthält die petrographische Untersuchung 
eines geologisch gut verfolgbaren Amphibolitzuges, der im 
Liegenden der Gföhler Granitgneismasse den Schiefergneisen 
eingelagert und von kleinen Serpentinlinsen begleitet ist. Das 
Gestein besteht aus ebenplattig schiefrigem Amphibolit, der. 
in der Mitte der Mächtigkeit mehrenorts in flasrigen Gabbro- 
Amphibolit übergeht, der im Mineralbestand und teilweise in 
der Struktur noch das ursprüngliche Massengestein (Gabbro) 
erkennen läßt. Flaser-Amphibolit und ebenplattiger Amphibolit 
zeigen ähnliche chemische Zusammensetzung. Aus dieser und 
der Untersuchung der Dünnschliffe wird der Mineralbestand 
abgeleitet und durch Ermittlung des spezifischen Gewichtes 
auf Richtigkeit geprüft. An einer Stelle wurde eine Einlagerung 

4 


30 


von Anthophyllit-Amphibolit nachgewiesen und analysiert, die 
auf Norit als Ursprungsgestein hindeutet. Der Vergleich des 
Amphibolites mit dem bekannten Mineralbestand von Gabbro 
lehrt, daß bei der Metamorphose von Gabbro zu Amphibolit 
die Hornblende sich auf Kosten des Pyroxens und des 
Plagioklases bildet, und zwar vornehmlich des Anorthit- 
gehaltes des letzteren. Der Amphibolit ist daher ärmer an 
Plagioklas als der Gabbro, aus dem er entstanden ist, und 
der Plagioklas ist ärmer an Anorthitsubstanz. 

Den Schluß bildet ein Vergleich des Rehberger Amphibolit- 
zuges mit den anderen bisher untersuchten Amphiboliten des 
Waldviertels. sur 


Das w. M. W. Wirtinger legt eine Abhandlung vor 
von Prof. Roland Weitzenböck in Prag: »Über Bewegungs- 
invarianten (X. Mitteilung).« i 

Der Verfasser entwickelt hier einen Teil der Bewegungs- 
invarianten der ternären kubischen Form. Er findet, daß alle 
ganzen rationalen Bewegungsinvarianten, welche nur mit dem 
Symbol (a,b, + a,b,) aufgebaut werden können, rational und 
ganz durch sieben unter ihnen dargestellt werden. 


Das w. M. Hofrat Franz Exner legt eine Abhandlung 
vor: »Zur Kenntnis des Purkinje'schen Phänomens.« 

Es hat vor längerer Zeit A. König aus heterochromen 
Helligkeitsmessungen im Spektrum geschlossen, daß dieses 
Phänomen auch beim Tagessehen und bei jeder Helligkeit 
sich bemerkbar macht, im Gegensatz zu anderen Beobachtern, 
welche dasselbe nur im Dämmerungssehen feststellen konnten. 
In der vorliegenden Arbeit wird durch verschiedene Methoden, 
bei welchen jede heterochrome Photometrie ausgeschlossen 
war, gezeigt, daß in diesem Falle das Phänomen in der Tat 
auf das Dämmerungssehen beschränkt bleibt, im Tagessehen 
vollständig fehlt. Die unmittelbare Vergleichung spektral ganz 
verschieden gefärbter Felder auf ihre Helligkeit dürfte bei 
den Versuchen A. König's zu Täuschungen Veranlassung 
gegeben haben. 


Das k. M. Reg.-Rat G. Geyer legt einen Bericht über 
die von der Akademie der Wissenschaften subventionierte 
Untersuchung der künstlichen Kriegsaufschlüsse 
entlang der aufgelassenen Südwestfront am Kamm 
der Karnischen Hauptkette in Kärnten und Tirol vor. 


Der Genannte hatte die Aufgabe übernommen, im 
Laufe des Sommers 1918 eine Anzahl von Begehungen 
im" Bereich der im Spätherbst 1917 aufgelassenen Süd- 
westfront durchzuführen, wobei die durch verschiedene 
Kriegsbauten, als Schützengräben, Kavernen, Straßen und 
Zugangswege, veranlaßten künstlichen Aufschlüsse hinsichtlich 
ihrer Eienung für die Beurteilung geologischer Fragen strati- 
graphischer oder tektonischer Natur untersucht werden sollten. 

Diese ungefähr 100 km umfassende Linie fällt großen- 
teils mit der Wasserscheide der Karnischen Hauptkette 
zusammen und betrifft somit ein Gebiet, das der Genannte 
in den Jahren 1895 bis 1902 im Auftrag der Geologischen Reichs- 
anstalt aufgenommen und auf den beiden Spezialkartenblättern 
Oberdrauburg und Mauthen sowie Sillian und San Stefano 
dargestellt hatte. 

Legten es die zur Verfügung stehende kurze Zeit von 
drei Wochen sowie die noch keineswegs normalen Reise- und 
Verpflegsverhältnisse nahe, das von einer Bahnlinie durch- 
zogene Gailtal als Ausgangspunkt zu wählen und jene Be- 
gehungen aufeinzelne getrennte Abschnitte zu beschränken, 
so wurde im Hinblick auf die schwebenden geologischen 
Fragen drei solche Abschnitte ins Auge gefaßt, welche sich 
auf das Zentrum und die beiden Enden der Karnischen Haupt- 
kette verteilen. 


Die östliche Flanke der Karnischen Hauptkette zwischen 
Hermagor und Pontafel zeichnet sich durch eine weite Ver- 
breitung obercarbonischer Schichten im Gebiete des Naßfeld- 
sattels aus. Die hier vorgefundenen künstlichen Aufgrabungen 
an der Grenze gegen die unterlagernden devonischen Kalke 
und Silurschiefer oder gegen den hangenden Permocarbonkalk 
des Trogkofels boten keine besseren Aufschlüsse als das 
natürliche Alpengelände. 


Im zentralen Teil der Kette um den Plöckenpaß, wo- 
selbst mächtige Devonkalkmassen in altpaläozoischen und car- 
bonischen Schiefern eingefaltet sind, hatte die hier bedeutend 
gesteigerte Kriegstätigkeit auch bessere Aufschlüsse durch 
Gräben und Zufahrtswege geschaffen. 

Wenn durch die jüngsten Arbeiten italienischer Geologen 
bereits nachgewiesen worden war, daß die auf der Südseite 
der Kellerwand über dem Devonkalk folgenden dunkien 
Schiefer und Sandsteine dem Obercarbon angehören und 
transgressiv gelagert sind, so konnte nunmehr auf Grund 
neuerer Kriegsaufschlüsse auch die transgressive Überlagerung 
silurischer Tonschiefer durch die faziell ähnlichen Obercarbon- 
schiefer beobachtet werden. Im A ngertal östlich der Plöcken- 
alpe fand sich nämlich in einem solchen Aufschluß eine grobe 
Arkose mit Einschlüssen älterer Schieferbrocken oder Geröllen 
und mit bis über kopfgroßen Geröllen eines lichten Porphyrites, 
welcher in der Nachbarschaft die alten silurischen Tonschiefer 
sangförmig durchsetzt. Verstreut liegende Blöcke von hellem 
Quarzkonglomerat mit schwarzen Kieselschieferbrocken deuten 
auch weiterhin im Angertal auf eine Fortsetzung jener basalen 
Lage des Obercarbons hin und zeigen den Weg, auf dem die 
bisher nicht gelungene kartographische Abgrenzung des 
letzteren von den Silurschiefern durchgeführt werden muß. 


Das an den Plöckenpaß anschließende Hochgebirgsterrain 
um den Wolayersee ist vermöge seiner Höhenlage über 1900 ın 
durchwegs felsig entblößt, so daß nur einige Kriegsstollen im 
Felssporn unter dem Seekopf weitere Detailaufschlüsse der 
dortigen silurdevonischen Schichtfolge zu bieten vermögen. 


Weiter im Westen wurde endlich noch der Kamm- 
abschnitt nächst dem Kreuzbergpaß begangen, woselbst 
italienische Schützengräben die Grenzzone der Bellerophon- 
kalke gegen die Werfenerschichten der Sextener Dolomiten 
besser aufschiießen, als das unberührte Gelände der Um- 
gebung. 

Im allgemeinen hat sich gezeigt, daß die sehr häufig 
quer auf das Schichtstreichen verlaufenden Weganschnitte und 
Straßenböschungen bessere geologische Aufschlüsse schufen, 


j 
, 
j 
F 
| 

N 


als die im großen und ganzen dem westöstlichen Streichen 
folgenden Schützengräben. 


Zum Schlusse stattet das korrespondierende Mitglied 
Regierungsrat G. Geyer nochmals seinen Dank für die ihm 
zu Zwecken dieser Untersuchung gewährte Subvention ab. 


LrENAsure 


1918 Nr. 12 


Monatliche Mitteilungen 


der 


Zentralanstalt für Meteorologie und Geodynamik 


Wien. Hohe Warte 


A8e714=9% N-Br;, 162 21°7° Rv. Gr., Seehöhe, 202:3% 

\ 

Zeitangaben, wo nicht anders angemerkt, in mittlerer Ortszeit; Stundenzählung bis 24, 
beginnend von Mitternacht — ON, 


Dezember 1918 


36 


Beobachtungen an der Zentralanstalt für Meteorologie 


48° 14-9' N-Breite. im Monate 
Luftdruck in Millimetern Temperatur in Celsiusgraden | 
7 | | Abwei- || i [Abwei-| 
Ge Tages-chung v Tages- [chungv.\ 
7h 4h1 24h ar) R t hi 9ıhı DEN T 
r = a mittel |Normal-)) nn ur N mittel? |Normal-t 

% | | stand | BRIRLN. | stand 
1 1746.8 748.9 ,751.11'/748.9 | +13.9|| —,,0.2 108 0.2 0.4 |— 377 
2 01151.68 51.109 50.71 Ka 0.8 4.3 '—:1.2|— 2.5| 
3 149.3 48.5 47.5 48.4 | + 3.4| — 7.38 — 3.2 — 1.5 — 4.1|— 5.2} 
41 44.6 44.4 46.8.) 45.4 0.01 0.6 0.5 6.5 2.114 1.2[ 
201.47.3 7.48.4 490 as 2er | 6.4 7.0 4.0 5.8 14- 5.0} 
6.|.46.4. 44.5 44,5 | 45.1 0.0 1.6 0.6 0.5 0.9|+ 0.2| 
7.45.0450 44.5 44280) 00.3 0.0 0.8 0.8 0.5 Ro 
8.| 42.8 43.1 44,50) 43,512 4.7 0.8 1.5 1.0 1.1/+ 0.6f 
9.1 46,3,,,,46.9. 147 4 | 46.9. 1.7 188 2.5 3.0 2.814 1.9] 
104 47,4 47.7 48,41|147.8 2,6] 2.7 3.7 3.613.381 3.01 
127.6 46.6 As.7 As 2 7:0 5.4 4.8 + 4.6] 
12 146.0 47.3 45.7 | 46.31 1.01 3.9 6.2 4.6 4.914 4.91 
13 |; 37.3 38.1 44.1 | 89.8 | — 5.5| KO) 8.4 9.314 9.4] 
14 1,50.5 52.6 58.4) BiaHW a8 0.9 1.6 2.6 1.7\+ 1.91 
15.1.53.6. 58.3 58.6 1 SB.ı 28:3 SAHNE 5 5.4 8.6 |+ 8.9 
1911 29.7. 48.2 47,0 10886 Ir 3,3 33.2 2.0 5 4.44 4.8] 
271 45.87.45.1.. Asa nn 0.0 3.8 4.2 3.0 3.7 + 4.31 
Ban, ‚44.3. 20,5 Nasa | 202 4.4 6.0 27 4.0 + 4.7| 
19 | 30.0: 28.3 28.7 29.0 164 2.0 1-8 5.4 4.9 1+- 5.71 
20020. ,29.0 30:62 BBls er 2.8 4.3 3rou 3.64 4.5} 
2 185,9. re Mag 231 3.7. 9.20) 2.672 3.68 
22 1 40.4,:40.6 ,41.5..140,8 | 4.7 || 2.2 2.6 — 0.2 1.5 |-+- 2.6} 
20:1.29.97 33.3 . 31.4 | 88.51-12.01. .02 IS 5.2! 2.174 23.39 
PA 85.2 , 38.4 38.8 B7a NEL HN 3% 3.0 4.7 1+- 6.0 
25 | 88.1 39.4 42.8 | 40.1 | 54 1.0 4,3 3.4 2.914 4.3J 
26 16.4 47.9 49.9 | 48.1 1.2.51 1 2 0.6) 1.3/4 2.8] 
27 | 50.7 48.7 47.6 | 49.0 + 83.4| — 1.2 1.0 — 3.2| = 1.22 057 
28 | 44.2 39.8 35.4 | 39.8 | — 5.9 — 3.5 0.9 0.9) — 0.6|+- 1.11 
Boa sAalaı) 34.4: 32.7 | 32:0 Sal er 5.8 12.7| 8.5/+10.3] 
30 184 35.9.135.6. 1 85.2 | 1056 12.0.3 1.028 6.7 9.8 +11.7] 
81. | 30.7 32.0 35.2 | 32.6) 1113.21 771:230 3.6 6.01 3.914- 6.0$ 
Mittel|742.84 742 93 743.271743.01 -2.34| _ 2.4 3.9 3.1). 8. 


Höchster Luftdruck : 753.8 mm am 15. 
Tiefster Luftdruck: 728.3 mn am 19. 
Höchste Temperatur: 14.5° C am 30. 
Niederste Temperatur: — 7.4° C am3. 
Temperaturmittel: 3.1° C. 


£ 1; (7, 2, 9. 
2 11, (7,2,9, 9). 


cn 
=] 


und Geodynamik, Wien XIX., Hohe Warte (202:5 Meter), 
Dezember 1918. u Oggy A 6 


Temperatur in Celsiusgraden | Dampfdruck in zum | Feuchtigkeit in Prozenten 
Br Ze 
!Schwarz- Blauk- | Aus- || 'p | Ir j 
ax. Mi kugelt Kugelt | Strah- || 71 1 a Bi ae Do 
Max. Min. : = ‚lung © r 14) 21. | mittel | E " mittel 
Max. Max. | yin. | | | 
| | 
Dart. A: 2) A309, 3. A| Al Se a 86 
Pr oe Zee, Sa an nn re 83 
Be One ee ee 96, 89.,,,90 92 
me mir ge el: 20 a 6,8 5.0 96 93. 86 92 
7.6 Je Reed HA N 5 s4 
Be ROLL ae Hl 4 Ad nA, | ir 8, 88498 90 
0.9 Oi er 4.6. | 96. 96 96 96 
1.6 0.5 9 1 01 4.8 5.0 4.9 4.91 98 95 100 99 
3.1 MB 8 © 5 OR AS DA Ed une] Un, 20897 9% 
4.1 ZUEILUEN FRA 1.25 rar 7 100 987 98 
7.3 1391 fi % hl »5.1 6.1 5:8 547 Dürr, 32 386 SS 
627 RN a! 1l 5.9 5.5 5.6 587 Alp #21 83) I net 
19.5 REN al 7.Soradr a r 2.8, 40al Dr 72 
m.6 le Se 4.8 4.8 85. :987.208 93 
11:4 3.00= 17 on A. 5 MEN 79 720 so 
il = 0, 8.045 Ol 5.64, 6:1 3.6 Bl GT 94,797 96 
4.9 Zu Al 5.9 -75.9 5.5 ee) Toren} 97 
6.0 1.27, ai OO! 5 A Ar eye et 
8.1 1881730, Bis. E go 404 5.0 4.7 4.7 S4 64 69 12 
5.8 2a oNerarea Wan A. 26 Ton T5 MWO 77 
BZ ine 03 10a Ya. rd. Boa 2: | Bes nBbei, 6658 = 
en 700,6  Alehal 9 il ee «7 
Er Daher a een 90 
7.9 2.8.20: 12 0 4.7 4.2 46) 45| 68 62 81 70 
4.5 VE... 7 amra.s WA AI, ara 970 a1 ME 77 
u 0.11 Eee ce er rt 76 6 
Eem.\ 3:21,93 20 la .3.2 SH OR re Zunge 76 
En ae 10 0-03. 03er re aD S4 
13.0 0.9. 13.4082. - Pal 6, 3 ıynrl a, at er et S1 
14.5 4.61. 37. 28 Ai 8.0: 6.0. 8,8 FR 78 
6.0 RES A Rn v2 a 12) Ur Ss Dean a 5.7 55% In De EOS 87 
5.4 Basar 2a, Aa ar agiert, 80 5 s4 


Höchster Stand des Schwarzkugelthermometers: 30° C am 1. 

Größter Unterschied zwischen Schwarz- und Blankkugelthermometer (stärkste 
trahlung): 15° C am 19. 

Tiefster Stand des Ausstrablungsthermometers: — 11° C am 9. 

Höchster Dampfdruck: 8.0 nm am 30. 


v 


Geringster Dampfdruck: 2.4 mn am 3. 
Geringste relative Feuchtigkeit: 510, am 13. 


‘ In luftleerer Glashülle. 
® Blankes Alkoholthermometer mit gegabeltem Gefäß, 0:06 m über einer freien Rasenlläche. 


Beobachtungen an der Zentralanstalt für Meteorologie 
‘im Monate 


45° 14°9' N-Breite. 


ı Windrichtung und Stärke | Windgeschwindigkeit | Niederschlag 
n. d. 12-stufigen Skala in Met. in d. Sekunde inmm gemessen 
Tag | = T FT Tran TEEN 
za j4N 2jh ı Mittel) Maximum 1 7 14h 2ıh 
Il | 
ER 2 li el 
1 NNW 5’/NNW3.NNW 3| 7.41 NNW 15.3 9.0x 1.9%x 3.1* 
21 ı NW3 N. 2 IENVINAVENN 338 NW 11.4 2.8 0.1x _ 
3 NV SE ENNESNV SE E06 SW | — _ = 
B S 1 WNWI WN\WA| 73.4 | WNW 15.6 l.2e l.3e 0.Se 
b) NW 3 NNW 2 °NNE E11 73.6 NW 13.6 || 0.2=e 0.28 == 
6 SE: A SSElZ SE, Ele. 3,9 SSE 6.1 _ —_ 0.1= 
7 SSUINE SEI ZSEF EI SE 9.0 0.6= 0.78 0.5= 
5 SSHEeI= SER IN ESSENER SE 3.8 0.2=: 0.2= 2,.2e= 
9 NEN IE NH 2.5 | 4.2es dealer 10, (=: 
1 mE 0 = ll NNE IE 0.,8=. 0.3=e 0.0: 
11: NNE1 W 3 ,W 1 2.0. | 2W 12.6] 0.3=# 0.3000. 
31 SV 1 SNDVV le HS SV Bl 21 RS E ENVENDNV, 9.8 0,.Se nn a 
13 NV 05 NENNE INIW. ll 262 1 NW ES 74 7.28 5.2® 0.08 
14 E NE 1 NE 7128 Sn 0.4te 0.4e 3.6® 
15 NYNW>2 \VNA\VO SS ill 228 NVNNVIONS 2.4e 0.08 -— 
16 SSE 22 ,SSB 17 SSR Hly2E7 SE 1020 Oz: _ —_ 
17 SSB L NW Ir N Hi NW 5.4 0.30 11.70 1.3e 
18 NEN 8: INIW 2, 2500 210732. 05 0 ENVENINV 9.2 0.1=: — — 
19 SI WNW2WNWEI 78.6 W -18.8 = 0.08 -- 
20 VE 73 WVSIW 3) AV Bl 56 IW. 20.3 = 0.le 0.28 
21 NW 3WNW4 NW 3| 5.3 W 15.4 0.68 0.0% 0.0% 
22 SINNVS NV a NV WNW 14.2 0.28 0.0x — 
2 SS > 1SSNV le NV He Zu W 20.5 0.0x 2.15 - 12 
24 NVENAV2WNNV BL. SW All 10.18 LATE == == = 
29 SE NUN NVBR OWV lr 2, 62 NVENDWAERIONS 20 1238 0.0x 
26 DIVE EI NE NV AG 288 NW 8.2 = = —_ 
27 INIWV 8 HN 15 Ne Al NW 1126 = = == 
28 vo 1 SS da WE rt w 12.0 —_ — 4.9 
29 \VN WA SW 17 2W. 61.16.60 I\VNIV» 28.6 3.90 1.be 1.50 
30 eb Ne SSsEr ll 93 W 207 0.0e 0.08 _ 
31 Br 2 ENTE DEN ale 36 WISS WARTE — —_ — 
Mittel 2.1 1.5 IUad, 3.0 2,.04 73330 32.8 30.9 
| 
Ergebnisse der Windaufzeichnungen: 
N ZNNEBISNEIZENE BE? .BSE SE  SSE. 5 'SSWZSWEWSW »WEWNWERSY 
Häufigkeit (Stunden) 
29.4420 1A 21 10 OT 68 49,337 19084 34 127 1137 84 
Gesamtweg in Kilometern | 
144 76 114 71 41 838 426. 443°275 135 211: 276 - 1902. .1910 1463 
Mittlere Geschwindigkeit, Meter in der Sekunde 1 
12.60 1319,0028%, 0, 97211821 1139, 2.:5,02,0, 2.0 Hain DR E Bes 
Maximum der Geschwindigkeit, Meter in der Sekunde 1 
D.0TBR DI REN. 2 LT. 222.0 4,27 4,2 5.0 4,2528 0. Dee 
Anzahl der Windstillen (Stunden): 21. 
Größter Niederschlag binnen 24 Stunden: 18.0 mm am 28. u. 29. 


Niederschlagshöhe: 98.7 mm. 


! Den Angaben des Dines’schen Druckrohr-Anemometers entnommen. 


| Schneedecke 


| 
| 
| 


ı a0 BREEE 


und Geodynamik, Wien, XIX., Hohe Warte (202:5 Meter), 


° . a , FI u 
Dezember 1918. 19, 2007. Bebanege Vv. Gr. 
Kun | Bewölkung in Zehnteln des 
Eee | sichtbaren Himmelsgewölbes ! 
>. | 
5 = Bemerkungen | — 

g | za 
me | Pod 
Ze |. 7h h HH nein 
2° | s 14 Is a8 

Se er TE en were ne en a. er „Oo ale 
ggggg | xIT1 bis mittags, x1 bis abends, dann x — 101x071 101x0 101x1110.0)j10,0 
ggmaa| x0— 730, 955—-1045 ; MV0 abends. 1+1.01%0°°°9071 ) Bu. 6,8 
gefgg | MO mgns.;=! vorm. u.abds. ı 10/=1 9071 101=1 9.7| 8. 
gggfg | 001 620 — 1715, =:0 mgns.; =! bis nachm. 10l=18110!=1@0) ; 9071.|9.7| 9. 
gmegg | e) 6?0°—8, =:0 mgns. u. vorm. | 10180. 9071 101 3m 3 
. i | t 
Sgggg | =; abds; =! vorm. bıs nachts. | 10071 101=1 101=!1110.0/10.C 
ggggg |=:0! gz. Tag, MU" mgns.; =! 92. Tag. ee N) 19.0 
gggeg | e'vorm.,e0 11630. nachts, =;V”19z. Tagzeitw.; | 101=;1 101=1 101=:181/10.0|10 


LESEE e’ mens., =: bis nachm ; =17?gz. Tg. [=1gz.Tg. | 101=1 10!1=1 101=1|10.0|10.0 
ggggg | e9 1915-1 120,=:071mgs.b.nchts. ztw. ;=17?gz.Tg. | 101=1 10:=1 101=1 10.010.0 


1 
ggggg | e' vorm. ztw., e'”1 von 2045 an; =!1bis vorm. ı 101=1 10071. 10180 10.0110. 
gfefz | e) bis 19, eu}! s0-1 go1| 8. n S 
gmene | el 020 —5, e!71— 730, e172— 830, ed —1130u. 21—  101e0 31 LOREI TU 77 7 
egggg | e! S—10, el71 1350 — [2 130, || 7071 10180 10180] 9, o| Q, 
dnffg | e71—530, e) vorm. zeitw, | 4071 101 101 8.018. 
ggxgg | ='0 mgns.;=1 92. Tag. \ 101=1 101=1  101=110.010.0 
ggggg | e!714—9, el7? 9—14,d. ed b. 2015; =071 07. Tg. | 101e0 101el 101 /10.0]10.C 
edcen | =:0 mens. ; =0"1 mgns., WII mens. u. abds. re 90 6.3] 4.3 
gfedb | eTr. vorm., —) mgns. | 1002. 8071 101 9239. 
bndne | eT'r. mittags, e' nachm. zeitw., e!"1 18 — 11 601° ,101801 5.71 :5.76 
edmbc | e® —5 «Fl. 1035740, «2 —Böe 1515750, 7 120 tell 10 3.711,08. 
enfmd | x0 355 —405, xFl. 12— 14 zeitw. | 41 .1007x0 0 4.7) 4, 
gggge x0 6415.— 705, 2071 923 — | 130, 011 155 — 2085, 100=1%x0 10181 101 10.0190. 
me gg | =" abends. 11 100-1 101 7.0080 
ggeef | x071.80 230 — 1030, 29 — 1439, 101x0 100-1x0 8071| 9,3] 9 
Ifsggm | ®" 15. 17. 10021921,00,12°1007711.08:0) 82% 
I abaac |! abends. 20 0 0 OB elhr 
Alenggg | I! mgns., 071 1705 — 100 10071 1018! |10.0]10.C 
Iggggm| 61-1805; W— Y nachts. ' 101el 10lel sorı] 9.31 8.09 
| ddedn | e0 530 — 6, e' mittags zeitw. 2078311001 AO | SHIRT 
I sgfgg | a? mgns.; =071 vorm. 101 10071 101) |10.0[10.0 
Mittel Be 8.6.78.8 8.3.) 8.48.23 
sn 
R Schlüssel für die Witterungsbemerkungen: j 
a= klar. | f = fast ganz bedeckt. ie Ipol e; 
b = heiter. | g = ganz bedeckt. | 1 °='gewiiterig: 
ce = meist heiter. | h = Wolkentreiben. | m = abnehmende Bewölkun: 
_ d= wechselnd bewölkt. | i = regnerisch. | n = zunehmende » 
-e = gröbtenteils bewölkt. | 


! . Dererste Buchstabe gilt für morgens, der zweite für vormittags, der dritte für nachmittags, . 
der vierte für abends, der fünfte für nachts. 
TE Zeicnenerklärung: 

Sonnenschein ®&, Regen e, Schnee *, Hagel a, Graupeln A, Nebel =, Nebelreißen = 
Tau a, Reif —, Rauhreif V, Glatteis vv, Sturm’ 9, Gewitter R, Wetterleuchten S, Schues- 
estöber $—, Dunst oo, Halo um Sonne &, Kranz um Sonne Q, Halo um Mond D), Kranz 
ım Mond W, Itegenbogen N. 
eTr. — Regentropfen, xFl. = Schneeflocken, Schneeflimmerchen. 


; ! Tagesmittel A aus den mit Index versehenen Beobachtungen; Tagesmittel B. aus -solchen ı 
ine Iudex, 


„> 


Beobachtungen an der Zentralanstalt für Meteorologie ‚und 
kendgnarik, Wien, XIX., Hohe Warte (202'5 Meter), 


im Monate Dezember 1918. 


Ver- | Dauer Ne © le. Bodentemperatur in der Tiefe vn55M 
|  dun- | des |<} E = 0. 50 ZZ 1. 00 m 2.00 m 3.00 m 4.00 m 
Tag | stung | ee 1.2 2a E|- en Seen = 
| in mm Ba. IR I: =] Tages- Tages- 14h 14h 14h 
a are eye Se mittel mittel 
1 0.2 0.0 EEE. 238 5.3 9.7 83 11.4 
2 0.2 0.RlmEBET 2 5.1 9.6 1108 11.3 
3 0.0 0.0 | 0.0 22 el 9,5 1 ia! 
4 og Re 22 4.9 9,4 : el 1193 
5 9.0 Da 2,6 4,9 9.3 ii 11.3 
6) 0.1 0.0-\ 38 3.0 4,9 9.2 14130 112 
7 ORT 0,0 0.0 DR 4,9 9,1 I 152 
3 0,1 ROSA 0,0 28 4,9 9,0 10.9 1122 
a Ol OO 0.0 2,8 4.9 os) 10.9 N 
10 el 0,0 0.0 are 4.5 8.8 10.8 I 
El MER: DOWN) 0,0 3.4 488 8.8. 1067 1a 
12 0.0 DEE 0,0 3.6 +,9 Sn 1007. 1a 
t8 0.0 18 10 ar 4.9 8.5 10.6 ee 
i4 ol 0.0 6) 4.3 rl 5) 10.6 A) 
t5 0.1 DO 4.6 DD St Kö 71% 
16 0.0 0.0 0,0 A.7 a s.4 10.4 11.0 
17 0,1 0.0 0,0 4.18 5.4 8.3 10.4 10.9 
18 0.4 2 7.0 1,5 DA 8.3 10:3 10.9 
19 0.5 1.4 4.7 4.0 5.6 8.3 10.2 10.9 
20 0.6 1.5 N ER 8 8.3 10.2 10.8 
aut 1:9 a ee 32 5.4 8.2 10.2 10.8 
22 198 DEO RW 80 3.2 5.8 8.2 10.1 10.8 
20 1.0 DO 0.40 Ns I 8.2 10.1 10.8 
24 0.8 ln AN 258 Sl 8.2 10.0 1027 
25 0.5 0.0 10.3 2,9 4.9 8,1 10.0... Zi 
26 0.4 0.0 s.0 3.0 4.8 Ss.1 10.0 10.7 
on 0.8 RS 9.7 DD 47 8.0 9.9 10.7 
28 098 0.0 423 DAN) AS s.0 9.9 10.64 
29 0.2 0.0 Ber, 23 4.5 7.9 9,9 10.6 
30 0.6 2.4 9,0 3.8 2 7.9 9.8 10,6% 
al 121 10.8 0.0 5.3 4.0 4.5 7a 9.8 10.5 
| Mittel 0.4 OT a 3.8 5.0 S.6 10.5 lo) 
Ina nats- il.) | en | 
Sum me I l 


Größte Verdunstung: 1.9 nm am 21. 
üurößte Sonnenscheindauer: 7.3 Stunden am 27. 
Prozente der monatlichen Sonnenscheindauer von der möglichen: SP,, von der 
mitieren: 430,9. | 
Größter Ozongehalt der Luft: 13.0 am 21. 


‘ 


Vorläufiger Bericht über Erdbebenmeldungen in Österreich 
im Dezember 1918. 


o Kronland 

E Er 

E 2 

zZ A 

-- 

68 | 19/X Krain 
ad55| 30/X | Tirol 
ad 65 | 9/XI Krain 
ad 67 | 18 XI Tirol 

69 | 29/XI Krain 

70:122/XI Steiermark 

S7iSH Krain 


Unter-Skopiz 
Jenbach 
Unter-Skopiz 
Jenbach : 


Unter-Skopiz 


Donnersbach 


Aigen im Ennstale 


Unter-Skopiz 


Zeit, = 
Bu 
M.E.Z. | 3 & 
-3 Bemerkungen 
| Kelle 
Sn 
| S® 
| h m = e 
20, 5 1 Nachtrag zum Ok- 
tober- en Novem- | 
20 10) 1 | berheft dieser Mit- 
teilungen. 
195150 1 
1:64, 55 1 
6 5 1 | Negative Meldungen: 
Munkendort, Puschen- 
dorf, Großpudlog. 
19.30 | 1 
| 
10 | 40 1 
3 5 1 | Negative Meldungen 
Großpudlog, Puscher- 
dorf 
| 
| 
I} 


Temperatur der Luft in Celsiusgraden 


Übersicht 
der an der Zentralanstalt für Meteorologie und Geodynamik im 
Jahre 1918 angestellten meteorologischen Beobachtungen. 
Luftdruck in Millimetern 

DA ein A Abwei- | 28 

Monat 24 Sins Al chung | Maxi- { Midi- | 3= 

Jahr o0jähr. |v.d. nor- | 'mum ag mum 95 ame 

1918 Mittel | malen | 3 

Jänner Lac... 746.09 746.09| o.ool’zeist >25 | zıa 8er 
NebDruanze.. »0.53 45.08 8.45 62.0 2 32,6 28 29.4 
März al sclin |a5:0: 42.15 2.861 451% 22, 32.2 1% 19.5 
ES a | 39.13 41.84 1.22.7111 )47.3 ,25.,26. |, 31.3 So Ale 
NE a 43.53 42.26 1.27 |. 50.0 30. 33.6 S. 16.4 
Tee or 43.85: 232 er 9, 34.2 16. UT 
ID Dee 43,52. 43.40) 1,--0. 884 #Asıuull19., 20. Wesmanla 10.6 
ABEUSt...2.:. 43.33: 43.71 |. 0.381 650.0.2 21232 BU Dr TATE 19.7 
Septembern.e.. | 42.74 45.07 | —2.33] 49.5 20 32.1 28. 17.7 
QRLobEr. We... 1 44.29 44.37 | —0.08| 53.4. 29., 30. 34.9 26. 18.5 
November...... 47.65 : 44.70 2.95 56.2 10. 39.2 3 17.0 
Dezember ..... 433105) 25.85.10 29705 54.1 15. 28.0 19:: | 320 

| y 
| Jahr 1744.23 743.93 | : 0.30] 762.0 2.1. 2,4 SR | 40.6 


| 2 n | 3 | 05 

M at | 2% ik Abwei- a vg un 
ona ı 24stünd Mittel | er Ma Sr Mini- ran | Er 

Jahr 25jähr. |v. d.nor- | :mum ag mum 5 a5 

1918 Mittel | malen <2 

Nanner2.. 1... —0.2 —2.2 | el) 1239 16. —9.5 4, | 22.4 
Bebruat....... 1 0.0 I 1285 11. —7.9 19. 20.4 
INanZu ee ei 338 Ben | 1:8 18.1 24, —5.2 27. ERiRB; 
NDIDIE RX. 11.8 9.4 2.4 20.1 30. 0.9 ir 19.2 
Male en a 14.5 0.6 26.9 22 Tot: Die 19.2 
ST LETIIGe RE RER +0 1922 ER 2 26.8 17. 7:5 58 19.3 
Tale, 18.3 19.5 —1.2 29.2 18. 11.20 ih, 18.2 
NTEUSCHE ee 17.8 19.0 1 —12 28.8 23. 1120 all: 17.8 
September 1 15.0 OR N 23. ZUR ED 15.0 
BOktoben...R.<. 9.5 9,6 | —0. 16.5 7% 3.7 A., 1228 
November..... 328 3.51—-0.2 al Te —5.0 24, al 
Dezember..... 2.9 —0.5 BMA: 14.5 30. —7.4 3 21.9 
Jahr. 9.7 9 0.6 29.2 18./VIL. | 9,5 4/1 38.7 


RADNDIAHSE: Feuchtigkeit in Prozenten | © 
Monat a g ae le | R | E 
1urc 80jähr./Maxi-.Mini-) Mitt“ 30jähr. Min mas & 
1.1918 Mittel mum mum J.1918 Mittel mum1 2 

| | | 
BAanDer. . 2.2.00... Bir 3.9 HRS, 1.9 su 54 41 41 1% 3.9 
Bebewan)i.... 9.222: a0, 03.8 FAGRTN 1.o ‘4 so 42 3 26. DT 
E32 N 4. 4.5 7. Ar 11.4 67 12 21 18 19. N 
le na ae sa 0.2, 6.0 10 LO 70 67 27 21 4.1103) 
KEN, SR S.1 SA ON 38 62 68 30 26 0. 9.6 
u... le 88.10.4 1349573.9 09 69 32 27 7 10,6 
ST 116,701 4818 1.2 68 39 38 23% 10.0 
EN 1154 .11.476108. 9,2725 4 Ü 44 41 20: 953 
Beptember......... 10-40 9,67 1206 6. 10) 75 46 40 15. 115.6 
Sie) bs 5668 kbLiAru4.3 | 84 S0 49 45 N: 
Bovember....u..:. Dan eo Men 2.0 s4 83 54 52 13. 4.1 
[Dezember ......... 11 429° 713.9 66810,..8.4 57845, 185 \ 51.48 13,01.4.8 
Jahı 1.8 112 1049 N D 76) 211156 19JU2.16:7 


i 


[ 


! Die linke Spalte gibt die niedrigste Feuchtigkeit aus den Terminbeobachtungen , 
rechte jene nach den Auswertungen des Hygrographen »absolutes Minimum«. 


j | il 
} ‚Niederschlag gu eengl, | Sonnenschein 
ıE 7 Kung Dauer in Stunden 
Do WE 32 er BD ee Ol, „er AN 
Monat ul =... © eo % 

> |Summe in Millim. Maxim. in 24 st. Zahl d. Tage |; ' = = = En 

is Niederschi. = »| = = | = = {2 

3 i illi J j 8 = « = Sa 

IR 1918 60j.M.| Millim. Tag | sn a Eu E & | S gr 

| I 

- .16 37 6. 1.12.30, 2413 08.98.11 48 63 

34 33 122 722.232, 1000 11 0 7.2 6.6 79 S5 

BE... 21 46 9 4.5. Kos 0|| 6.9 6.0|| 145 134 

I: 20 51 29° 23124. , 106,812 3| 7.6 5.5|| 141 171 

a 24 67 S 24.25. 12 14 4 5.9 5.4 276 234 

ns 136 71 29° ı 18.119. 24.014 al 224 95100226 235 

ee. 93 71 25 2. 20° 14 So. #. Alle 221 271 

I. 128 79 37 30. 2049,12 8|| 6.2 4.5 192 247 

41 45 22 7.12.0327 .713, .,10 21 5.8 4.61] 199 Rz 

92 50 30 4. 20,818 07.7 9.8 87 107 

November 41 43 16 I 23 13 0|| 8.4 7.3 ol 66 

‚Dezember ..| 99 43 1&; 28.29 26 14 01 8.4 7.4 21 49 

Jahr..| 780 627 37. 30,/VIIL| 229 . 152 ‚|| 291} 7.2 5.81]-1689 1839 


44 


Wind- | 
richtung 


19 0 100 66 40 
22 71 -164 1158 50 


n) 

1 leer 
25.2122 2) 
22 


SSW 35 6 13 20 6 hal 6 10 34 2 10 18) 12 
SW 45 16 j 21 12 A) 15 13 24 B) 7 34 198 
WSW 46 9 10 17 11 34 tor 280 212 18 7 34 || 357 
W 137 139. 22 AT. TODE IT 115 124 | 43 107 27 973 
WNW 7 


Täglicher Gang der Windgeschwindigkeit, Meter in der Sekunde 


Zeit | 


| Jän. Febr. März |April Mai Juni | Juli Aug. Sept.|Okt. Nov. Dez. | Jahr 
I 
0—15,.13.08:8..2. 7 | nee 
er 3.0 4.0 2.7. 17.1 ,.. 8.5 18.63. 2.002,40 Del So 
Ahr, 2.9 4.0 2.7 \l.s 5°, 8,7 uscaarsbeilı .0 0.3 2.70 aa 
en 2.9,.2.2.228 19.0.0 08.4 19 5003.5, 1.7.0.2. Dia 
MB 2.6 #40 2.8 11.9 .5%.,84 3.4 3,6,,1,8.0,6,_3.01 3A 
5 2.8 4.0 33.0 zen 3 9. 35 ons SS ee 
a 2.8:8-9. 2.951.650 198.4 jielo SuM ED NE. Bau 
78 3.0.3.9 3.4 |2.3 9 24.0 gegen ee 
2 3.0,%.1 83.7.|2.8,,°, 14.8 13.8 8.7 1.031 sog m 
9.10 „| 2.8.4.3. 3.8. |3.4. 0° 4.2 \s w.ua,8: B,alson sa ae 
ar 46 aa N a 3.0 aa ee 
123.5 49 25 ja.0 ua 0 8.5 Szene 
219 | 3.4 5-2 4.5.4.3 °-* 47 |,0 Kı BiRag 3.80 sera 
ja 1a ‚| 3.5 9-2 4.6 4.5 9-0 5.1 [25 25 8.8 |s.6 3:4) 200er 
12 15 18.67°.1 4.6 |4.5 °-° 5.1.4.0 4.3 8.213.5 „3.01 Zune 
ee 3.8 4.9 4.4 14.5 2 4.09.1419 2, 3.573,53 338 2.641102 
16-17 3.5 5-0 2.2 [2.4 9.1 46 |3.9 4.0 3.2 13.0 3.1) 2.4.87 
eg 3.5 4%06 3.8 |4.5 2.9 4.3 4.0 29 3.112,5 02.91 2.2788 
ie-19. 1 8.5 2-9 8.2 |8:6°2,8 4 la 8.8 2DOSa B.oh Zee 
1920 3.8.42 2.9 |2.8.2.7°38 |36 3.7 2.89,6 .3.0). 2.87 @RE 
20-21 | 3.2.9.9 2.9 12.512.840 |3.6 38 2.8%9.0 !8.0\. 28a 
192 | 3-2: #0. 8.0)2.912.6 4.0.3.8 3.9. 2.7129 08.0. 2.Sumase 
2223 | 3.0 %#* 2812.09 24 „0|3.7 3.7 2.2 2.9 2.0) 2.088 
2324 3.2 #1 2.7 12.4 2.4 3.6 |3.8 3.3 2.3 2.6 2.9. 3.1 3.0 
Mittel ‚3.2 Ze ea ahle 3:8 2.6 2.9 3.1 3.0 13.3} 
ı 


Anzeisrer Nr. 2. 


o 


= 
E Weg in Kilometern 
2- 
3 — — _ = 3 
SZ Jänner Februar März Aprii Mai Juni | Juli 
- 
| 
 —  —— —— —- a | = 
N 167 450 417 101 1007 654 146 
NNE 162 467 634 Ss4 1064 314 140 
NE | 59 303 73 3 109 38 19 
ENE | 118 30 69 66 BU 33 72 
BE 29 3 la 123 49 28 66 
ESE 78 56 403 441 134 129 291 
SE 129 648 1321 706 IH 390 183 
SSE 91 049 2460 2436 726 BES) 225 
| 
Ss | 289 s9 BE) 1269 s8 246 132 
SSW 152 o 46 194 ) 92 3) 
SW 170 96 Bi 70 ie 38 63 
\WSW 315 1609 +6 3 60 Dal Las 
W | 112854 4027 346 452 233 1851 1063 
WNW 2660 896 1655 1471 1104 3637 5318 
NW. 6585 1002 840 206 872 1556 1826 
NNW | 2) 608 133 609 139 1301 751 212 
on | 
= | i ! 
3 Weg in Kilometern 
2) 
;Z August September Oktober November Dezember Jahr 
-. 
| 
A rm u — Lu ——— nn 
Keiner S dba 71 145 510 144 | 4222 
NNE +49 110 v4 247 76 | 3315 
NE 2 48 11 30 114 | 915 
ENE 67 50 10 21 71 667 
d | 104 109 | s5 18 47 N 805 
ESE 268 146 246 250 | 2480 

SE 85 239 626 1597 426 | 6946 

ıSSE | 14 1359 | 374 1882 443) | 11500 

| a | € 

ms ı;| 45 143 186 66 275 2987 

| SSW 59 287 11 53 135 1156 

SW 95 193 15 34 211 1025 

\Wwsw 164 302 173 3 276 3760 

. 

a W 1681 1329 60 118 1902 16406 
VNW 4874 1598 2425 906 1910 28454 
NW 1709 483 1659 1557 1469 13858 

NNW 591 162 652 703 536 6397 
) 


Auß) 


Eule ee 
| Beob- 
lachtete 125jäh:| Abwei- 


Tem- 


Mittel | chung 


Ba 
1.— 5.Jänner | —2.8 —2.5| —0.3 | 30.— 4. Juli 
6.—10. ea ae 
1-15. 5 9 0, TR 
16.—20. a ee lspker 
Zr 2n. 9,80 21.61.78.9 120.294: 
Po 230. — 0,89 1.3 17.2027. 1125.220. 

| 
1.— 4. Februar || —2.2 —0,7| —1.5 | 80.— 3. August 
Bro. 1.289204 | aan A. 

24. 6.20=-0.5| man2 110.203. 

15.19 4.0 °0.0| —4.0 | 14.18. 
20.—24 4,0 0.9 | — 23 


. März 


to 
O1 
| 
ı 


—— 
JUNI DSDS 
| 

o2 


ke to 


.Mai 


31.— 4. Juni 


>» KO 


-] + 
Nom DI 


PET lo oe) 


ER 
» 

ee 

Dam 


wi 
DOoOEOQr 


1 
> 


ID SW 


N 
t 


26 


o 


OOw#+r#» 
Do 


168) 


Er SE SE) 
Kom sı ENeFi Are 
VD wm mm ww © 
u oe ee . 
) SrOosnlorm 


8.— 
13.— 17. 


II1S% 


9« 
[ 


wi ——_ 


ID 


2 NDSJIDN[ 


” 
- 
- 


Fu 


. September | 


. Oktober 


12. 


299 
—.2. 


. November 


. Dezember 


6. 


Aus der Staatsdruckerei. 


r 
| Beob- 


| Tem- 
peratur 


m 1 DdD mm 


He,nwo-ion 
- jerlofo>) 


HI So OD 
ei) 


Mittel 


-— 
er) 


- 
> 
Rn NED — m LO IJICDrt 


D 8 + om 
So S[10 


1 
1 


Run Row 


osor 


achtete 125jäh.|Abwei- 
chung 


woPrUC 


mn © 01 XD 


to 
es 


eo io io LET) 1900 - 


Nu nwWOm. 
BR OO OW WW 


a u on 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr. 4 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 6. Februar 1919 


KT 


Erschienen: Sitzungsberichte, Bd. 127, Abt. I, Heft 4 und 5; — Abt. IIb, 
Heft 6. — Monatshefte für Chemie, Bd. 39, Heft 10. — 
Mitteilungen der Erdbebenkommission, Neue Folge, Nr. 52. — 
Anzeiger, Jahrgang 55, 1918. Nr. 1 bis 27. 


Das k. M. Hofrat Dr. G. v. Niessl dankt für die ihm von 
der Akademie der Wissenschaften anläßlich seines 80. Geburts- 
festes ausgesprochenen Glückwünsche. 


Prof. Dr. R. Kremann in Graz dankt für die Bewilligung 
einer Subvention zu Untersuchungen über Energieänderungen 
binärer Gemische durch Untersuchung der Absorptionsspektren. 


Prof. Dr. A. Möller in Eberswalde dankt für die von 
der mathem.-naturw. Klasse ausgesprochene Geneigtheit, die 
Herausgabe der Werke von Fritz Müller unterstützen zu 
wollen. 


6 


48 


Das k. M. Hofrat A. Wassmuth in Graz übersendet eine 
Abhandlung, betitelt: »Studien über Jourdain’s Prinzip 
der Mechanik.« 


Schreibt man das D’Alembert'sche Prinzip für ein Punkt- 
system in der Form: 


S m|#.8x-+43.8y+2.92] = 8 [X51r+ Y6y+ZBz], Mm 
so lautet das von Jourdain 1909 aufgestellte 
E m[#.5.3+9.5,747.92] SE [82 .e], (ID) 


mit den Nebenbedingungen: 


= 


a ee et) 
und das Gauss’sche Prinzip: 
S m|#.5,%+...] 2 ASt...) (III) 


mit den Bedingungen: 


DNS 


bt eier en en‘, 


1 


Man sieht, daß (Il) nicht allein der äußeren Form nach 
sondern auch betreffs der Nebenbedingungen eine Zwischen- 
stellung zwischen (l) und (II) einnimmt: 

Schon Jourdain |[Quart. Journ. of Math. 1909] zeigte 
durch direkte Transformation, daß alle drei Typen zu den 
Lagrange’schen, beziehungsweise Ferrer’schen Gleichungen 
für generelle Koordinaten führen. 

Leitinger [Wiener Ber., 122, 1913] wies nach, daß durch 
Differentiation von (I) nach # und nachherigem Einführen 
der Nebenbedingungen B,t=9,r=8,y —8: 0] dieForan 
entsteht; analog vorgehend kann man von (ID) zu (III) ge- 
langen — Wassmuth verwendet diesen Gedanken in etwas. 
anderer Art. Er gestaltet zuerst (I) in bekannter Weise für 
generelle Koordinaten g, da stets 


49 
ist, so um, daß (I) übergeführt wird in 


Kar, 9, 
ENDE: le 


ur ZN -i + 
BR DAR Aie ie Ir gi \dgn, 


| 
3% dt N a “Tu Z On; 6.gn> (1) 


‚wobei Z die aktuelle Energie und 


O, m D2 (x 


ist. 

Wassmuth differenziert diese Gleichung wiederholt 
nach Z, führt stets nachher die Nebenbedingungen ein und weist 
so nach, daß nicht allein die Typen (l), (ID) und (II), sondern 
auch die weiter »abgeleiteten« Formen zu den Ferrer’schen 
Gleichungen führen. Schreibt man z.B. das Gauss’sche Prinzip, 
indem man 


IN m 1 za 
++] = 
setzt, in der Form: 


. 7 
3A) 0n-dd, 


h 


so daß bekanntlich (Gibbs-Appell): 


0A 
nn — On 
wird, so stellt auch 
So 
ÄA= N 0.89 
| | Ir 
ein Prinzip und 
| 0A 
P) Pi En O, 


‚eine der allgemeinsten Gleichungen der Mechanik vor, so- 
bald.die Variationen, der Koordinaten (ö g), die der Geschwindig- 


0 


keiten (65) und außerdem die der Beschleunigung (84) ver- 
schwinden.! 

Um die praktische Verwendung von Jourdain’s Prinzip 
zu veranschaulichen, erörtert Wassmuth den Fall der Drehung 
eines starren Körpers um seinen Schwerpunkt. Dabei ergab 
sich auch, daß man sehr rasch zu Euler's Gleichungen 
gelangt, wenn man Ferrer's Gleichungen benutzend, q,, 95, 9, 
so wählt, daß d, =p, .=4, G, =r, d.h. ihre Geschwindig- 
keiten den Winkelgeschwindigkeiten gleich sind. 

Um den Zusammenhang von (Il) mit dem Prinzip der 
kleinsten Aktion nachzuweisen, differenziert Leitinger (l. c.) 
den Ausdruck: 


döt 12 \ 
ade: a \ 01891 
dt dt 1" 


h 


nach # und gestaltet ihn, unter Einführung der Nebenbedin- 
gungen, so um, daß eine nachherige zweimalige Integration 
nach ? zu den Formeln von Hölder und Voss führt. Wass- 
muth hingegen benützt einen von Brell (Wiener Ber., Bd. 122, 
p. 1031) aufgestellten Algorithmus ©, Z, wonach 


IL 
,L—=ÖL- Zt 
gesetzt, sich die Identität 
6L+6,U= —IS.5g4+ Pag (2) 
at 
ergibt; hierin ist 
= = IE Sure oL 
BZ Ned, P= An 
und 
Se LINES 0) 
masgı 0g Ya 


Die Gleichung (a) mit dt multipliziert und integriert, führt 
(Brell) zu Hamilton’s Prinzip der stationären Wirkung. 


1 Da 2A gleich ist dem Zwange für verschwindende Kräfte, so läßt 
sich A (in generellen Koordinaten ausgedrückt) sofort niederschreiben, wenn 
man Gebrauch macht von den Formeln für den Zwang, wie sie für solche 
Koordinaten von Lipschitz (1877, Bosch. J. 82), Wassmuth (1894, 
Münch. Ber.) und Radakovic (1895, Z.f. M. u. P.) gegeben wurden. 


Differenziert man (a) nach # und führt die Bedingungen 
#t=%6g9=0) ein, so erhält man 
d? 
dt? 


d 2 a IM, IDn% 
FF [6,2+6, 0] = —2S.8,49+ — 200,9, (9) 


ein Analogon zu Jourdain’s Prinzip. 
Man kommt zu Leitinger’s Gleichung, wenn man in (x) 


227.01 
rechts und links Br u 2 hinzugibt und differenziert: 
[4 
d JE, döt 
zen dr-22 ’| —= 
2 ler+ Er B’-r2ZL Erd 
a d? 
= —:3S$.0.d+ —— Ir 29, 8,9+ ee a) 


Für nicht holonome Systeme wird in (a), (B), (y) 


i d / 8 \ 
. TE ER +... b 
sonst ist für holonome Systeme S = 0.zu nehmen. 

Die Gleichung (y), zweimal nach # integriert, liefert nach 
Leitinger die Formeln von Hölder und Voss. Es ist ein- 
leuchtend, daß man auch die neu aufgestellte Gleichung (£) 
zweimal nach f integrieren und so zu einer erweiterten, auch 
für nicht holonome Systeme geltenden Form des Hamilton- 
schen Prinzip gelangen muß. 


OL a 
Spas =E \ m 
ogqn ee 


Das w. M. Hofrat J. v. Hann übersendet eine Abhandlung 
von Prot. Dr. H.v. Ficker in Graz}mit "dem’Titel:”»Ver- 
änderlichkeit der Temperatur’ und’ Anomalie der 
Monatsmittel.« 


. Das w. M. Hofrat F. Exner legt folgende Arbeiten vor: 


1. »Mitteilungen aus dem Institut für Radium- 
forschung. Nr. 116. Messungen im Schutzring- 
plattenkondensator mit RaF nebst eingehen- 
der Diskussion der Verwendung des Bi- 
nanten- oder Quadrantenelektrometers als 
Strommeßinstrument«, von Grete Richter. 


Die vorliegende Arbeit schließt sich an die Abhandlung 
von L. Flamm und H. Mache über den Zusammenhang 
zwischen Plattendistanz und Sättigungsstrom im Schutzring- 
plattenkondensator an. Dort hatten sich zwischen den theo- 
retischen und den experimentell gefundenen Stromwerten 
Unterschiede ergeben. Der Zweck dieser Arbeit war, zu unter- 
suchen, ob und unter welchen Umständen sich diese Unter- 
schiede beseitigen lassen. In experimenteller Hinsicht waren 
die wichtigsten Veränderungen gegenüber der genannten Arbeit 
erstens die Vergoldung der Kondensatorplatten, zweitens die 
Anwendung einer genauen Influenzierungsmethode zur Be- 
stimmung der absoluten Plattendistanz, und drittens die Ver- 
wendung eines Dolezalek’schen Binantenelektrometers zur 
Strommessung. Wegen des letzteren Umstandes wurde zuerst 
eine Theorie der Bewegung der Elektrometernadel aufgestellt, 
welche gestattet, die bei einer Messung zur Erzielung einer 
bestimmten Genauigkeit notwendigen Bedingungen (Wartezeit, 
Beobachtungsdauer) zu ermitteln. Die Strommessungen wurden 
nach zwei Methoden durchgeführt; bei der ersten wurde die 
Geschwindigkeit der Elektrometernadel gemessen, die zweite 
war die Moulin’sche Methode (Kompensierung eıner bekannten 
Elektrizitätsmenge durch den zu messenden Strom). Letztere 
erwies sich als die exaktere von beiden. Gerechnet wurden 
die Ströme auf dreierlei Weise; zuerst einmal unter Zugrunde- 
legung der Geiger’'schen Formel der lonisation 


Ka en: 


ep) 


dann zweitens mit einer von L. Flamm gegebenen lonisations- 
formel 
e— 2Bu+3yw 


a—2bw+3cy? 


Jm= 
pP = Im tr: — (an —buitcn?); 


und drittens durch Verwendung einer von R. W. Lawson 
gegebenen experimentellen lonisationskurve. | 


BR) 


Das Ergebnis war, daß die gemessenen Ströme mit den 
nach der Geiger’schen Formel gerechneten vollkommen über- 
einstimmten. Von den beiden anderen Berechnungen ergab 
die erste zu kleine, die zweite zu große Stromwerte. Es geht 
aus dieser Arbeit hervor, daß. die Formel von Geiger für 
die Stromberechnungen die Beobachtungen richtig wiedergibt; 
hingegen läßt sich nicht mit Sicherheit entscheiden, ob die 
Vergoldung der Platten oder nur die exaktere Bestimmung 
der Plattendistanzen die Übereinstimmungen zwischen Mes- 
sungen und Rechnungen herbeigeführt hat. 


2. »Mitteilungen aus dem Institut für Radium- 
forschung. Nr. 117. Über die Erreichune des 
Sättigungsstromes für a-Strahlen im Plattenkon- 
densator«, von Hilda Fonovits. 


Es wurden Sättigungskurven mit Polonium im Platten- 
kondensator für verschiedene Präparatstärken im Bereich von 
1 bis 2400 elektrostatischen Stromeinheiten für die Platten- 
distanzen 4 bis 9 cm aufgenommen. Die Kurven für 4cm 
Plattenentfernung wurden zusammengestellt, sodann die Tra- 
jektorien gezeichnet, welche die Punkte gleichen Sättigungs- 
grades verbinden und daraus Sättigungskurven abgeleitet, 
deren Sattwerte in regelmäßigen Intervallen abgestuft sind. 
Durch diese Darstellung der Sättigungskurven ist die Mög- 
lichkeit gegeben, für irgend einen Stromwert, der bei bestimmter 
Spannung mit Polonium und der gleichen Versuchsanordnung 
gemessen wurde, den Sattwert zu finden. Es wird eine Methode 
angegeben, nach welcher der Sattwert aus den Kurvenscharen 
bestimmt werden kann. 

Ferner wurde die Abhängigkeit der Form der Sättigungs- 
kurve von der Plattendistanz für gleichen Sattwert untersucht. 
Es ergab sich, daß bei gleichem Spannungsgefälle die Sätti- 
gungskurven, welche aba Sattwert und verschiedenen 
Plattenentfernungen entsprechen, im anfänglichen Teile von- 
einander abweichen; und zwar nimmt mit wachsender Platten- 
distanz bei schwachen Spannungen die Stromstärke für 
gleiches Spannungsgefälle ab, während bei hohen Spannungen 
die Kurven sich überdecken. Dieses Verhalten der Kurven 


o4 


wird durch den verschiedenen Verlauf des Spannungsgefälles 
zwischen den Platten bei Änderung der Plattentfernung 
erklärt. 

Um die Form der Sättigungskurve in ihrer Abhängigkeit 
von der Präparatstärke zu untersuchen, wurden die Kurven, 
welche gleicher Plattenentfernung und verschiedenen Präparat- 
stärken entsprechen, für gleichen, willkürlich gewählten Sätti- 
gungsgrad zum Schnitt gebracht. Es wurde gefunden, daß 
die derart aufeinander bezogenen Kurven sich vollkommen 
überdecken, die Form der Sättigungskurve ist also bei be- 
stimmter Plattendistanz von der Präparatstärke. unabhängig. 
Dieses Resultat gilt für jede Entfernung der Platten. Durch 
die Beziehung der Sättigungskurven auf gleichen Sättigungs- 
grad wurden jedem Sattwert A bei bestimmter Plattenent- 
fernung d zwei Maßeinheiten für Strom und Spannung I/x, Vx 
zugeordnet, die für die Ordinaten und Abszissenachse ver- 
schieden sind. Wie die weiteren Untersuchungen zeigten, 
sind /x und Vx von d unabhängig, es entsprechen also jedem 
Sattwert A unabhängig von der Plattenentfernung zwei Maß- 
einheiten /x, x. Somit kann die Gesamtheit der mit ver- 
schiedenen Präparatstärken, bei verschiedenen Plattendistanzen 
(größer als die Reichweite) aufgenommenen Sättigungskurven 
auf eine einzige Kurvenschar reduziert werden, die gleichem 
Sattwert und verschiedenen Entfernungen der Platten ent- 
spricht. 

I und ''Vx"'Sstehen"in" der "Beziehung I = ya: 


Prof. F. Heritsch und F. Seidl „übersenden. eine. Ab- 
handlung, betitelt: »Das Erdbeben von Rannan der Save, 
zweiter Teil. Die Tektonik der Bucht von Landstraß 
und ihre Beziehungen zu den Erderschütterungen.« 


Die Autoren haben den Nord- und Südrand der Bucht 
von Landstraß in Unterkrain geologisch untersucht. An dem 
Aufbau beteiligen sich Carbon, Trias und Kreide, die ein 
zum größten Teile NW-—-SO streichendes und dann in 
Schollen zerbrochenes Faltensystem bilden. Miozäne Ablage- 
rungen bilden die Ränder der rechteckigen Bucht von Land- 


straß. Im Vergleich zur Störung des Mesozoikums ist die 
tektonische Beeinflußung des Miozäns nur gering. Das Miozän 
kam erst zur Sedimentation, als der Bau des Mesozoikums 
schon in seinen Grundzügen fertig gewesen ist; und zwar 
wurde das Miozän in ein Einbruchsfeld eingelagert; denn die 
Autoren zeigen, daß die Bucht von Landstraß ein Einbruchs- 
gebiet ist, welches vor der Sedimentation der II. Mediterran- 
stufe niedergesunken ist. In diese Senkung trat das miozäne 
Meer ein und seine Ablagerungen haben nur mehr eine gering- 
fügige Schiefstellung erlitten. Die mesozoischen, gefalteten 
Gesteine sowohl als auch die miozänen Ablagerungen brechen 
an geraden Linien, welche die Nord- und Südgrenze der Bucht 
von Landstraß bilden, ab. Das sind Bruchlinien, deren südliche 
durch eine Reihe von Thermen markiert ist; daher wird sie 
von den Autoren als Thermenlinie von Landstraß bezeichnet, 
während die nördliche Linie den Namen Linie von Arch 
führt. Auch der Westrand der Bucht von Landstraß ist eine 
Bruchlinie. Gegen Westen ist die Bucht von Landstraß offen, 
sie ist in freiem Zusammenhang mit der Ebene von Rann. 
Im gefalteten Gebirge nördlich und südlich der Bucht von 
Landstraß wird eine Reihe von dinarischen Brüchen nach- 
gewiesen. Die Autoren zeigen, daß besonders das Gebiet 
nördlich der Bucht von Landstraß ein Grenzgebiet zwischen 
dem alpinen und dem dinarischen Streichen ist und bringen 
(diese Trennung der auseinander streichenden Gebiete sowie 
eine Anzahl von charakteristischen tektonischen Erscheinungen 
mit der Stellung der sogenannten Agramer Masse in Ver- 
bindung. — Schließlich zeigen die Autoren durch eine Unter- 
suchung von 48 neueren Erdbeben und Erdbebenschwärmen, 
daß die Landstraßer Thermenlinie und die Linie von Arch 
Erdbebenstoßlinien sind und daß eine besonders aktive Erd- 
bebenregion dort liegt, wo der nördliche und westliche Rand- 
bruch der Landstraßer Bucht zusammenstoßen. 


Prof. Dr. Johannes Furlani in Wien übersendet eine Ab- 
handlung mit dem Titel: »Über den Einfluß von Bestrah- 
lung auf Bacterium pyocyaneum (Gessard, Flügge) und 
seine Pigmente.« 


Das w. M. Hofrat A. Weichselbaum legt eine Abhand- 
lung von Prof. Dr. G. Alexander in Wien vor, betitelt: »Die 
Histologie der typischen hereditär-degenerativen 
Taubheit.« 


Alexander hatte Gelegenheit, einen Fall von typischer: 
hereditär-degenerativer Taubheit histologisch genau zu unter- 
suchen. Der Fall betrifft einen ösjährigen Mann, der außer 
der Taubheit auch an Retinitis pigmentosa litt; in der Lite- 
ratur liegen genaue Beobachtungen derartiger Fälle bisher 
nicht vor. In der Arbeit wird eine große Anzahl, bisher nicht 
bekannter histologischer Befunde des Gehörorgans mitgeteilt. 
Beide Gehörorgane ergaben annähernd gleiche Befunde. Das 
Mittelohr trägt an einigen Stellen die Zeichen gehemmter 
postembryonaler Entwicklung, indem die normalerweise un- 
mittelbar nach der Geburt einsetzende Resorption des die 
embryonalen Mittelohrräume ausfüllenden mesodermalen Ge- 
webes unvollständig erfolgt ist; infolgedessen sind reichlich 
Bindegewebsbrücken in der Trommelhöhle stehen geblieben. 
Ein Zeichen einer ähnlich gestörten postembryonalen Ent- 
wicklung zeigt auch das Trommelfell und die Membran des 
Schneckenfensters. Bemerkenswert ist das Vorkommen von 
Fettgewebe in der Nische des Schneckeniensters. Das innere 
Ohr weist zum Teil embryonalen, zum Teil infantilen Typus 
auf. Eine ganze Reihe von Veränderungen sind als Hemmungs- 
bildungen aufzufassen und andere Veränderungen direkt als 
Mißbildungen anzusprechen. Die Labyrinthkapsel hat sich nicht 
fertig entwickelt; es sind weit verzweigte Knorpelinseln be- 
stehen: geblieben und an den Gehörknöchelchen sind Exo- 
stosen nachweisbar. Die Sinneszellen im inneren Öhre fehlen, 
es sind lediglich Stützzellen zur Entwicklung gekommen, die 
sich infolge des Ausfalles der Hörzellen zu gänzlich. unregel- 
mäßigen, oft tumorähnlichen Verbänden zusammengeschlossen 
haben. An den Maculae ist ausgedehnte Lückenbildung zu 
beobachten. Im perilymphatischen Gewebe sind stellenweise 
knorpelähnliche Zellen gefunden worden. Die endolymphati- 
schen Räume sind in der Gestalt und Größe hochgradig ver- 
ändert, eingeengt oder gänzlich verödet. Labyrinth und Schnecke 


7 


sind‘ auch äußerst pigmentarm. Sämtliche Äste des Nervus: 
octavus sind atrophisch. 

Alexander bespricht eingehend die einzelnen Befunde 
in ihrer Bedeutung. für unsere Kenntnis der pathologischen 
Anatomie der kongenitalen Taubheit. In der Verwertung der- 
selben und der von ihm untersuchten früheren Fälle bespricht 
er die Gruppierung der kongenitalen Taubheit, die sich aus. 
all den Befunden entwickeln läßt. 


Das w. M. Intendant Hofrat Fr. Steindachner legt die 
folgenden »Beschreibungen neuer oder bisher wenig 
gekannter Clausiliiden (]. Teil)« von Dr. A. J. Wagner 
als vorläufige Mitteilung über die von Dr. A. Penther in 
den Jahren 1914, 1916 und 1918 in Nordalbanien gesammelten 
Mollusken vor. 


1. Alopia (Herilla) excedens dardanorum n. 


Gehäuse für eine Herilla klein, bauchig spindelförmig, 
dunkelrotbraun, glänzend und durchscheinend; von einer 
opaken Öberflächenschichte findet sich auch an der Naht 
keine Spur. Die Skulptur besteht aus deutlichen, etwas 
ungleichmäßigen Zuwachsstreifen, welche auf den: oberen 
- Umgängen in ziemlich dichte, aber stumpfe und niedrige,: 
mit dem Gehäuse gleichfärbige Rippenstreifen übergehen. Das 
Gewinde besteht aus zehn kaum gewölbten, durch eine leicht 
eingedrückte, weder berandete, noch papillierte Naht ge- 
schiedenen Umgängen; der letzte ist nach unten zu etwas 
‚verschmälert und besitzt über dem Nabelritz einen kurzen, 
‚stumpfen, durch eine seichte Furche begrenzten Basalknoten. 
Die breit eiförmige, im Gaumen rotbraune Mündung weicht 
unten wenig zurück; der abgerundet winkelige Sinulus ist 
kaum hinaufgezogen. Der kurzausgebreitete, kaum verdickte, 
"bräunliche Mundsaum ist weit getrennt und durch eine 
_Schwiele verbunden. 

Der stark reduzierte Schließapparat besteht aus einer. 
kurzen, aber deutlich: als bogenförmige Leiste erhobenen 


| 


58 


Oberlamelle, welche von der ebenfalls sehr kurzen Spiral- 
lamelle weit getrennt ist und vorne den Mundsaum nahezu 
erreicht. Die besser entwickelte Unterlamelle springt als 
wulstig verdickte Leiste nahezu bis zur Mitte der Mündung 
vor, verläuft dann schief nach abwärts und endigt allmählich 
ziemlich entfernt vom Mundsaum. 

Die niedrige Spindelfalte wird bei schiefem Einblick 
kurz sichtbar. Die kurze Prinzipalfalte beginnt zwischen 
rechter Lateral- und mittlerer Dorsalfalte und endigt entfernt 
vom Mundsaum; außerdem sind noch die sehr kurze mit der 
Prinzipalfalte divergierende obere Gaumenfalte und eine die 
Prinzipalfalte an Länge nahezu erreichende Basalfalte vor- 
handen, welche letztere auch bei senkrechtem Einblick in 
die Mündung sichtbar ist: die Mondfalte vollkommen obsolet. 

Das schmale im Verhältnisse zur Mündung zu kleine 
Clausilium ist leicht rinnenförmig gehöhlt mit schmal, aber 
tief ausgerandeter Platte, welche auf diese Weise vorne einen 
langen löffelartigen Spindellappen und einen nur halb so 
langen, aber etwas zugespitzten Außenlappen bildet. 

Sexualorgane: Der Penis erscheint im‘ vorderen Teile 
verjüngt, am Übergange in den Epiphallus verdickt, mit ein- 
armigem, ziemlich kurzem Musc. retractor und einem kleinen, 
zungenförmigen, aber deutlich entwickelten Divertikel. Das 
Divertikel des Blasenstiels von annähernd gleicher Länge wie 
dieser, aber wesentlich dünner. 


A490" D--40 mmE 
Fundort: Galica Lums, in einer Höhe von ca. 2000 m. 


Diese Höhenform zeigt trotz des Mangels einer Mond- 
jalte eine große Übereinstimmung mit Herilla excedens jabu- 


kica Bttg. aus Montenegro und Nordalbanien und gehört 


derselben Formenreihe an. Bemerkenswert ist hier der voll- 
kommene Mangel einer opaken Öberflächenschichte, 
welche Erscheinung für die Höhenformen der Gruppe Herilla 
im Baikangebiet anscheinend charakteristisch ist, während 
diese Oberflächenschichte bei den sonst so ähnlichen Formen 
der Gruppe Alopıa s. str. in Siebenbürgen gerade bei Höhen- 
formen am stärksten entwickelt erscheint. 


2. Alopia (Herilla) korabensis n. 


Gehäuse für eine Ferilla klein, keulenförmig, mit ziemlich 
stumpfer Spitze, rotbraun, durchscheinend (die vorliegenden 
Gehäuse, obwohl lebend gesammelt, auf der Oberfläche 
ziemlich stark verwittert), festschalig und matt. Die Skulptur 
besteht aus feinen und ungleichmäßigen Zuwachsstreifen, 
welche auf dem letzten Umgange nicht stärker, auf den 
oberen Umgängen jedoch in deutliche, ziemlich dichte, aber 
niedrige und stumpfe Rippenstreifen übergehen. Das Gewinde 
besteht aus 91/, bis 10 kaum gewölbten, durch eine sehr 
seichte, weder papillierte noch berandete Naht geschiedenen 
Umgängen; der letzte ist nach unten kaum. verschmälert, 
gerundet, mit einem sehr undeutlichen bis absoleten Basal- 
knoten über dem Nabelritz. Die verhältnismäßig große, breit 
eiförmige bis annähernd rhombische Mündung ist im Gaumen 
hellrotbraun mit weitem, abgerundetem, kaum hinaufgezo- 
gsenem Sinulus. Der getrennte, kurz ausgebreitete, leicht 
verdickte, etwas umgeschlagene Mundsaum wird durch einen 
ziemlich dicken Kallus verbunden. Der Schließapparat ist 
stark reduziert. Die sehr kurze und niedrige Oberlamelle fällt 
beiderseits in kurzem Bogen ab und ist von der ebenfalls 
sehr kurzen Spirallamelle weit getrennt. Die verhältnismäßig 
kräftige Oberlamelle springt winkelig bis zur -Mitte der 
Mündung vor, verläuft sodann wellenförmig gebogen schief 
nach abwärts, um ziemlich entfernt vom Mundsaum knoten- 
förmig abgesetzt zu endigen. Die Spindelfalte wird nur bei 
schiefem Einblick in die Mündung sichtbar. Die sehr kurze 
Prinzipalfalte beginnt an der Dorsallinie und endigt entfernt 
vom Mundsaum; die obere Gaumenfalte ist sehr kurz bis 
knötchenförmig und undeutlich, die Basalfalte halb so lang 
wie die Prinzipalfalte, die Nahtfalte undeutlich. Das auf- 
fallend kleine und sehr schmale Clausilium erscheint seitlich 
winkelig ausgerandet, indem nur ein deutlicher Spindellappen, 
der Außenlappen aber nur als winkeliger Vorsprung vor- 
handen ist. 


Hz=17, D=4:5 mm. 


60 


Sexualorgane: Der Penis im vorderen Teile verjüngt, 
sodann bis zum Übergang in den Epiphallus verbreitert, aber 
‘ohne erkennbares Divertikel; der Musc. retractor ziemlich 
kurz. Das Divertikel des Blasenstiels so lang wie dieser, doch 
wesentlich dünner. 

Fundort: Berg Korab, östlich vom Tale des Schwarzen 
Drin in Nordalbanien. 

Von der im Habitus ähnlichen Herilla excedens darda- 
norum n. unterscheidet sich vorstehende Höhenform durch 
ihre gedrungen keulenförmige Gestalt, die schwächere 
Skulptur, besonders aber durch den noch stärker reduzierten, 
deutlich mehr vorgerückten Schließapparat. 


3. Alopia (Herilla) illyrica miosis n. 


Das Gehäuse sehr ähnlich jenem von A. (Herilla) illyrica 
‚oribates Stur.;. der Schließapparat ist jedoch noch stärker 
reduziert, so daß die Mund-, Basal- und obere Gaumenfalte 
vollkommen obsolet sind oder nur durch niedrige, undeutliche 
Schwielen angedeutet werden, während die übrigen Lamellen 
und Falten kürzer und niedriger: erscheinen; ebenso ist das 
Clausilium kleiner, schmäler und vorne seichter ausgerandet, 

H = 25, D=6 5; mm. 

Die Sexualorgane wie bei Alopia /(Herilla) illyrica 
oribates Stur. 

Fundort: Cafa Kostit bei Rikavac (1800 m), Nordalbanien. 


4. Alopia (Herilla) illyrica diabasis n. 


Das Gehäuse durchschnittlich kleiner als jenes der 
typischen Form der A. (Herilla) illyrica Mlldf. aus dem 
"Tusinatal Montenegros mit ebenso gut entwickelter opaker 
Oberflächenschichte; der Schließapparat erscheint aber deutlich 
abgeschwächt, und zwar sind die Lamellen der Mündungs- 
‘wand kürzer und niedriger, so daß die Oberlamelle sowohl 
"vorne den Muündsaum, als hinten die Spirallamelle nicht 
erreicht, ebenso ist die Spindelfalte bei senkrechtem Einblick 
in die Mündung nicht sichtbar; auch die Gaumenfalten sind 
konstant kürzer, doch wird die Basalfalte in der Mündung 


61 


noch sichtbar; ebenso erscheint die Saturalfalte wohl schwächer, 
ist aber konstant vorhanden. Die übrigen Verhältnisse wie 
bei der typischen Form. 

H = 21—27, D=5'5—7 mm. 

Fundort: Galica Lums (in einer Höhe von zirka 1800 m), 
Nordalbanien. | 

Vorstehende Form stellt einen Übergang vom historischen 
Typus der FH. illyrica Mlldf. aus Montenegro zur Forma 


‘oribates Stur. dar und unterscheidet sich von letztgenannter 


Form durch ihre schlankere, weniger gedrungene Gestalt mit 
besser entwickelter opaker Oberflächenschichte, den wesentlich 
besser entwickelten Schließapparat, indem hier die Basalfalte 
länger, die Nahtfalte konstant vorhanden, das Clausilium vorne 
tiefer ausgerandet ist. 

Gehäuse von’ der Spitze des Galica Lums (2400 m) 
erscheinen wohl kleiner und schlanker, doch ist der Schließ- 
apparat nicht wesentlich abgeschwächt, nur das Clausilium 
wird kleiner, schmäler und vorne seichter ausgerandet. 


5. Alopia (Herilla) ziegleri rascana n. 


Die Gehäuse werden durchschnittlich größer und schlanker; 
von den 11 bis 12 Umgängen sind die oberen deutlich und 
scharf, aber ungleichmäßig rippenstreifig, die mittleren nur 
gestreift, der letzte rippenstreifig bis dicht und gleichmäßig 
gerippt. Der bräunliche Mundsaum ist ringsum gelöst, kurz 
vorgezogen, etwas lippenartig verdickt und umgeschlagen. 
Der kräftiger entwickelte Schließapparat besitzt eine bis zum 
Mundsaum verlängerte, in der Mitte kammartig erhobene, 
dann allmählich abfallende Basalfalte; die-obere Gaumenfalte 
ist kurz, aber konstant auch im vorderen Ast entwickelt und 


mit der Mondfalte verschmolzen. Die übrigen Verhältnisse 


wie bei der typischen Form aus der Hercegovina. 
HZ=28 D= 6 mm: 
Fundort: Raskaquelle bei Novipazar. 
6. Alopia (Herilla) bosniensis ibarensis n. 


-Der kräftig entwickelte Schließapparat- weist: konstant 


eine lange, mit der Mondfalte verbundene obere Gaumenfalte 


62 


auf; die übrigen Verhältnisse wie bei der typischen Form 
aus Kroatien und Nordwestalbanien. 
A926, Dz=HmMm. 
Fundort: RoZaj (zirka 1000 m) am Ibar. 
Diese Form erscheint durch ıhre immerhin auffallende 
Übereinstimmung mit der typischen Form bemerkenswert, da 
die bisher bekannt gewordenen Fundorte beider Formen von- 


einander durch weite Gebiete getrennt werden, in welchen, 


wohl zahlreiche, aber vollkommen abweichende Arten dieser 
Gruppe nachgewiesen wurden. 


7. Alopia (Herilla) bosniensis reducta n. 


Das Gehäuse durchschnittlich kleiner als jenes der typischen 
Form aus Kroatien mit auffallend reduziertem Schließapparat. 
Die Lamellen und Falten der Mündung werden viel niedriger 
und kürzer, die Mondfalte bleibt rudimentär und ist nur im 
unteren mit der Basalfalte. verschmolzenen Teile als kurzer 
Fortsatz derselben entwickelt oder wird obsolet; die obere, 
ebenso die Basalfalte erscheinen mitunter auf undeutliche 
Knötchen reduziert. Das Clausilium ist auffallend schmal 
und klein. 

H= 21—22, D= 5-6 mm. 

Fundort: Die Vrlofska Spilja in Südkroatien (aus meiner 
Sammlung). 


8. Alopia (Herilla) sandrii K. 


Clausilia sandrii K. Mon. Claus., p. 28, Taf. 2, Fig. 20— 22. 

Clausilia sandrii Rm., Icon. 1, p, 3, Nr. 873 (part.) 

Vorstehende Art war bisher in den Sammlungen nur 
durch wenige Exemplare vertreten, welche durchwegs in den 
Anschwemmungen des Meeres an der süddalmatinischen Küste 
gesammelt wurden. Dr. Penther gelang es endlich auch, ein 
lebendes Exemplar auf dem 1980 m hohen Berge Bastrik 
(Pashtrik) zu finden, während die Herren Prof. Dr. R. Ebner 
und Prof. Dr. H. Karny die Art ebenfalls frisch in Mamuras 
(zwischen Alessio und Durazzo gelegen) aufsammelten. Durch 
diese mir zugeschickten Exemplare wurde gleichzeitig Ge- 
legenheit geboten, die systematische Stellung dieser bemerkens- 


63. 


werten Art auch durch die Untersuchung der Weichteile fest- 
zustellen. W. v. Vjest hat die Gruppe Triloba ursprünglich nur 
für vorstehende Art wegen des auffallend dreilappigen Clau- 
siliums errichtet; dieses Clausilium scheint jedoch kein anderer 
Forscher vor und nach v. Vest mehr gesehen zu haben 
(Rossmässler bildet in einer Textfigur zu Nr. 873 der Ikono- 
graphie das Clausilium irgend einer Herilla-Form (vielleicht 
der H. dacica Pfr. ab; trotzdem wurde die Gruppenbezeichnung 
beibehalten und sogar auf Cl. macedonica Rm. ausgedehnt, 
obwohl diese Art, abgesehen von anderen Unterschieden, auch 
ein vollkommen abweichendes Clausilium aufweist. Später hat 
Sturany in Nordalbanien eine der Cl. sandrii K. sehr ähnliche 
Art, Ol. thaumasia Stur. nachgewiesen; das Clausilium dieser 
Cl. thaumasia Stur. ist jenem der (J. sandrii K. nach meiner 
Auffassung sehr ähnlich, trotzdem aber nur zweilappig, weil 
eben der mittlere Lappen absolet wurde. Die Beschaffenheit 
des Clausiliums ist, wie ich bereits an anderen Orten ausge- 
führt habe, sehr veränderlich und dementsprechend für den 
Systematiker von untergeordneter Bedeutung. So erwies sich 
auch die Bezeichnung Triloba im vorliegenden Falle eben 
nur für eine Art, aber absolut für keine Gruppe als zutreffend; 
außerdem auch als überflüssig, da die übrigen Merkmale des 
Gehäuses auffallend den Verhältnissen bei der Gruppe Clausilia 
ex. rect. mea (Syn. mit Clausiliastra Mlldff.) entsprechen. 
In der Abhandlung Ȇber schalentragende Landmollusken 
aus Albanien etc.« von Dr. R. Sturany und Dr. A. J. Wagner 
(Denkschriften der Akademie der Wissenschaften, Wien, 1914) 
haben wir die Bezeichnung Triloba auch nur als Subgenus 
bei Clausilia Drap. angeführt. Die anatomische Untersuchung 
ergab nun den überraschenden Befund, daß der Penis bei 
Cl. sandrii Ka ein gut entwickeltes schlauchförmiges Divertikel, 
die Radula eine einspitzige Mittelplatte aufweist, also Ver- 
hältnisse, wie sie für die Genera Alopia Ad. und AlbinariaV est 
charakteristisch sind. Unter den Aufsammlungen Dr. Penther’s 
in Nordalbanien fanden sich ferner zwei neue Höhenformen 
der Gruppe Herilla Bttg., welche bei einem stark reduzierten 
Schließapparat ohne Mondfalte keine Spur einer opaken Ober- 
flächenschichte aufweisen (Alopia [Herilla] excedens dar- 


Anzeiger Nr. 4. 7 


64 


damnorum n. und Alopia [Herilla] korabensis n.) und so einen 
Übergang zu Cl. sandrii K. auch mit Rücksicht auf die Ver- 
hältnisse des Gehäuses vermitteln. 

Clausilia sandrii K. ist eine Höhenform der Gruppe 
Herilla Bttg. und es erscheint die Gruppenbezeichnung 
Triloba, welche sich nur auf ein untergeordnetes Merkmal 
einer einzigen Form stützt, vollkommen überflüssige. 

Die von den genannten Herren auf dem Bastrik (Pashtrik), 
respektive in Mamuras gefundenen Exemplare der A. (Herilla) 
sandriüi K. weisen etwas geringere Dimensionen, zum Teile 
auch eine schwächere Rippenstreifung der mittleren Umgänge 
auf; die Färbung des Gehäuses ist dunkelrotbraun, des Mund- 
saums weißlich oder rötlichbraun. des Gaumens rotbraun mit 
karminrotem oder bläulichem Stich. Von einer opaken Ober- 
flächenschichte ist keine Spur vorhanden und halte ich die 
stellenweise weißfädige Naht für einen Verwitterungsprozeß. 
Am Schließapparate finden wir zwischen der .oberen und 
mittleren Gaumenfalte bei der Hälfte der untersuchten Exem- 
plare noch ein bis drei kurze Fältchen eingeschoben, wie 
dies besonders bei ostasiatischen Clausiliiden als Vorstufe der 
Mondfaltenbildung beobachtet wird. Das Clausilium ist wie bei 
den angeschwemmten Exemplaren ausgesprochen dreilappig. 

Dimensionen: 7 = 27, D = 7 mm (angeschwemmtes 
Exemplar von Lacrroma). 

Dimensionen: 7 = 22, D=5'3 mm (von Mamuras in Al- 
banien). 

Prof. ©. Boettger beschrieb in der Abhandlung von 
Otto Wohlberedt »Zur Fauna Montenegros und Nordalbaniens, 
Wien, 1909« eine neue Art der Gruppe Triloba aus Monte- 
negro als 7. tertia Bttg., welche nur die Dimensionen 7 = 20, 
D=5mm erreicht; erwähnt das so charakteristische Clau- 
silium nicht, betont aber die Schwierigkeit, seine neue Art 
von der Zaminata-Gruppe zu unterscheiden. Entweder haben 
die beschriebenen Exemplare kein Clausilium besessen, welches 
ja von der Mündung aus gut beobachtet werden kann, oder 
dieselben stellen eine gedrungene Höhenform der Cl. laminata 
Mont. dar, welche in Montenegro und Nordalbanien häufig 
vorkommt; für alle Fälle erscheint mir Triloba tertia Bttg. 
derzeit noch sehr zweifelhaft. 


65 


Selbständige Werke oder neue der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: - 


Kögel, P. R.: Die Konstitution organischer Farbstoffe und 
ihre Lichtempfindlichkeit unter dem Einfluß von Anethol 
und anderer Sensibilisatoren (Separatabdruck aus » Photo- 
graphische Korrespondenz«, Juli und August 1918, Nr. 694 
und 695 der ganzen Folge). Wien, 1918; 8°. 

— Über die photolytischen und photodynamischen Wirkungen 
eines «-Furo-ß-diazols (Sonderabdruck aus » Biochemische 
- Zeitschrift«, Band 89, 3. und 4. Heft). Berlin, 1918; 8°. 


Aus der Staatsdruckerei in Wien. 


ii 1ab, ausı abo 3 {ar 
16183 ti, brrie‘ eaikohsd suomi 
net Hahdeltiszho donntten ai sie 73 62 
| “ Hain anal 'yafgetatetbi 31 se 
‚stolselltdtenee BODEN ler 0: 
atane ug 
IST 5% CEOR km 


3 


‚bau 
witsah fi 


ut 


or, alaanib- ‚ges a 


15 Dani tun 


Far 
Fr = 


a RR 
‚don SragTas 4 Nördalt | 
a Trtlobar ins 
ut ai ühnenston ua 
so er. akıe 


” 
51 


E, pri j 


Fr 


a, 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr. 5 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 13. Februar 1919 


Der Vorsitzende, Hofrat F. Steindachner, heißt das neu 
eintretende wirkliche Mitglied Prof. Dr. Wilhelm Schlenk 
auf herzlichste willkommen. 


Das k.M. Hofrat M. Holl in Graz übersendet folgende 
Arbeit: »Vergleichende Anatomie der hinteren Fläche 
des Mittelstückes der Unterkiefer.« 


An der inneren Knochentafel des Unterkieferkörpers des 
Neugebornen ist ein System von Versteifungen bemerkbar, 
welche als Torus transversus superior und inferior an der 
Hinterfläche des Mittelstückes des Unterkiefers ein rhomboi- 
dales Feld begrenzen, welches die Area genioglossi, die Area 
geniohyoidei und die Fossa sublingualis einschließt. 

Die Linea mylohyoidea setzt sich ursprünglich in den 
Torus transversus superior fort, kann aber die Verbindung 
verlieren und sich in den Torus transversus inferior fort- 
setzen, als dessen sogenanntes oberes Wurzelstück erscheinend. 

Der basale Unterkieferrand verläuft als Grenze zwischen 
lingualer und labialer Fläche des Unterkiefers zur Symphyse 
und endet beim Tuberculum mentale. Auf der lingualen Seite 
des Unterkieferkörpers beginnt beiläufig bei seiner Mitte ein 
Wulst, der parallel dem basalen Rande zieht und in den 


8 


65 


Torus transversus inferior übergeht; der Wulst ist das untere 
Wurzelstück des Torus transversus inferior. Zwischen diesem 
und dem basalen Rande des Unterkiefers zieht der Sulcus 
digastricus, der sich medialwärts zur Fossa digastrica er- 
weitert. Mit der Reduktion des lateralen Anteiles des ursprüng- 
lich diaphragmaartig ausgebreiteten vorderen Bauches des 
M. digastricus wird der Sulcus digastricus reduziert und es 
bleibt nur die Fossa digastrica übrig. Gelegentlich wird beim 
Erwachsenen ein Sulcus digastricus angetroffen. Die oberen 
Kinnknöchelchen werden zwischen den medialen Enden des 
Torus transversus inferior jeder Unterkieferhälfte gleichsam 
eingemauert, die unteren Kinnknöchelchen zwischen den 
medialen Enden der basalen Ränder beider Unterkieferhälften, 
wodurch es zur Bildung des Trigonum basale (Toldt) kommt. 
Zwischen den Ursprungsschenkeln der Tori transversi liegt 
ein nach hinten offenes Feld, die Fossa triangularis s. sub- 
maxillaris. Das System der Versteifungen ist auch beim Er- 
wachsenen vorhanden; der 'Torus transversus superior kann 
scheinbar verschwinden, der Torus transversus inferior ist 
meist deutlich vorhanden. 

Ein Vergleich der hinteren Seite des Mittelstückes der 
Unterkiefer der Anthropoiden und anderen Affen mit der des 
menschlichen Unterkiefers ergibt, daß fast ‚bei allen Affen im 
wesentlichen dieselben Bildungen wie beim Menschen beob- 
achtet werden können; die Unterschiede, die sich bemerkbar 
machen, hängen mit den allgemeinen verschiedenen Form- 
verhältnissen zusammen. Besondere Beachtung verdient der 
Torus transversus inferior. 

Auf der Unterseite des Mittelstückes des Unterkiefers 
ergeben sich zwischen Menschen und Affen (einschließlich 
der Anthropoiden) wesentliche Verschiedenheiten, andrerseits 
aber wesentliche Übereinstimmungen. Beim Cynocephalus, beim 
Inuus und beim Gorilla bildet der Torus transversus inferior nur 
die scheinbare hintere Begrenzung des Mittelstückes des 
Unterkiefers; die wahre Begrenzung bilden wie beim Menschen 
die medialwärts umgebogenen vorderen Enden der basalen 
Ränder der Unterkieferhälften. Diese begrenzen wie beim 
Menschen mit dem Torus transversus inferior den Sulcus 


69 


digastricus, dessen vorderes Ende meist zur Fovea digastrica 
erweitert ist; Terus und Sulcus digastricus gehören wie 
beim Menschen zur lingualen Fläche des Unterkiefers. Beim 
Orang ist der Torus transversus inferior nur schwach aus- 
gebildet und zeigt nur die Insertionen der M. geniohyoidei 
deutlich; der übrige Teil ist reduziert. Mit dem Fehlen des 
vorderen Bauches des M. digastricus fehlt auch der Sulcus 
digastricus und die Fovea digastrica. Der zuweitest nach hinten 
vorspringende Teil des Mittelstückes des Unterkiefers ist beim 
Orang der reduzierte Torus transversus inferior, der aber 
wieder nur scheinbar die hintere Grenze bildet, da diese, wie 
beim Cynocephalus, Inuus und Gorilla von den medialen 
Enden der basalen Uhnterkieferränder hergestellt wird. Beim 
jungen Orang fließt der kaum entwickelte Torus transversus 
inferior mit den medialen Enden der basalen Ränder zusammen; 
dasselbe findet gelegentlich bei manchen Cercopitheciden und 
Semnopitheciden statt, welchen ein Sulcus digastricus fehlen 
kann. 

Die größte Ähnlichkeit weisen der untere Rand des Mittel- 
stückes des Unterkiefers vom Menschen und jugendlichen Schim- 
pansen auf. Dieser hat jederseits eine Fovea digastrica, zwischen 
welchen die Andeutung des nur beim Menschen vorkommenden 
Trigonum basale (Toldt) vorhanden ist; es fehlt dem jugend- 
lichen Schimpansen aber vollständig das beim Menschen vor 
dem Trigonum basale gelegene »quere Knochenfeld« (Toldt). 
Beim jugendlichen Schimpansen sind Ansätze zu einem 
»Kinne« vorhanden. 

Bei einer vergleichenden Betrachtung der Unterkiefer 
des Menschen und der Anthropoiden in der Ansicht der Kiefer 
von unten her, ist zunächst immer darauf zu achten, was 
zur lingualen, was zur labialen Seite der Kiefer gehört. 
Beim Menschen und den Anthropoiden gehört alles, was 
innerhalb der basalen Ränder beider Unterkieferhälften sich 
vorfindet, der lingualen Fläche des Unterkiefers an. 


Das w. M. Intendant Hofrat Fr. Steindachner legt die 
folgenden »Beschreibungen neuer oder bisher wenig 
gekannter Clausiliiden (ll. Teil)« von Dr. A. J. Wagner 
als vorläufige Mitteilung über die von Dr. A. Penther in den 
Jahren 1914, 1916 und 1918 in Nordalbanien gesammelten 
Mollusken vor. 


9. Delima pentheri n. 


Das Gehäuse ähnlich jenem von Delima platystoma K; ' 
spindelförmig, wenig durchscheinend, matt, rotbraun, mit 
grauem Anflug (Verwitterungsmodus?), welcher mitunter stärker 
entwickeit ist und dem Gehäuse ein mattes, aschfarbenes 
Aussehen verleiht. Die Skulptur besteht aus ziemlich dichten, 
wenig schiefen, überall gleichmäßigen, dünnen und scharfen 
Rippchen, welche mit dem Gehäuse gleichfärbig sind und auf 
den unteren Umgängen allmählich etwas weitläufiger, aber 
nicht schwächer werden; am letzten Umgange erscheinen 
einzelne Rippchen gegen die Naht zu gabelspaltig. Das Ge- 
winde besteht aus zehn schwach gewölbten, durch eine 
deutlich eingedrückte, aber weder fadenrandige, noch papillierte 
Naht geschiedenen Umgängen; der letzte ist nach unten zu 
etwas verschmälert, am Nacken gleichmäßig gerundet. Die 
eiförmige, im Gaumen gelbbraune Mündung mit abgerundetem, 
kaum hinaufgezogenem Sinulus steht etwas schief zur Ge- 
häuseachse, so daß der Sinulus etwas nach außen gedreht 
erscheint. Der gelblichbraune Mundsaum ist ringsum gelöst 
und kurz vorgezogen, ziemlich breit umgeschlagen und deutlich 
lippenartig verdickt. Der Schließapparat ist ähnlich wie bei 
D. platystoma K. gut entwickelt; die Lamellen und Falten 
stellen scharfe, deutlich erhobene Leisten dar. Die Oberlamelle 
fällt vorn im kurzen Bogen ab, erreicht den Mundsaum nicht, 
erscheint aber hinten über das vordere Ende der langen 
Spirallamelle hinaus verlängert. Die Unterlamelle springt in 
scharfem Winkel bis zur Mitte der Mündung vor und ver- 
läuft dann schräg nach abwärts, ohne den Mundsaum zu 
erreichen. Die Prinzipalfalte beginnt hinter der rechten Lateral- 
linie und endigt ziemlich entfernt vom Mundsaum; die obere 
Gaumenfalte ist nur im hinteren, mit der Mondfalte ver- 


zu 


schmolzenen, Aste entwickelt, die Basalfalte jedoch in einem 
kurzen vorderen und einem längeren hinteren Aste, welche 
miteinander einen nach unten offenen stumpfen Winkel bilden 
und mit der Mondfalte verschmolzen sind; eine die obere 
und die Basalfalte verbindende, hinter der mittleren Dorsal- 
linie gelegene, schiefe Leiste bildet die Mondfalte, welche in 
Verbindung mit den Gaumenfalten annähernd halbkreisförmig 
durchscheint. Die Spindelfalie tritt deutlich hinter der Unter- 
lamelle vor und ist auch bei senkrechtem Einblicke in die 
Mündung sichtbar; das Clausilium mit rinnenförmig gehöhlter, 
vorn zugespitzter Platte. 

H=16, D=3:.5mm. 

Sexualorgane: Der am vorderen Ende stark verjüngte 
Penis erscheint vor dem Übergange in den Epiphallus nahezu 
zwiebelförmig verdickt und besitzt kein Divertikel, aber einen 
mittellangen, einarmigen Musc. retractor. Das Divertikel des 
Blasenstiels ist annähernd gleich lang und wenig dünner als 
dieser. Im übrigen liegen die Verhältnisse wie bei dem Genus 
Delima Vest. 

Fundort: Berg Pashtrik (1980 ») in Nordalbanien. 

Diese neue Art gehört zum Formenkreise der Delima 
platystoma K. und invalida Bttg. und unterscheidet sich von 
beiden durch die scharfen und erhobenen Rippchen, den 
Mangel der Strichelung sowie die wesentlich abweichenden 
Verhältnisse des Schließapparates. 


10. Delima platystoma hypermegala n. 


Das Gehäuse viel größer, bauchiger, spindelförmig mit 
11 Umgängen und tiefer liegendem Schließapparat. 

H= 22, D= 6 mm. 

Fundort: Bicaj südlich von Kula-Lums in Nordalbanien 
in einer Seehöhe von 300 bis 400 1m. 


11. Delima laxa perstriata n. 


Das Gehäuse sehr ähnlich wie bei Delima laxa wohlbredti 
Mildf. aus Montenegro; die Rippenstreifen des Nackens jedoch 
kräftiger, der Schließapparat deutlich reduziert und durch 
nachstehende Merkmale unterschieden. Die Ober- und Unter- 


lamelle sind niedriger, die letztere springt kaum in der 
Mündung vor und ist bei senkrechtem Einblick in die Mündung 
kaum sichtbar. Die Spindelfalte wird auch bei schiefem Ein- 
blick in die Mündung nicht sichtbar; die Mondfalte liegt etwas 
vor der rechten Laterallinie. Die Prinzipalfalte ist mittellang, 
die obere Gaumenfalte kurz, die Basalfalte sehr kurz und 
auch bei schiefem Einblick in die Mündung nicht sichtbar. 
H=.22,D=bo Mm: 


Fundort: Galicnik in Altserbien; aus meiner Sammlung. 


12. Clausilia triloba liburnica n. 


Das Gehäuse durchschnittlich schlanker, mit rascher zu- 
nehmenden Umgängen und dunkler gelbbraun gefärbt als 
jenes der Olansilia laminata triloba Bttg. aus der Umgebung 
von Triest (Doline Pertidol); die Oberfläche feiner und 
schwächer gestreift, zumeist lebhaft glänzend. Die verhältnis- 
mäßig kleinere und schmälere Mündung mit dickerem, häufig 
verbundenem Mundsaum. Der besser entwiekelte Schließ- 
apparat mit längeren und höheren Gaumenfalten, sowie einem 
kräftigen, milchweißen Gaumenkallus, welchen die Basalfalte 
zumeist in der Weise durchbricht, daß er beiderseits derselben 
streifenartig erlischt, dann aber ober- und unterhalb der 
Basalfalte faltenartig in den Gaumen verlängert erscheint. Die 
übrigen Verhältnisse wie bei der typischen Form; ins- 
besonders endet die Unterlamelle vorne scharf abgestutzt und 
das Clausilium erscheint dadurch, daß der Spindellappen eben- 
falls vorne ausgerandet ist, charakteristisch dreilappig. 

H=14 D=35 mm von Lakat Vele2, Herzegowina, 

H=13, D=3 mm Visolica im Südvelebit, 

H=10, D=2 mm Gralac'in Südkroatien, 

H=—15, D=4 mm (Celebiö-Ljubiöna, Bosnien, 

H=19, D=45 mm  Svica bei Otocae. 

Sexualorgane: die typischen Verhältnisse des Genus 
Clausilia Drap. ohne bemerkenswerte artliche Unterschiede. 

Verbreitungsgebiet: Südkroatien, Bosnien, Westserbien, 
Herzegowina und Montenegro. 

Langjährige Beobachtung hat mich überzeugt, daß Clau- 
silia (laminata) triloba Bttg. trotz habitueller Ähnlichkeit 


und schwankender Unterschiede nicht zur Formenreihe der 
CI. Jaminata Mtg. gehört, da beide Arten ohne Übergänge 
nebeneinander vorkommen; andererseits finde ich, daß Clau- 
silia triloba Bttg. besonders mit Rücksicht auf das hier sehr 
charakteristische, wenngleich starken individuellen Schwan- 
kungen ausgesetzte .Clausilium, die Verhältnisse des so auf- 
fallenden milchweißen Gaumenkallus eine wesentliche Über- 
einstimmung mit Cl. comensis Shttl., Cl. orthostoma Menke, 
Cl. transsilvanica Bielz., Cl. parreyssi Rm. aufweist und mit 
diesen einen eigentümlichen Formenkreis darstellt. Überall 
wo diese Formen neben (/. lJaminata Mont. auftreten, sind 
dieselben trotz geringer und eigentlich schwer zu definierender 
Merkmale doch sicher von dieser zu trennen. 


13. Alinda biplicata metriotes n. 


Das Gehäuse durchschnittlich kleiner als bei Alinda 
biplicata enpleuris Mildff. aus Montenegro mit mehr ge- 
drungenem Gewinde und stark reduziertem Schließapparat; 
die Lamellen und Falten der Mündung sind niedriger und 
kürzer, die Mondfalte vielfach vollkommen obsolet, das Clau- 
silium verhältnismäßig klein und schmal. 

H= 14—15, D=3°5 mm. 

Fundorte: Rozaj und die oberen Höhenlagen des Berges 
Zljeb (1700 — 1900 m) in Nordalbanien. 

Alinda biplicata metriotes n. stellt anscheinend die 
Höhenform der in den Talregionen von Montenegro und 
Nordalbanien allgemein verbreiteten Alinda biplicata eu- 
pleuris Mildff. dar. 


14. Uncinaria roschitzi apragmosyne n. 


Das Gehäuse wesentlich größer und schlanker als der 
historische Typus aus den Gebirgen Bosniens; das Gewinde 
besteht aus 11—13 rascher zunehmenden, weniger gewölbten 
Umgängen, welche kräftiger und weitläufiger gerippt er- 
scheinen; der Basalkiel schärfer und deutlicher begrenzt. 

FI DEU mm. 

Fundort: die Lokalität VermoSa im VermosSatal bei Gusinje 
in einer Höhe von 1000 — 1200 m, Nordalbanien. 


74 


Selbständige Werke oder neue, der Akademie bisher nicht 
: zugekommene Periodica sind eingelangt: 


Meißner, ÖO.: Isostatische Reduktion von 34 Stationen, aus- 
geführt im Geodätischen Institut von Dr. E. Hübner} 
und O. Meißner, bearbeitet von O. Meißner (Abdruck 
aus den Astr. Nachr., Nr. 4967; Band 207, November 


1918). Kiel, 1918; 40. 


Aus der Staatsdruckerei in Wien. 
S 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr. 6 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 20. Februar 1919 


u nn 


Das w. M. Hofrat L. v. Pfaundler dankt für die ihm zu 
seinem S0. Geburtstage von der Akademie ausgesprochenen 
Glückwünsche. 


Dr. Hermann v. Schrötter übersendet Separatabdrücke 
von neun von ihm in dem Werke: »Tagebuchblätter einer 
Jagdreise weiland des Prinzen Georg Wilhelm, Herzog zu 
Braunschweig und Lüneburg, von Khartoum an den Oberen 
Nil« veröffentlichten Arbeiten über das Niltal und den Sudan. 


Das k. M. Prof. Ph. Furtwängler übersendet zwei Ab- 
handlungen, betitelt: 


l. »Über die Führer von Zahlringens; 
2. »Über die Ringklassenkörper für imaginäre qua. 
dratische Körper (1. Mitteilung).« 


Dr. Hans W. Pollak übersendet eine Abhandlung: 
»52. Mitteilung der Phonogrammarchivs-Kommission 
der Akademie der Wissenschaften in Wien. Phoneti 
sche Untersuchungen. Il. Akzent und Aktionsart.« 


A. 


D. 


Die Akademie der Wissenschaften hat in ihrer Gesamt- 
sitzung am 30. Jänner 1919 folgende Subventionen bewilligt: 


aus der Erbschaft Strohmayer: 


I 


2 
OÖ. 


Dr. Eleonore Brecher in Wien zum Abschluß ihrer 
Untersuchungen über die Färbung der Schmetterlings- 
DUPPEeN 2 N Sn ee K 1400 ° — 
Prof. F. Vierhapper in Wien für die Bearbeitung der 


‚Plora- der Altselalsteta. Mana Be a K 1500: — 


. aussem Legate Scholz: 


Dr. Fritz Knoll in Wien für Untersuchungen über 
Wechselbeziehungen zwischen Blumen und Insekten, 
für Ausführung von Zeichnungen und Photographien 
für bdiel/Reproduktiom un! 22. „A.isH0R}: »..K 1000: — 
Prof. R. Kremann in Graz für Untersuchungen über 
Energieänderungen binärer Gemische durch Unter- 
suchung der Absorptionsspektren ..... RK B000E 


. aus der Ponti-Widmung: 


Prof. A. Pascher in Prag für Studien über die Stämme 
des Pflanzenreiches niederer Pflanzenformen unter be- 
sonderer Berücksichtung der Geschlechtsverhältnisse 
dern Allee u U EN ee K 1000: — 


aus dem Legate Wedl: 


D. 


Dr. L. Hofbauer in Wien für Versuche; zur, Lösung 
der Fragen über den Einfluß von Änderung des Atem- 
weges und experimenteller Störungen vonseiten der 
Atemmuskulatur auf die Atemfunktion und ‘die Atem- 
Organe... :UBRRTEISEIEASKERDATNIE. AN DE K 500° — 
w. M. Hofrat Karl Toldt in Wien für die Fertigstellung 
des Mänuskriptes zu seinen Untersuchungen der 
menschlichen Übeıreste aus den altägyptischen Gräber- 
telderni von (El:Kubaiehtand. 12. BeHie K 300° — 


1919 Neal 


Monatliche Mitteilungen 


Zentralanstalt für Meteorologie und Geodynamik 


Wien. Hohe Warte 


4814-9" N-Br., 16°%°21°7'\ E v. Gr, Sechöhe 2025 m 


Zeitangaben, wo nicht anders angemerkt, in mittlerer Ortszeit; Stundenzählung bis 24, 
beginnend von Mitternacht = Oh, 


Jänner 1919 


SQ 
6) 


Beobachtungen an der Zentralanstalt für Meteorologie 


48° 14°9' N-Breite. im Monate 

Luftdruck in Millimetern Temperatur in Celsiusgraden 
Tag : i g Abwei- % ner j Abwei- 
Tages-|chungv. Tages- Ichungv. 

h h h t t 9ıh 

i 2 21° | mittelt Normal- er er 2 mittel 2 |Normal- 
ni, = NE N RER stand | RR. 3; stand 
1720.07. 743200 7An.3 74298 1,85] 4.0 6.0 4.6 4.9 128 
2 1 42.9 21.05 “Bl6 I HB Isla. 1.8 ur2 2,4| Bis 59 
3 | 43.8 42.9 40.6 | 42.4 |— 3.5 0.4 1.5 1.2 | 1.0 3.6 
432,3. Borg on ı 30.4 |-15.5 2.7 1.8 6.3) 5.6 8.2 
5.125.%° 2 727.086 728 9.5 8.5| 8.4 11.4 
8.1 .81.2- 8119 3a 1B2 un 13:59 6.6 IE 1169 10.4| 13.2 
7 | 83.7, 33.1.2822 028.8) 328 1.8 10,2 9,6 9.2 123 
8. 37.9, 3849.2139.9 71.88.46 4,705 4.6 8.5 5.7| 6.3 9.2 
8.1 41.9: 49.4. Au. 7a Aare 9 DR 6.0 3.8 4.2 Tun! 
10 143.3 44.0 44.6 |'44.0 |— 2.1 4.1 5.5 4.8 4.8 7.6 
DL | 42.6. A mr da ars I 3.4 4.5 5.8 4.8| 540 ra; 
127.1.41:9 40.5: 40.6 |. 2020.) 15.32 2.5 5.2 08| 3,8 5.4 
13 | 42.0 43.0 7eso am aa 0.2 0.0| — 0.3 2.8 
1A’ |’47.6 48.4.5502, A8tZ21 20945 0.8 0.0 0.11 — 0.2 2.2 
15 | 51.2. 50.5. 48.9 |'50.2 #.4.0 1.5 021 1,4) — 0.1 2.8 
is. 45.7 ass 7 as 0a 1.9 1.8 {.3| Ze 
17 | 42.2 40.2 "40.6 | 41.0 | 5.2 0.1 DB 0.8 2 
18.140.383. 39.4.1350, 74 2 3SB30 BA 0.6 1.0 1.4 1.0 2.9 
19.|40.5 42,3 44.2 | 42.3 |= 3.9 1.6 2.4 8 1.9 3.7 
20 | 44.9 45.1 45.6 | 45.2 |— 1.0 a! 2.5 1.4 7 3.4 
21 144.8 - 45.9 Aura ba DT 0.8 1.6 0.6 1.0 BR 
23.1 46.7 WB-4 7808 Aero 0.9 08:=:0.6, 0 1.0 
23 49.150397 75885 ) N 51929 =Fu521 1.6 LO De U 5 a 1 0.3 
24 | 55.8 56.0 56.1 | 56.0 |+ 9.9 4.8 2381 2.6 <a. le 
25 550. 53.5. 0- 52: 14 53r on Hr 3.0 2.2.2. 2.8 = 2 ul 
26 48.4. 45.7 45.0 | 46.4 I+-.0.3 Dre 0.0 0.1 — 1.0 0.4 
27.141.909 39.5 38:91 4041 1.0.0 07 0.6 0.0 — 0.4 1.0 
3.20 |RSS ee! 0.1 0.3 0.2 0.1 1.4 
29. 1738-2 40:7" Als DM 40, 59 02 2.3: = .4.0| —: 2, Qu 
Bu Aa 45.1 45.6 A880 5.9 4.9 — 6.31 — Aa 
31 46.0): 4519 446 39) Mb Nas 7.6 4.9 4/8) Ber 
Mittel 742.57 742.49 743.17|742.74| —3.35 0.8 2.4 1.6 1.61 883.7 


Höchster Luftdruck : 756.1 mm am 24. 


Tiefster Luftdruck: 


725.2 mm am). 


Höchste Temperatur: 13.2° C am 6. 


Niederste Temperatur: — 7.7° C am3i 


Temperaturmittel: 1.6° C. 


11,,(7,2,9. 
21,,(7,2,9, 9. 


und Geodynamik, Wien XIX., Hohe Warte (202:5 Meter), 


Jänner 1919. LE Bären Voenir 
Temperatur in Celsiusgraden | Dampfdruck in mm Feuchtigkeit in Prozenten 
Schwarz- Dlank- | Aus- | n n 
4 f eali Kneajt | Sträh- ”} 1 ii ages-| „7, N BEN ages- 
Max. Min. | kugelt kugel se © 14 21 mittel Zu tu 2 a 
| Max. Nax, | Min. | 
| 
6.0 3.01 13 Ss I— 1 5.4 8.9 5.2 5.4 SS 1 781483 83 
4.8 1.21 14 71— 3| 4.5 5.0 5.1 4.9 Sram 827 IA 33 
186 Oral 7\— 3| 4.5 5.1 4.8 4.8 TER 97 
8.3 1221.16 1121| 580 6.3 5) 5.9 98780 8 87 
10.0 6.0) ,24 15 0 5.4 6.0 6.1 5.8 le NOS EA 71 
13.2 6.01,482 19 2| 6.0 7 6.7 6.6 3 66 al 
13.0 6.81.19 15 2| 6.8 6.6 6.2 6.5 sehr TIrLRE9 75 
I 8.8 4.11 29 15 0| 5.6 6.1 6.2 6.0 se; 74 1,90 Ss4 
6.1 2,3121 ., Kluls-, 210,.5.2 6.0 3.6 5.6 94 86 94 91 
547 ER) 6 I— 4 5.6 5.8 59 9.9 Ol 78 885 85 
5.8 3.2 10 7 |- 2| 5.6 5.2 Se 5.8 837 79780 si 
RL, = 0.8 By. „15 ll 4.6 4.5 4.3 4.5 Sa 168 290 sı 
0.7 — 1.6| 15 8.— 61 4.1 4,4 4.5 4.3 8.1996 7298 97 
0.2 — 0.9 4 1jJ— 2) 4.2 4,4 4.5 4.4 ge 965,398 97 
105.7 —2,.01,,.2 1 I— 5] 4.0 4.5 5.0 4.5 O8,,198798 98 
1.9 0.68 2 2: \— 10.5.2 o.1 4.9 5.1 982,937 2897 98 
0.6 OEM 0 |— 1 4.5 4.6 4.4 4.5 98 98 9 96 
1 OST 3|— 2| 4.5 4.4 4.7 4.5 937.2:90. 093 93 
2.7 1.61 4 2\—- 1| 4,7 4.6 4.1 4.5 92 84 79 85 
2.6 0.9) 10 5 I— 1 4.0 3.9 4.2 4.0 Sara 72 853 7 
18 OrUERB 41— 1| 4.1 4.1 39 4.0 85 80 81 82 
VE, —. 1.1108 2 |— 3| 3.7 3.9 3.9 3.8 867.87 789 87 
—0,7 — 2.8| 12 4 \— 1 3.5 3.3 3.0 3.3 Son 7 7 78 
—2.4 — 5.5) 20 10 |-10| 2.3 2.5 2.5 2.4 210 65.066 65 
—2.0 — 3.2| 7 Il 83.1 2.9 3.2 Bl Sa (000358 82 
0.1 — 3.2] 4 1 |— 5 3.3 4.1 4.2 3.9 en ee Sn! 90 
(0) ee N Per 2 |— 2| 3.8 3.8 4.3 4.0 90.84 9 sg 
0.6 — 0.3 4 2 |— 2] 4.4 4.4 4.3 4.4 6 9 93 95 
1.1 — 4.3) 8 2 |— 3| 83.9 2.7 ZN. 3.1 SE 69 779 77 
—4.3 — 6.9 14 2 |— 5 2.4 2.4 241 2.8 SUH ATI Mr2 74 
4,7 -— 2...) 3 -2|—-9| 1.9 2.2 2.1 2.1 ae 75 
2.9 -- 0.111.383 6.0/-2.5| 4.4 4.5 4.5 4.5 ss Si 85 s5 


H Höchster Stand des Schwarzkugelthermometers: 32° C am 6. 
| Größter Unterschied’ zwischen Schwarz- und Blankkugelthermometer (stärkste 
Strahlung): 6% C am 12, ; 
Tiefster Stand des Ausstrablungsthermometers: —10° C am 24. 
Höchster Dampfdruck: 7.1 mm am 6. 
Geringster Dampfdruck: 1.9 mm am 31. 
Geringste relative Feuchtigkeit: 630/, am 6. 


! In luftleerer Glashülle. 
" Blankes Alkoholthermometer mit gegabeltem Gefäß, 0:06 mn über einer freien Rasenlläche. 


48° 14°9" N-Breite. 


Beobachtungen an der Zentralanstalt für Meteorologie 


im Monate 


| Windrichtung und Stärke | Windgeschwindigkeit Niederschlag 2 
.n. d. 12-stufigen Skala in Met. in d. Sekunde inwım gemessen “ 
Tag | RB; 3 
| = 
ai: 14h 21b | Mittel| Maximum ı 7ı 14h 214 75 
| un 
| Kern en k 

1 DVEER2ZEENEIV. 2 | VS. SERIES NW 9.4 0.7® 0.0e — = 
Dre Wan 1 (EBENE SI WN\eBLe. | _ — — _ 
3 AV IWSSErI Sr 21.1240 >) 8.1 _ = 0.0=i || — 
4 SE! SEH2 ISO A650 Io) 25.8 0.08: = — —_ 
5 S "SiSsEr4. 8. Smil S :.a22.: — = -— | - 
6 WSWI1 Sp Sn] rl) D 18.8 — _ _ 
7 SSE 2, S:#1 ,SSE 3| 4.6 | ISSW 019.6 al. E>= —_ — 
8 EB 37 SEBaL SEI 1 3 SE 11.6 — _ _ n 
) Ss KM SER1SLLES SSE 7.0 _ = — _ 
10 A SER NWRZU SENT DLET WEN W098 0.02 —— = — 
11 SO NSW er! SS s Be — 0.0=: —_ -- 

12 WNW27 NAR2 UN Re I WNW 9.9.0 1.6ex _ _ 

13 = "O9 BERN E ».20|,° > N 2 
14 =. 700 BAR NEN ROE NW 3.1 22 0.2=x 1.3Ax| — 
15 NE 1w SERL SE Il 0144 1SBR" 23.3 421 7 BD. We 
16 SE: rasen 10224 SE 7.3 0.0=: 0.2=: 3.5® | — 
17 SE Lı —W0'ESE | ı1:7 SE 6.090] 1,58. 12. A nz 
18 NE \ 10 NAW DINNE 2] 4238 N 10.05) 0,08: 0.22 U A768 
19 NNW3 NW 2 NW 4| 4.0 NW 213.8 2108 0.2% _ 
20 NNW 37 NW03 1 NW il 1338 | WNW 113.1 0.0% v.18: 1 DAR 
241 INENIYV/ SEND vage N | 1.3 NNW 7.4 0.1% = 0.6%* 
22 NNW 2.NNW3 IN! 3 039 N 9.6 0.3x 2.92% S.4x 
23 NNW2.NNW1 NNW ı 302 NOW +1 .8%7 2.98 0.0% _ [ea] 
24 NNW I’NNWI1' NW 1| 216 NNW 7.5 _ > ;= 
25 NV OLSEN WA EN NW 6.4 0.3% 1.1x 0.0% 
26 — 0, —ORSSE, 228 SSE 10.0 0.1* 0.0x — 
27 BE 20 SEvrT BE 1] 449 Sala Aula _ 0.08 0.5%* 
28 | SE 2 ESE I ESE 1| 13.8 SE 11.3 0.85% 2.6%* 0.95% 
29 N. #21 EIN ZUE ENP- U 2230 NNE 7..2 _ 0.0x 1.5% ||&] 
830 | m umwwiı mo le | Imw © 9.8 0,0% ' 0.18 + 0408 
Sl | W "2UNNW2 NNW Il 1129 NNW ST 0,1x 0.0% 1.4x 

Mittel | 1.6 1.6 1.5 2.8 10.501 11 91 9,5 24.1 


Ergebnisse der Windaufzeichnungen: 


NNE NE ENE ‚E,,.ESE..SE .SSE...S1SSW SW: WSW. W .WNW.NW 


Häufigkeit (Stunden) 
15 8 1 30:120,'1100. 1 029260% a1 7210 9 43 34 
Gesamtweg in Kilometern 1 
al 8 4° 96 118 1246 1497 1100 152 55_ 42 218 321 
Mittlere Geschwindigkeit, Meter in der Sekunde 1 
2,8, 11 ons. 4.12 Ale arer 6 Mae leer 
Maximum der Geschwindigkeit, Meter in der Sekunde 1 
Aut 2.0 dl 2822989 LER 2er 
Anzahl der Windstillen (Stunden): 25. 
Größter Niederschlag binnen 24 Stunden: 13.5 mm am 22. u. 23. 
Niederschlagshöhe: 44.7 mm. 


ı Den Angaben des Dines’schen Druckrohr-Anemometers entnommen. 


S8 


NNW 


100 


984 


[8%) 
| 


s1 
und Geodynamik, Wien, XIX., Hohe Warte (202'5 Meter), 


Jänner 1919. 16-217. E-Batge v. Gr. 
= 
a | | Bewölkung in Zehnteln des 
= 2 sichtbaren Himmelsgewölbes1 
5 = | Bemerkungen ; FEINE 
a 7 1 32h |n8in® 
ee SS ee 
heller aut: 
ggegb| e0 4, 650750, | 10160 90-1 1001| 9.7| 9.3 
dfddn |=18— 10. | 30 9-12 10077431 7.0 
gggeg | =? gz. Tag; —" mgns., =.0"1abds. 101 102=? 101=1110.0110.0 
geemb | Besonders farbenprächtiges Morgenrot. ı gi 907,0 6.01 6.0 
. fednf | S— 9 vorm. g1 100-1 101 el) SE 
eecdb | W2 abends. St Su 63 ae 
cegmb — 60 90 101 8.3] 8.0 
beede | al abends. 4 3071 101 DAL D.t 
ddebn | al”? mgns. u. abends; (MD? mittags. 40 70717 30 4.7) 4.7 
Sggegg | 2? mens. | 101 101 101 10.0 10.0 
ggggg | =;%1=17? vorm.; x0 8071 2255 — ı 101 101 101° [10.0[10.0 
ombbg | x0 e01—545, =1-2 nachts. ı 101 40 ) 4171.4.3 
ffggg | —172='1mgns. ; =1”?vorm. u. nachm. bis nachts. 101=1 10!=1 10!=2 [10.0/10.0 
&esdn | xFl. mgns., xt Al 1620 — 1725; 1U0"1=1mgns. u. | 101=17) 101 10071 [10.0|19.0 
fegggg:| =: 1 UV =17? 92. Tag. [abends. || 101=1 101=1 101=1[10.0|10.0 
ggggg | =!" mgns. u. vorm.,=1gz. Tag; e071 1230 — \ 101=1 40l=1st 101=180|10.0|10.0 
Igggge | x 8015, Fl. 645 — 7, x071 10—21;=1b. abds. || 101=1101=1x1 101=1x0|10.0/10.0 
Isgggg | xFl. 1240, x071 8071 1320 — I 100 101x0 40180x0|10.0)10.0 
ggegf | x0 ed — 1120, ‚10180x0 101 102 110.0|10.0 
fggsg | Fl. vorm., x bis nachts, AP 16%. | 8071x0 10120 ° 1010| 9,3) 9.3 
BB eetee | «Fi. 15, «!—Böc 1645 — 17, x01 1730 — | 100 102 101x0.|10.0|10.0 
iessgg | x gz. Tag— | 101x0 101x1 101x0 [10.0/10.0 
isssgg | x’ — 715, «Fl. 100715 101%x0 101 101 110,010.0 
Imengg | nV? gz. Tag. I. 7010181 jor. 01 8!8| 18.3 
Igssgg | #01 610— 1155, «Fl. abends. || 101x0 101 101x0 |10,0/10.0 
Tesggg | x9 730 — 1030, rU0-1 mens. 101..,2. 101 „.1.102’, 4010110. 0 
Aigssgg | x071 112° — 1920, 213° — 101 101x0 101 |10.0|10.0 
Iessgm| #'— 130, x071 420 — 1920, 101x1 101x0 101 110.0/10.0 
Tenggg | #91 1335 bis nachts. | 8071 100 1x0 101x0| 9.3] 9.0 
fefgg | x0 1145 — 1710, 80-1 100%0 101 9.3] 9.3 
Beege5| «Fl. 640 — 7, #071 14— 2010, | 101x0 101x0 101 110.0110.0 
[Mittel 11.848.491 9.1 | 9.0) 8.9 
\| j 
1 Schlüssel für die Witterungsbemerkungen: 
A=klar. f = fast ganz bedeckt. Ik =shoie. 
a — heiter. g = ganz bedeckt. l = gewitterig. 
© = meist heiter. h = Wolkentreiben. m = abnehmende Bewölkung. 
d = wechselnd bewölkt. | i =regnerisch. n = zunehmende » 


—e= größtenteils bewölkt. | 
Der erste Buchstabe gilt für morgens, der zweite für vormittags, der dritte für nachmittags, 
er vierte für abends, der fünfte für nachts. 


Aeicnemerklarung.: 


Sonnenschein ©, Regen e, Schnee x, Hagel a, Graupeln A, Nebel =, Nebelreißen =‘, 
Tau a, Reif —, Rauhreif V, Glatteis ru, Sturm 9, Gewitter R, Wetterleuchten <, Schnee- 
gestöber +, Dunst co, Halo um Sonne &, Kranz um Sonne ®, Halo um Mond (D), Kranz 
um Mond W, Regenbogen f}}. 

Fr eTr. — Regentropfen, «Fl. = Schneeflocken, Schneeflimmerchen. 


Bi h 1 Tagesmittel A aus den mit Index versehenen Beobachtungen; Tagesmittel B aus solchen 
ohne Index. 


83 


Beobachtungen an der Zentralanstalt für Meteorologie und 
- Geodynamik, Wien, XIX., Hohe Warte (202'5 Meter), 


im Monate Jänner 1919. 


Wer Dauer |5, E =) Bodentemperatur in der Tiefe von 
dun- |, ds | 553) 0.50m 1.00m 2.00m 3.00m 4.00m 
Tag stung En = | 2 N 
in mm sc ur IE &6 A en 14h 14h 14h 
7h Stunden |O  gr| Me I 
| 1] | 
1 OB a a 4.0 4.6 ZR 9.7 10.5 
2 0.1 FOL 3.0 3.9 4.7 2:7 9.6 10.4 
3 OLE) 0 Ole 7 ar Hass 4.8 7.6 DR 10.4 
4 US | El ‚1808 4.9 7.5 9.2 10.4 
5 0.5 0.3 32,0... 4.0 4,9 7.5 9.5 10.4 
6 0.8 | 2.8 u a en: 7.5 9.4 10.4 
7 0:81 || »60r2 RO. 5 5.0 7.0 9.4 10.3 
8 B:BL, | 1, umaz un: Bas ar 23 9.3 10.3 
9 0x2 Rd mo lang 5.3 7.4 9a 
10 DA 20, 1-2 een 5.4 7.4 9.2 10.2 
11 0:88! | MOROLEIE 1,7 Anal 5.4 7.4 9.2 10.2 
12 9:5 || HAB 2 Ne Bas 5.4 7.4 9.2 10.2 
13 SR RE ao ET 54 za 9.1 10.1 
14 ge 0 N ERS D22 Tre: 9.1 10.1 
15 00 | 7 0.0 OT EI 228 DR 7.4 9.1 10.1 
16 0.7 | 0.0 0,0 2.9 BO 1.8 9.0 10.0 
I] Br) | OL. O 36 2.9 4.9 Ar3 9,0 10.0 
18 Bl 2 060 Bean 2.6 47 dia 9.0 10.0 
19 0.4 | 0.0 ER RS: 4,8 1a 9.0 10.0 
2 Dear >| 2 6.3 2.5 4.5 YA? 9.0 10.0 
21 DEE | „0 a3. e 22.6 4.5 Ta 8.9 10.0 
92 DHAol | 080 Bo nr das 4.5 748 8.9 9.9 
23 De 701 9.0, |, 12.8 4.4 Gl 8.9 9.9 
24 SE BD | a 483 7.4 8.8 9.9 
25 0.1 d.0; 1, Szalle, 120 4.2 7.0 8.8 9.8 
26 0,0: |" 0.0 Wa 448 4.0 6.9 8.8 9.8 
27 DEE | 1x0 0 020,81, ad 4.0 6.9 8.8 9.8 
28 0. 1) 01010 u N: 4.0 6.8 Br; 9.8 
29 0.1 | 0.0 so 1 3.9 6.8 8.7 9.7 
30 0.1 0.0 1.200 HT 3.9 6.7 8.6 9.7 
31 De, 9.08 ar le 3,8 6.7 8.6 9.7 
Mittel 0.8 0.6 ll ng 4,7 1.8 9.1 10.1 
Monats- 8.9 18.0 | 
summe | 


Größte Verdunstung: 0.9 mm am 8. 


Größte Sonnenscheindauer: 5.7 Stunden am 8. 


Prozente der monatlichen Sonnenscheindauer von der möglichen: 7 von der 
fe} 0> | 


mittleren: 290). 
Größter Ozongehalt der Luft: 12,0 am 5. 


Der vorläufige Bericht über Erdbebenmeldungen in Österreich wird wegen des 
spärlichen und unregelmäßigen Einlaufes der Meldungen in den nächsten Monaten zu- 


sammenfassend nachgetragen. 


Aus der Staatsdruckerei, 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr. 7 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 6. März 1919 


Erschienen: Sitzungsberichte, Bd. 127, Abt. Ila, Heft 4. 


Der neu gewählte und bestätigte Vizepräsident, w. M. Hof- 


rat Richard Wettstein Ritter von Westersheim, übernimmt 
den Vorsitz. 


Der Vorsitzende macht Mitteilung von dem Ver- 
luste, welchen die Akademie der Wissenschaften durch 
das am 5. März 1919 erfolgte Ableben des Ehren- 
mitgliedes der Gesamtakademie 


und gewesenen 
Kuratorstellvertreters, 


wirklichen Geheimen Rates 


DR, ERNEST von KOERBER, 


erlitten hat. 


Die anwesenden Mitglieder geben ihrem Beileide 
durch Erheben von den Sitzen Ausdruck. 


84 


Das Staatsratsdirektorium hat mit Beschluß vom 
11. Februar 1919 die Wahl des bisherigen Vizepräsidenten 
der Akademie der Wissenschaften, ordentlichen Professors der 
Geschichte und der historischen Hilfswissenschaften an der 
Universität in Wien, Hofrat Dr. Oswald Redlich, zum 
Präsidenten und die Wahl des ordentlichen Professors der 
systematischen Botanik und Direktors des botanischen Gartens 
an der Universität in Wien, Hofrat Dr. Richard Wettstein 
Ritter v. Westersheim zum Vizepräsidenten der Akademie, 
bezüglich beider auf die statutenmäßige dreijährige Funktions- 
dauer, ‚bestätigt. 

Ferner hat das Staatsratsdirektorium mit gleichem Be- 
schlusse den ordentlichen Professor der Chemie an der Uni- 
versität in Wien, Dr. Wilhelm Schlenk, und den ordentlichen 
Professor der Zoologie und vergleichenden Anatomie an der 
Universität in Graz, Hofrat Dr. Ludwig Graff von Pancsova 
zu wirklichen Mitgliedern der mathematisch-naturwissenschaft- 
lichen Klasse, den ordentlichen Professor der römischen Alter- 
tumskunde und Epigraphik an der Universität in Wien, Hofrat 
Dr. Wilhelm Kubitschek, zum wirklichen Mitgliede der 
philosophisch-historischen Klasse ernannt, sowie 

a) die Wahl des Professors der Botanik und Direktors 
des botanischen Gartens an der Universität in Amsterdam, 
Dr. Hugo de Vries, und des Professors der Chemie an der 
Universität in Berlin, Dr. Emil Fischer, zu Ehrenmitgliedern 
im Auslande in der mathematisch-naturwissenschaftlichen 
Klasse, sowie die Wahl des Professors der Philosophie an 
der Universität in Leipzig und Direktors des Instituts für 
experimentelle Psychologie daselbst, Dr. Wilhelm Wundt, und 
des Professors der deutschen Sprache und Literatur an der 
Universität in Leipzig, Dr. Eduard Sievers, zu Ehrenmit- 
gliedern im Auslande in der philosophisch-historischen Klasse; 
| b) die Wahl des außerordentlichen Professors der Anthropo- 
logie und Ethnographie an der Universität in Wien, Dr. Rudolf 
Pöch, und des Konteradmirals i. R. Wilhelm v. Kesslitz, zu 
korrespondierenden Mitgliedern im Inlande in der mathematisch- 
naturwissenschaftlichen Klasse, sowie die Wahl des ordent- 
lichen Professors- des römischen Rechtes.--an der Universität in 


SD 


Wien, Dr. Paul Jörs des ehemaligen österreichisch-ungarischen 
Gesandten’ in Teheran und Peking, Geheimen Rates Dr. Artur 
v. Rosthorn, des emeritierten ordentlichen Professors der 
klassischen Philologie an der Universität in«Graz, Dr. Alois 
Goldbacher, des Direktors des Haus-, Hof- und Staatsarchivs 
in Wien, Sektionschefs Dr. Hans Schlitter, des ordentlichen 
Professors für mittlere und neuere Geschichte an der Uni- 
versität in Wien, Dr. Alfred Francis Pribram, des mit dem 
Titel und Charakter eines ordentlichen Universitätsprofessors 
bekleideten außerordentlichen Professors der deutschen Sprache 
und Literatur an der Universität in Wien, Dr. Max Hermann 
Jellinek, und des Privatdozenten für vergleichende Musik- 
wissenschaft an der Universität in Wien, Dr. Robert Lach, 
zu korrespondierenden Mitgliedern im Inlande in der philo- 
sophisch-historischen Klasse; 

c) die Wahl des Professors der Geologie an der Uhni- 
versität in Zürich, Dr. Albert Heim, und des Professors der 
theoretischen Physik an der Universität in München, Dr. Arnold 
Sommerfeld, zu korrespondierenden Mitgliedern ım Auslande 
in der mathematisch-naturwissenschaftlichen Klasse, sowie 
die Wahl des Professors der deutschen Sprache und Literatur 
an der Universität in München, Dr. Hermann Paul, und des 
Professors der romanischen Philslogie an der Universität in 
München, Dr. Karl Vossler, zu korrespondierenden Mitgliedern 
im Auslande in der philosophisch-historischen Klasse, ge- 
nehmigt. 


Das k. M. Hofrat H. Obersteiner übersendet den 
Bericht über die Tätigkeit des. Neurologischen In- 
stituts an der Wiener Universität (österr. interaka- 
demisches Institut für Hirnforschung) für 1918. 


P. Thiemo Schwab in Kremsmünster, Prof. Dr. Josef 
Schorn in Innsbruck und Prof. Ferdinand Seidl in Rudolfs- 
wert danken für die ihnen seitens der Akademie der Wissen- 
schaften für ihre Wirksamkeit als Referenten der Erdbeben- 
kommission ausgesprochene Anerkennung. 


36 


Dr. Erwin Lihotzky in Wien übersendet eine Abhand- 
lung, betitelt: »Verallgemeinerung der Abbe’schen Sinus- 
bedingung (als Bedingung für das Verschwinden der 
Koma in der unmittelbaren Nachbarschaft der 
Achse).« 


Folgende versiegelte Schreiben zur Wahrung der 
Priorität sind eingelangt: 

1. von Dr. Rudolf Reitler und cand. med. H. Robicsek 
in Wien mit der Aufschrift: Ȇber eine biologische Eigen- 
schaft des Sehenss«; 

2. von Prof. Dr. FÜ Ehrenhaft und ’Dr. B:’Konstanti- 
nowsky mit der Aufschrift: »Radioaktivität.« 


Das w. M. Prof. F. Exner legt vor: »Mitteilungen aus 
dem Institut für Radiumforschung. Nr. 118. Der Aggre- 
gatrückstoß als Begleiterscheinung des, Zerfalls 
o-strahlender Substanzen«, von Robert W. Lawson. 

Wenn man Polonium mittels Elektrolyse auf eine reine 
Metallfolie niederschlägt, so findet man nachher, daß bei 
normalem Drucke und namentlich im Vakuum die in nächster 
Nähe befindlichen Gegenstände verseucht werden. Die Er- 
scheinung wird durch das Vorhandensein von  Aggregaten 
von Poloniumatomen auf der Unterlage erklärt. Wenn ein 
a-Teilchen von einem solchen Aggregate in die Richtung der 
Platte hingeschleudert wird, dann erhält das Aggregat eine 
gleich große Bewegungsgröße entgegengesetzten Vorzeichens 
und verläßt die Unterlage. Das Phänomen wird »Aggregat- 
rückstoß« genannt. Es wird erwähnt, daß die Erhaltung eines 
reinen Folgeproduktes durch ß-Rückstoß infolge dieser Er- 
scheinung sowie infolge des erheblichen Einflusses von ober- 
flächlichen Verunreinigungen als praktisch unmöglich be- 
trachtet werden muß. 

Die Menge des infolge des Aggregatrückstoßes ent- 
weichenden Poloniums ist im Vakuum etwa 10 bis 20mal 
größer als die Menge, welche bei normalem Drucke auf einer 
gegenüberliegenden Sammelscheibe aufgefangen wird. 


San 


87 


Für relativ kurze Versuchsdauer ist die Menge des 
durch Aggregatrückstoß gesammelten Poloniums der Zeit 
proportional. Nach längeren Zeiträumen nimmt sie aber im 
allgemeinen, manchmal schneller, manchmal langsamer, ab. 
Feuchtigkeit setzt die Ausbeute durch Aggregatrückstoß nicht 
unerheblich herab. 

Bei Platin ist eine Abhängigkeit zwischen dem Verlauf 
der Kurven und der Vorbehandlung der mit Polonium belesten 
Folien konstatierbar. Am besten definiert dürften mit Sauer- 
stoff gesättigte Platinfolien sein, wo das Material des Aggre- 
gates gar nicht in die Folie einzudringen scheint. Ein 
derartiges Eindringen wäre nach den mitgeteilten Versuchen 
für eine mit Wasserstoff gesättigte Folie anzunehmen. Das 
undefinierte Verhalten von in der Bunsenflamme ausgeglühten 
Platinfolien dürfte vom Wasserstoffgehalt der Folie verursacht 
sein, je nachdem das Ausglühen mehr oder minder tief in 
der Flamme erfolgt. Die Form der Kurve zwischen  ge- 
sammelter Poloniummenge und Gasdruck deutet auf das Vor- 
handensein von aus zwei und mehr Atomen bestehenden 
Aggregaten hin. Bei einer mit Wasserstoff gesättigten 'Platin- 
folie scheint die im Vakuum stattfindende Abgabe von 
Wasserstoff von einem Mitreißen von Polonium begleitet zu 
sein. Bei älteren Präparaten sind nur mehr die kleineren 
Aggregate in beträchtlicher Anzahl vorhanden. 

Eine Goldfolie und ein mit Sauerstoff gesättigtes Palladium- 
blech waren in ihrem Verhalten sehr ähnlich. In diesen Fällen 
konnte auf das Vorhandensein von vielen, größeren, Aggre- 
gaten geschlossen werden. Eine zweite Goldfolie ergab er- 
heblich kleinere Werte des Aggregatrückstoßeffektes (Ver- 
flüchtigung). Eine mit Wasserstoff gesättigte Palladiumfolie 
lieferte sehr kleine Werte für die Verflüchtigung, im Gegen- 
satz zu der mit Sauerstoff gesättigten Palladiumfolie. 

Bei den typischen Edelmetallen war der Betrag der Ver- 
Nlüchtigung nach etwa 7 bis 12 Tagen auf die Hälfte ge- 
sunken. Für leicht oxydierbare Metalle dagegen war diese 
Halbwertszeit des Aggregatrückstoßes ‚beträchtlich kleiner, 
was auf das Vorhandensein einer Oxydschichte zunehmender 
Dicke schließen läßt. Die letztgenannten Metalle geben eine 


88 


erheblich kleinere Verflüchtigung als die Edelmetalle, wie es 
unter der Annahme einer Oxydschicht zu erwarten wäre. Es 
ist nicht gleichgültig, ob die Verunreinigung der Oberfläche 
vor oder nach der Elektrolyse erfolgt. 

Manchmal ist der Poloniumverlust infolge des Aggregat- 
rückstoßes im Vakuum sogar größer als die in derselben Zeit 
zerfallene Poloniummenge. Es wird gezeigt, daß die Annahme 
von mindestens dreiatomigen Poloniumaggregaten auf der 
Metallunterlage diesem Falle entsprechen würde. Daraus folgt, 
daß viele von den vorhandenen Aggregaten aus mehr als drei 
Atomen bestehen. Die »scheinbare« Halbierungszeit des Po- 
loniums im Vakuum wird in einem speziellen Falle berechnet 
und der Wert 59'6 Tage, statt 136°5 Tage gefunden. Das 
Phänomen des Aggregatrückstoßes wird auch an Präparaten 
beobachtet, welche einst in Ra-Emanation aktiviert wurden 
und zur Zeit der Messung im Gleichgewicht mit RaD vor- 
handen waren. | 

Auch bei normalem Gasdruck findet eine zeitliche Ab- 
nahme der Aggregatrückstoßwirkung statt. Bei Versuchen mit 
den Edelmetallen können leicht falsche Werte für die Halb- 
wertszeit des Poloniums erhalten werden. Bei normalem Druck 
wurde beispielsweise der Wert 1271 Tage gefunden. Dieses 
Herabsetzen der Halbwertszeit wird durch den Verlust an 
Aggregaten verursacht. Bei den Nichtedelmetallen sind die 
Abweichungen vom normalen Wert unwesentlich. Es werden 
Verhaltungsmaßregeln angegeben, welche bei künftigen Be- 
stimmungen von Halbwertszeiten Beachtung verdienen. Die 
derzeit geltenden Halbwertszeiten von Polonium (Regener, 
Schweidler) können als verläßlich angesehen werden. 

Die Bildung der Aggregate bei der Poloniumelektrolyse 
scheint unabhängig von der Anwesenheit von Kolloidteilchen 
zu sein. Die Wahrscheinlichkeit, daß die Aggregate durch 
zufälliges Aufeinanderlagern mehrerer Atome an eine und 
dieselbe Stelle der Unterlage erfolgt, scheint auch nicht aus- 
zureichen, um die Effekte zu erklären. Es sieht eher so aus, 
als ob schon vorhandene Poloniumatome als Konzentrations- 
kerne für die weitere Ausscheidung des Metalls dienen. Dieser 
Fall wird näher erörtert. 


59 


Das w. M. Prof. W. Wirtinger legt zwei weitere Mit- 
teilungen »Über Bewegungsinvarianten« von Prof. Roland 
Weitzenböck in Prag vor. 

XI. Mitteilung. Der Verfasser stellt das vollständige 
System von Bewegungsinvarianten für zwei Ebenen im vier- 
dimensionalen Raume auf und findet, daß es aus vier In- 
varianten besteht, von denen eine zur affinen Gruppe gehött. 

XI. Mitteilung. Der Verfasser behandelt das Problem, 
die beiden Neigungswinkel von zwei Ebenen im vierdimen- 
sionalen Raume zu finden. Er gibt allgemein eine quadratische 
Gleichung, deren Koeffizienten aus den Bewegungsinvarianten 
der zwei Ebenen aufgebaut sind und deren Wurzeln die 
Neigungswinkel liefern. 


Die Akademie der Wissenschaften hat in ihrer Gesamt- 
sitzung am 26. Februar 1. J. beschlossen, w. M. Hofrat 
Ferdinand Hochstetter zur Herausgabe seines Werkes »Bei- 
träge zur Entwicklungsgeschichte des menschlichen 
Gehirnes« eine Subvention von K 10.000 aus den Erträg- 
nissen der Czermak-Erbschaft zu bewilligen. 


Druckfehlerberichtigung. 


In der Abhandlung vom k. M. Hofrat A. Wassmuth: »Studien über 
Jourdain’s Prinzip der Mechanik« (Anzeiger Nr. 4, Jahrgang 1919), 


d 
p. 49, Zeile 2 von oben, fehlt hinter | die Bezeichnung: ee 
[4 


Selbständige Werke oder neue, der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Societe Provinciale' des Arts et Sciences: Hugo. de 
Vries Opera e periodicis collata. Vol. II. Utrecht, 1918; 4°. 


Aus der Staatsdruckerei in Wien, 


STH W 
‚tar 


yarbflalrlle 


SR RL 


wahr 


ru 
AL 2 0 


ch 


ai 


or 
7%; 


baip saibois 4 reeunasigee 


ns u 


ge ar‘ 


Turn 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr. 8 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 13. März 1919 


Dr. H. Priesner in Urfahr übersendet eine Abhandlung, 
betitelt: »Zur Thysanopterenfauna Albaniens.« 


Das w.M. Prof. Dr. C. Diener überreicht den zweiten 
Teil einer Arbeit von G. v. Bukowski: »Beitrag zur Kennt- 
nis der Conchylienfauna des marinen Aquitanien von 
Davas in Karien (Kleinasien).« 


In diesem Teil gelangen aus dem nordkarischen Aqui- 
tanien einige Cerithiiden zur Besprechung. Es sind das Pota- 
mides subcorrugatus d’Orb, P. subclavatulatus d’Orb. und 
zwei neue Varietäten von P. margaritatus Brocchi. Von 
allen Formen, auch den schon bekannten, erscheinen hier, um 
die Variabilität mancher Merkmale zu veranschaulichen, mehrere 
Exemplare abgebildet. Außer den genannten finden dann noch 
die übrigen Potamiden der Kollektion, sämtlich Formen aus 
der Gruppe des P. pictus Defr., eine kurze Erwähnung. Ein 
besonderes Interesse bietet die Tatsache, daß uns in den 
Cerithiiden, wie auch in den anderen Conchylien sehr auf- 
fallende Analogien in bezug auf Formenvergesellschaftung 
mit den von Karien so weit entfernten aquitanischen Faluns 
von Südfrankreich entgegentreten, 


11 


Prof. ©. Diener überreicht ferner eine Abhandlung, be- 
titel: »Nachträge zur Kenntnis der Nautiloideenfauna 
der Hallstätter Kalke.« 

Aufsammlungen in den Hallstätter Kalken des Salz- 
kammergutes, die in den letzten 15 Jahren seit dem Abschluß 
der grundlegenden Monographie der Hallstätter Cephalopoden- 
faunen von E. v. Mojsisovics teils durch E. Kittl, teils 
durch A. Heinrich veranlaßt worden sind, haben manches 
neue, wertvolle Material zutage gefördert. Unsere Kenntnis 
der Nautiloideenfauna wird durch sechs neue und zwei bisher 
nur aus dem himamalayischen Reich bekannte Arten be- 
reichert. Studien über die Entwicklung des Internlobus haben 
den diagnostischen Wert dieses Merkmals für die Systematik 
der triadischen Nautiloideen vermindert. Es hat sich gezeigt, 
daß ein solcher Internlobus bei den Endgliedern einzelner 
Familien bald als ein Oriment, bald als ein Rudiment auftritt. 
Eine Trennung der beiden Familien der Grypoceratidae und 
Clydonautilidae erscheint auf Grund dieses Merkmals nicht 
durchführbar. 


Das w. M. Hofrat Hans Molisch legt eine im Pflanzen- 
physiologischen Institut durchgeführte Arbeit des Fräuleins 
M. PeruSek vor, betitelt: Ȇber Manganspeicherung in 
den Membranen von Wasserpflanzen.« 

Die von Molisch entdeckte, im Lichte eintretende Mangan- 
oxydspeicherung in der Epidermis submerser Wasserpflanzen 
wurde weiter verfolgt und führte zu folgenden Ergebnissen: 

1. In Übereinstimmung mit Molisch erfolgt die Mangan- 
einlagerung nur an lebenden Objekten. 

2. Die Fähigkeit, Mangan in der Zellwand zu speichern, 
findet sich fast allgemein bei den typischen submersen Wasser- 
pflanzen; seltener und in geringerem Maße tritt die Mangan- 
speicherung bei amphibischen und bei Schwimmpflanzen auf 
und fehlt fast vollständig bei Landpflanzen. 

3. Bei zu starker, der Pflanze schädlicher Mangansalz- 
konzentration oder wenn die Individuen stark geschwächt 
sind, bleibt die Manganoxydabscheidung bei sonst mangan- 
speichernden Pflanzen oft ganz aus. 


4. Der Ort der Manganspeicherung ist für die einzelnen 
Pflanzen charakteristisch. Bei Pflanzen mit Hydropoten sind 
es diese, welche Manganoxyd in den Membranen einlagern. 

8. Bei manganspeichernden Pflanzen mit Spaltöffnungen 
zeigen die Schließzellen, in der Regel auch die Nebenzellen, 
keine Manganoxydeinlagerung. 

6. Die an eine verletzte Stelle angrenzenden Zellen unter- 
scheiden sich von den übrigen dadurch, daß sie sich anfangs 
überhaupt- nicht,. später aber schwächer als die Umgebung 
infolge-der Manganoxydspeicherung färben. 

7. Die Form des gefärbten Teiles der Zellwand ist in 
der Regel für die einzelnen Pflanzen nicht charakteristisch; 
eine ‘Ausnahme bildet die regelmäßige. Querstreifung der 
Rindenzellen bei Chara. 

8. Die. Manganspeicherung erfolgt meist nur in der 
äußeren Epidermismembran; nur ausnahmsweise kommt ‚sie 
auch in den Seitenwänden der Epidermiszellen oder in den 
Zellwänden der subepidermalen Zellschichte vor. 

9. Wasserpflanzen, die in größerer Menge Manganoxyd 
speichern, bewirken durchwegs Alkaleszenz des Wassers. 

10. In einer Lösung des Mangansalzes in destilliertem 
Wasser,, auch bei Zusatz von neutralen Salzen, zeigen die 
Pflanzen keine Manganspeicherung, wohl aber in der erwähnten 
Lösung mit Alkalibicarbonatzusatz. 

11. Die unter 1, 2, 4, 9 und 10 angeführten Tatsachen 
stimmen — neben der von Molisch betonten Abhängigkeit 
der Manganspeicherung vom Lichte. — mit der Annahme 
überein, daß diese eine Folge der. Kohlensäureassimilation 
darstellen dürfte. 


Prof. G. v. Arthaber legt eine Abhandlung vor, betitelt: 
»Studien über Flugsaurier und Bearbeitung des 
Wiener Exemplares von Dorygnathus banthensis Theod. sp. 

..“" Die Untersuchung. und Bearbeitung dieses interessanten 
ira war. die: Veranlassung für uarelsiehiende Studien-an 
Flugsauriern. ‚überhaupt. 

‚Vor:.einer' Reihe von Jahren hatte das Hofmuseum jene 

dem: Preise und. wissenschaftlichen‘ Werte. nach kostbare Ver: 


94 


steinerung aus dem schwäbischen Oberlias erworben. Trotz- 
dem Art und Gattung schon seit bald 50 Jahren ihren Platz 
in der Literatur einnehmen, waren dennoch bisher erst Unter- 
kieferfragmente, einzelne Wirbel und Extremitätenteile bekannt 
gewesen. Die Gestalt dieses Reptils im Ganzen und in seinen 
Details, die Kenntnis des Grades seiner Flugfähigkeit und dem-. 
entsprechend der Bau seiner Extremitäten waren unbekannt 
sowie seine Beziehungen zu verwandten Formen. Die Be- 
arbeitung war mir anvertraut wörden, deren Fertigstellung 
zugleich dem hiesigen Exemplare vor den -ähnlich voll- 
ständigen, später Gefundenen, den Wert des Typus und 
Originalexemplars sicherstellt. 

Die vergleichenden Studien ergaben in großen Zügen 
Folgendes: Schädelrekonstruktionen konnten hierdurch von 
allen gut bekannten Arten gegeben werden, welche bisher teils 
mangelhaft, teils nur von einzelnen Schädeln gegeben worden 
waren, wodurch eine Vergleichsmöglichkeit derselben aus- 
geschlossen war. Jetzt ist dıe Entwicklung des Pterosaurier- 
schädels von Mitteltrias bis Oberkreide (Turon), das Beharren 
einzelner Knochenkomplexe und die rasche Umbildung 
anderer mit einem Blick zu überschauen. Die einzelnen 
Körperabschnitte (Hals, Rumpf, Schwanz) wurden in betreff 
ihrer Wirbelzahlen, welche bei dem einen Pterosaurier- 
zweige fix (Ramphorhynchiden), beim anderen variabel sind 
(Pterodactyliden), auf dem Wege des Vergleiches festgestellt. 
Die Veränderungen im Knochenbau, welche die Fortbildung 
des Flugvermögens im Gefolge hatten, konnten teilweise auch 
in Textbildern dargestellt werden, die Aus- beziehungsweise 
Umbildung von Hand und Fußwurzel verfolgt und die Frage 
der Zählweise der Handstrahlen, der Genesis des sogenannten 
Spannknochens, erläutert und bildlich zur Anschauung gebracht 
werden. Ferner konnte die Zusammensetzung des Beckens 
aus den Elementen, ihre Größenvariationen und Beziehungen 
zur Bauchmuskulatur üntersucht und Gestalt sowie - Ver- 
wendung- der Hinterextremität bei den -Pterösauriergruppen 
verfolgt und schließlich die Ansichten über die mutmaßlichen 
Ahnen derselben diskutiert werden. Aus den Vergleichen an 
fossilem 'und 'rezentem Material ergaben sich zwingende 


95 


Rückschlüsse für die Auffassung einzelner unvollkommener 
Flugsauriertypen nicht als aktive Flieger, sondern als passive 
Fallschirmflatterer, 


Dr. Alfred Basch in Wien überreicht eine Arbeit mit dem 
Titel »Zur Bewegung eines materiellen Punktes unter 
Einwirkung einer im umgekehrten Verhältnis des 
Quadrates des Abstandes stehenden Zentralkraft«. 

Bewegt sich ein materieller Punkt unter Einwirkung einer 
im umgekehrten Verhältnis des Quadrates des Abstandes ste- 
henden Zentralkraft, wobei diese Kraft eine anziehende oder 
abstoßende sein mag, so ist in irgend einer beliebigen durch 
ihren Radiusvektor gekennzeichneten, als Anfangszustand an- 
zusehenden Lage durch das Verhältnis der kinetischen Energie 
zu dem von der willkürlichen Integrationskonstanten freien 
Teile der potentiellen Energie das Verhältnis der Hauptachse 
des die Bahn bildenden Kegelschnittes zur Größe des Radius- 
vektors in eindeutig umkehrbarer Weise gegeben. Diese beiden 
Verhältnisse, daher auch die Hauptachse, vermögen die 
Gesamtheit der reellen Werte anzunehmen. Alle Bahnformen 
können in einheitlicher Form dargestellt werden und es können 
für sie alle gemeinsame Gesetze gesucht werden. 

Die Diskriminante der Bahngleichung nach dem von 
Anfangsradiusvektor und Anfangsgeschwindigkeit eingeschlos- 
senen Abgangswinkel lehrt, daß die Bahnen, die bei Abgang 
von ein- und demselben Anfangspunkt mit gegebenen Größen 
der Anfangsgeschwindigkeit entstehen, von dem System der 
Rotationsflächen eingehüllt werden, deren Meridianlinien die 
konfokalen Kegelschnitte sind, die den Zentralpunkt und den 
Anfangspunkt als Brennpunkte besitzen. Bei anziehender 
Zentralkraft sind die Einhüllenden 'bei großen, zu hyper- 
bolischen Bahnen führenden Anfangsgeschwindigkeiten die 
imaginären Rotationsellipsoide :(sämtliche Raumpunkte sind 
mit solchen Anfangsgeschwindigkeiten erreichbar), bei der 
Zur :parabolischen Bahn führenden  Anfangsgeschwindigkeit 
die Kugel von unendlich großem Radius. und bei kleinen, zu 
elliptischen Bahnen führenden Anfangsgeschwindigkeiten 


96 


die reellen Rotationsellipsoide. Bei abstoßender Zentralkraft 
sind die Einhüllenden bei kleinen Anfangsgeschwindigkeiten 
die gegen den Anfangspunkt konkaven, gegen. den Zentral- 
punkt konvexen, bei großen Anfangsgeschwindigkeiten die 
gegen den Anfangspunkt konvexen, gegen den Zentralpunkt 
konkaven Mäntel der Rotationshyperboloide.. Bei jener be- 
stimmten: Anfangsgeschwindigkeit, die den Grenzfall bildet, ist 
die Einhüllende die Symmetrieebene zwischen Anfangspunkt 
und Zentralpunkt. Die Anfangsbedingung steht in diesem 
besonderen Fall in einer gewissen Analogie zu jener, die bei 
anziehender Zentralkraft zu parabolischen Bahnen führt. Es 
gleicht hier die kinetische Energie dem von der willkürlichen 
Integrationskonstanten freien Teile der potentiellen, während 
sie bei der parabolischen Zentralbewegung mit dem Negativ- 
werte dieses Energiebetrages übereinstimmt. 

Es werden weiter die Orte der Endpunkte der Haupt- 
achsen der bei gleichen Abgangsgeschwindigkeiten von ein- 
und demselben Anfangspunkte entstehenden Bahnen betrachtet, 
Ihre Meridianlinien sind eine Auslese von Verallgemeinerungen 
der Pascal’schen Schnecken. Im allgemeinen bilden der Aphel- 
ort und der Perihelort elliptischer Bahnen, ebenso der Perihel- 
ort und der Ort der Scheitel der nicht durchlaufenen Gegen- 
äste hyperbolischer Bahnen besondere in sich geschlossene 
Äste. Nur in dem besonderen Fall jener Anfangsgeschwindig- 
keit, die bei senkrechter Richtung zum Radiusvektor zur 
Kreisbahn führt, liegen die Aphele und die Perihele ‘auf der 
Rotationsfläche einer Kardioide. 

Schließlich werden unter Zugrundelegung der Gesetze der 
betrachteten Bewegung exylizite Formeln für ballistische 
Größen angegeben, die außer dem Erdradius und der Fall- 
beschleunigung nur die Abgangselemente (Anfangsgeschwin- 
digkeit und Elevationswinkel) enthalten, ‚und zwar:neben den 
strengen Gleichungen auch Näherungsformeln, ‚die: den .Unter- 
schied :von. den analogen, dem schiefen Wurf: im homogenen 
Schwerefeld entsprechenden Größen :klar- durchbliecken lassen: 
Auch. wird. eine. in der. ballistischen Literatur -bisher.: fehlende 
strenge: und aus :ihr-.eine: Näherungsformel ‚für. die. Wurfzeit 
abgeleitetnin "uarnuunntn Saat "ante nee 


m 


IL 


Selbständige Werke oder neue, der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Emich, F.: Einrichtung und Gebrauch der zu chemischen 
Zwecken verwendbaren Mikrowagen (Separatabdruck aus 
»Handbuch der biochemischen Arbeitsmethoden«, Halle). 
Berlin und Wien, 1919; 8°. 


- - Aus der Staatsdruckerei in Wien, 


iehoigt 19rleid, ET "ab, ur. » zone 
aA ‚baia, C e 


wertg Bier 2 
auge ra ER Mae een 
data ahesuih VERRREESHR NL EOS TE 


ER RE Hai mi 


de den GsenzeR 


« 


e 
’ 


isgrte: ea PB: Acts eu 2 
‚dei rau; Bi 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr. 9 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 20. März 1919 


Prof. Dr. Joh. Furlani in Wien übersendet eine Abhandlung 
mit dem Titel: »Beobachtungen über die Beziehungen 
zwischenIntensitätderchemischen Strahlung der Luft- 
bewegung«. 

Die Beobachtungen wurden in der Zeit von Ende Juli 
bis Mitte September der Jahre 1915 bis 1918 durchgeführt. 
Die chemischen Intensitäten der Strahlung wurden nach der 
v. Wiesnerschen Methode, die Wärmestrahlung wurde mit 
einem Vakuumthermometer bestimmt. Gleichzeitig: wurde mit 
dem Schleuderthermometer, Haarhygrometer, Barometer und 
Anemometer beobachtet. Die Beobachtungsorte waren: Heilig- 
Kreuz bei Hall im Inntal, Rinn im Inntal, der Patscherk ofel 
in den Zentralalpen, die Bettelwürfe in den nördlichen Kalk- 
alpen, das Hochalmkreuz und die Engg im Karwendel, Fulp- 
mes im Stubaital, die Franz-Sennhütte im Oberbergtale, der 
Alpeiner- und der Lisenserferner in den Stubaierbergen. 

Die Hauptresultate der Beobachtungen sind: 

1 Verglichen mit den vom Verfasser im Karste an der 
nördlichen Adria erhaltenen Resultaten im Hochsommer ergab 
sich: Die Gleichheit der chemischen Intensität der Sonnen- 
strahlung in der Seehöhe von 500 m. Ein langsameres An- 
steigen der Intensität der chemischen Strahlung in den Nord- 
alpen. Eine geringere chemische Intensität der diffusen 
Strahlung über den Nordalpen. Eine größere thermische Inten- 
-  sität der Strahlung in den Nordalpen im Monat August. Somit 


12 


= 


100 


erscheint das Energiemaximum im nordalpinen Gebiete gegen- 
über dem Karste, gegen das ultrarote Ende des Spektrums 
verschoben. Das Maximum der chemischen Intensität der 
Strahlung wurde auf dem Lisenserferner mit 1'884 gefunden. 

2. Hinsichtlich der Beziehungen zwischen Strahlungsinten- 
sität und Wetterlage ergab sich: Die chemische Intensität der 
Gesamtstrahlung ist im Hochsommer bei SE- bis SW-Winden 
eine größere, bei NW- bis NO-Winden eine geringere als bei 
Windstille.. Die chemische Intensität des diffusen Lichtes ist 
im Hochsommer bei SE- bis NW-Winden gegenüber anderen 
Wetterlagen erhöht. Bei Kondensation des atmosphärischen’ 
Wasserdampfes nimmt die Sonnenstrahlung im Verhältnis zur 
diffusen Strahlung ab. Die chemische Intensität der Sonnen- 
strahlung nimmt bei warmen, südlichen Winden und bei 
Windstille zu und erreicht die höchsten Werte. Der Erhöhung 
der Lufttemperatur bei gleichzeitiger Steigerung der chemischen 
Intensitäten, entspricht eine Verminderung der thermischen 
Intensität der Strahlung. Jedoch wurde bei der Bildung. eines 
Gewitters über dem Lisenserferner eine starke Steigerung der 
thermischen Strahlung beobachtet. 

Der Eintritt von Föhnwetter im Hochsommer in Seehöhen 
von 500 bis 3000 m ist durch eine Steigerung der chemischen 
Intensität der Strahlung gekennzeichnet. Im Vorstadium des 
Föhns zeigt eine Erhöhung der Sonnenstrahlung das Aus- 
fließen der kalten Bodenluft aus dem Inntale an. Im stationären 
Föhnstadium erfolgt eine Vermehrung der diffusen chemischen 
Strahlung und eine Abnahme der Wärmestrahlung. So wurde 
auf den Bettelwürfen im Verlauf von einer Stunde am 
9. August 1917 eine Zunahme der Leuchtkraft des Himmels 
von 0'560 auf 0°936 beobachtet.! Durch die Kondensation 
des atmosphärischen Wasserdampfes kann die Strahlung des 
Zenits die tieferer Himmelsteile schon bei niederen Sonnen- 
ständen übertreffen. Die Tageskurven der chemischen Inten- 


1 Es ist dies unter den seit 1909 fortgehenden Bestimmungen von 
Strahlungsintensitäten an der Adria und in den Alpen durch den Verfasser 
(annähernd 100.000), ein einzigdastenendes Phänomen bei unverändertem 
S3B>_>. 


101 


sitäten der Strahlung zeigen bei Eintritt einer Depression 
einen gleichmäßigeren Verlauf als bei antizyklonaler Witterung 


Das w. M. Prof. C. Diener überreicht eine Abhandlung von 
Dr. Martha Furlani, betitelt: »Studien über die Triaszonen 
im Hochpustertal, Bisack- und, Pensertal in; Tirol« 

Die Arbeit, deren Ergebnisse vorgelegt werden, wurde 
mit Unterstützung aus dem Boue-Fonds der Akademie in 
den Sommern 1912, 1913 und 1918 durchgeführt. Die: Ver- 
folgung und Detailuntersuchung der Triasschollen im Puster- 
tal, Eisack- und Sarntal zeigen, daß die tektonische Stellung 
der einzelnen in Zonen angeordneten Triasschollen nicht 
dieselbe ist. Jene des Eisack- und Sarntales liegen an dem 
Nordrand einer breiten Zertrümmerungs- und Störungszone, 
jene des Hochpustertales an dem Südrande der letzteren. 
Beide sind auch faziell verschieden. Ihre Auffassung als 
Wurzelzonen im Sinne Termier’s würde erheblichen Schwierig- 
keiten begegnen. 


Prof. S. Oppenheim legt folgende zwei Abhandlungen 
vor: 


1. »Statistische Untersuchungen über die Bewegung 
der kleinen Planeten.« 


Die AbhandInng versucht es, eine Art »statistische Me- 
chanik der Bewegungen« im System der kleinen Planeten 
zu entwerfen. Sie verfolgt dabei ein doppeltes Ziel, vorerst 
das, die in diesen Bewegungen auftretenden Gesetzmäßigkeiten, 
die an sich schon allgemeines und bleibendes Interesse bean- 
spruchen, zu untersuchen, dann aber auch wegen ihrer Nutz- 
anwendung auf die Eigenbewegungen der Fixsterne. Für 
diese hat Verfasser die Hypothese aufgestellt, daß die 
in ihnen durch die fundamentalen Arbeiten Kobold's und 
Kapteyn’s konstatierten Gesetzmäßigkeiten das ganz analoge 
charakteristische Gepräge zeigen, wie sie sich in den Bewe- 
gungen im Schwarme der kleinen Planeten vorfinden, so daß 


102 


alle Entwicklungen und Ergebnisse, die für diese gültig sind, 
auch für jene vorbildlich sein können und so teils zu neuen 
Methoden der Apexbestimmung führen, teils auch einen 
besseren Maßstab der dabei zu erzielenden Genauigkeit in 
den gewonnenen Resultaten abgeben, als er durch Anführung 
der mittleren oder Durchschnittsfehler allein erzielt werden 
kann. } 


2, Ȇber die Eigenbewegungen derFixsterne, IV.Mit- 
teilung: Das Verteilungsgesetz der Eigenbewe- 
gungen.« 


Die vorliegende Abhandlung, deren Durchführung nur 
durch die von der hohen Akademie mir gütigst gewährte 
Subvention aus dem Legate Scholz ermöglicht wurde, ist eine 
Fortsetzung meiner Untersuchungen über die Eigenbewegungen 
der Fixsterne. Ihre Grundlage ist der Gedanke, daß die in 
ihnen durch die fundamentalen Untersuchungen Kobold’s 
und Kapteyn’s konstatierten Gesetzmäßigkeiten die gleichen 
systematischen Charakterzüge zeigen, wie sie in dem geo- 
zentrischen Lauf der kleinen Planeten auftreten und daß 
daher, sowie zu deren Erklärung die einfache Annahme einer 
exzentrischen Stellung der Erde gegenüber der Sonne genügt, 
auch die gleich einfache Annahme einer exzentrischen Stellung 
der Sonne gegenüber dem Schwerpunkt des betrachteten 
Sternsystems für die Bewegungen in ihm maßgebend ist. 
Speziell stellt sich die Abhandlung. die Aufgabe, die dieser 
Anschauung entsprechende Verteilungsfunktion zu finden, die 
eine Darstellung der Zahl der Sterne geben soll, denen eine 
bestimmte Richtung ihrer Eigenbewegung zukommt. 

Die neue Verteilungsfunktion setzt sich aus zwei Teilen 
zusammen. Der erste Teil, nach welchem 


diN=C "Wr dundv 


ist mit N als der Bezeichnung für die Sternzahlen und 
und v als der für die Vektoren der Spezialbewegungen der 
Sterne, sagt aus, daß diese einzig den Zufallsgesetzen unter- 
liegen und daher für sie die Maxwell’sche Verteilungsform 
der Geschwindigkeiten gültig ist. Der zweite Teil besteht in 


u a 


b 
Bi 
Y 

r 


105 


einem Zusatzfaktor #F, der gleichsam als Transformations- 
faktor die Tatsache ausdrücken soll, daß der Anblick dieser 
Bewegungen nicht vom Schwerpunkt des Systems aus erfolgt, 
sondern von einem exzentrisch liegenden Standpunkte aus, 
und aus dem daher die Lage dieses Schwerpunktes sowie 
seine Entfernung von der Sonne zu bestimmen ist. Die auf 
Grundlage dieser neuen Verteilungsfunktion gewonnene Dar- 
stellung der Sternzahlen ist in. Tafel I mitgeteilt. Sie zeigt, 
daß die übrigbleibenden Fehler von der gleichen Größen- 
ordnung sind wie. die nach der Zweischwarm- oder der 
Ellipsoidhypothese erzielte, daß daher in dieser Hinsicht die 
neue Hypothese den beiden älteren vollständig äquivalent ist. 

Ihr Vorteil liegt in der Einfachheit des Bildes über das 
System der Fixsterne, zu dem man auf ihrer Grundlage 
gelangt. Es besteht im folgenden: Das System der Milch- 
straße ist ein Schwarm von Sternen, dessen Bewegungs- 
verhältnisse ganz analog sind denen im Schwarm der kleinen 
Planeten. Sowie in diesem die Erde gegenüber der Sonne, 
so nimmt in jenem die Sonne gegenüber dem Schwerpunkt 
aller eine exzentrische Stellung ein und für die Größe der 
Exzentrizität oder die Entfernung der Sonne von diesem 
Schwerpunkt ergibt sich die Parallaxe 0'05, d. i. etwa die 
mittlere Entfernung der Sterne von der Größenklasse 2—3. 
Sowie es in diesem eine Oppositions- und eine Konjunktions- 
stellung der Planeten gegenüber der Sonne und der Erde 
gibt, so teilen sich auch die Milchstraßensterne in zwei 
Gruppen: der Opposition mit negativer und der Konjunktion 
mit positiver Bewegung in Rektaszension. Die ersteren, deren 
Mittelwerte der Koordinaten A = 268°, D= —14 sind, stehen 
der Sonne näher, die zweiten mit A=88°, D=-+14 von 
ihr weiter entfernt. Nur ein wesentlicher Unterschied ist zu- 
nächst vorhanden. Die mittlere Bahnebene der Sterne fällt 
mit der Hauptebene der Milchstraße, wenn man diese als 
die Ebene der größten Sternfülle definiert, nicht zusammen, 
während beide Ebenen für die Planeten identisch sind. In der 
ersteren Ebene liegt das Baryzentrum und die Richtung nach 
dem Apex der Sonnenbewegung und, projiziert man die 
Richtung nach dem Baryzentrum auf die zweite Ebene, die 


104 


der Milchstraße, so erhält man eine neue, die sich als mit 
dem Schwarzschild’schen Vertex der Sternbewegungen iden- 
tisch erweist. Es gibt daher nur eine Vorzugsrichtung im 
System der Fixsterne, das ist die nach dem Apex der Sonnen- 
bewegung. Senkrecht auf ihr — und in der Bahnebene der 
Sterne liegend — hat man sich die Richtung nach dem 
Mittelpunkte oder dem Baryzentrum zu denken und deren 
Projektion auf die Hauptebene der Milchstraße ist der Vertex. 

Überlagert wird das Milchstraßensystem, nördlich und 
südlich, von zwei weiteren Sterngruppen, deren Bewegungs- 
verhältnisse denen in diesem entgegengesetzt sind. Die nörd- 
liche ist von der Sonne weiter entfernt, hat aber eine nega- 
tive Bewegung in Rektaszension, so als ob sie mit ihr in 
Opposition stünde; die südliche dagegen ist der Sonne näher, 
hat aber trotzdem eine positive Geschwindigkeit in Rektaszen- 
sion, Tatsachen, die den Eindruck hervorrufen, daß man es 
in diesen zwei Gruppen mit zwei Ästen einer Spirale zu tun 
Häbe, in der die Sterne in nördlicher und südlicher Richtung 
aus der Milchstraße ausstrahlen. 


1919 Nr. 2 


Monatliehe Mitteilungen 


der 


Zentralanstalt für Meteorologie und Geodynamik 


Wien, Hohe Warte 


48° 14°9' N-Br., 16° 21°7' E v. Gr., Seehöhe 2025 m 


Zeitangaben, wo nicht anders angemerkt, in mittlerer Ortszeit; Stundenzählung bis 24, 
beginnend von Mitternacht — Oh, 


Februar 1919 


106 


Beobachtungen an der Zentralanstalt für Meteorologie 
48° 14°9' N-Breite. 


im Monate 


Abwei- 


stand 


DODOD PDvVvom = oSRhRD oo 


HS BOWOOAH SO RR ADD ONRwr 


Deo Pocımm 


[eriuy 2 ©) 


0.0 


Luftdruck in Millimetern Temperatur in Celsiusgraden 
Tas Tu Abwei-|| ma at 
Tages-Ichungv.| _ Tages- |Ichungv. 
h t 21h t h h 
E = = mittel |Normal- ” 2 = mittell |Normal- 
" stand | 
- — = = = | 
1 746.0. 745.8 745.2 | 45.7 -— 0.2| — 4.5 — 1,9 — 2.4| 2.0 |- 
2 43.5 41,6 40.4 | 41.8 | — 4.1| — 40 — 2.3 — 2.4| 2.91— 
3 139.6 39.6 40.8] 40.0 | — 5.9| — 1.7:— 0.1 — 0.8] 0.91 — 
4 | Al a Na 5 la a) 2 1:13 1.2|— 
5.| 41.5 39.8 37.4 | 39.6 | — 6.2] — 3.8 1.10. 1 1.4 |— 
| | 
6 | 31.4 - 35.6 40.3 | 35.8 | — 9.9| — 4.7 — 2.8 — 1.4 3.0 1— 
7 143.0 4305 47.1 | 44.5 | — 1.2 — 447 = 3.4 — 5.9) 4.6 |— 
8.1.53, 753.6 ‚n4s8i 58.9 12.08.81 eysni 5.0 7.01 — 
9,52 53.9 54.5 | 54.5. —+ 8.9 — 8.7 —5.2 — 6.1 6.7|— 
10 754.4 53.3 52.8 53.5 + 8.01 — 6.4 — 3.1 — 6.3 9.9 
11. 1950.35 48.7..148.17:29.00 3.5 = 1,1247 508) 3.11 
12 | 47.4 48.6 49,7 | 48.6 | + 3.2| — 0.4 A N 0.0 I+ 
IE ERS TOD re I Er 4.1|— 
14 | 43.4 Male :39.9 1 41,5 13,81 15,0 ern] 3.3 |— 
15: 1.37.83. ,786.0 85.27], 36.2 19.01 9.8 — 4.2) — 3.4| 4.3 |— 
ie.| 83.7 338,5 rare pe 2.2 |1— 
17 | 30.9..27.8 25.5 127.9 | -172.2..— 0.3 039 1.2| 0.6 + 
18. .1127.2. 27.1.0283 | 27:5.) —12.5 1.0 5.4 29 3.1)+ 
194/311. 33700 8237, 1,8229 1240 5.3 6.6 5.1 5.7 + 
20, 1,8320 al Berne 92.8.1 ae 126 6.8 1.8 3.4 + 
21 | 37.4 39,9.2..89.7.189.0 |I— 536 0.8 5.6 2 3.11+ 
32.1 88.7. „ah, 85201 39.4 8. 01 6.0 4,8 3.6 -+ 
23 11134/01.N80,5:129 Bla. Br BIBERLEE 7.6 7.0.1348 
24 | 31.7 834.3 35.2 |183,7.| 10.6 7$1 9.8 6.6 7.8 + 
25 71.8028 780.31 1.8548. 11.8020. 28.0 21 9.0 Ba 9.7 + 
BG] 37:2. 87:6 Far azen = B,0) 5.5 1.2 ie TA 
27 | 37.3 36.0. 36.1 | 86.5 |) — 7.3 4.4 8.2 6.2] 6.3I+ 
BBT\ 87.4 139,5 41.7. 89.0.1 4.0 3.8 Bi 4.4 4,7 1-+ 
| 
| | 
| | 
Mittel 739.97 739.68 740.06739.90, —5.18 || — 1.6 a 0.2, 0.2 
| 
| 


| 
| 
| 


Höchster Luftdruck : 
Tiefster Luftdruck: 


725.5 mm am 17. 


755.2 mm am. 


Höchste Temperatur: 13.3° C am 23. 
Niederste Temperatur: — 8.9° C am 9 
Temperaturmittel?: 0.2° C. 


A ur Ir 2, 9). 
2 17, (7,2,9, 9. 


und Geodynamik, Wien XIX., Hohe Warte (2025 Meter), 
16°21-7" E-Länge v. Gr. 


Febrnar 1919. 


Temperatur in Celsiusgraden 


Dampfdruck in mm 


Feuchtigkeit in Prozenten 


Schwarz- Blank- | Aus- | | $ 
Max. Min. | kugelt kugat|stah| 7u 14h gm (Tages-| „m 14h on Tagesl 
lung ? | mittel mittel 
Nav, Max | Yin, | 
| 
—1.8 — 4.9 6 1 I— 8| 2.6 3.1 3.5 3 eu, 78.7590 S3 
—1.9 — 4.0 7 1 |—- 6) 3.0 2.9 3.3 3.1 SOr 7a, 1186 33. 
0.1. -#1.9| 15 5 I— 3) 3.5 3.5 3.9 3.9 SOLBINTTe OR 82 
17 2.0719 7|— 3| 3.2 3.4 3.0 3.2 SU ee 76 
1.3 — 5.0| 23 12 |-11| 2.8 2.3 2.8 2x6 si 46 69 65 
—1.2 — 5.3 5 1 ı— 9| 2.8 2.9 27 2.8 Se lo (65, 76 
1.2. — 6.9 26 8|— 61 2.1 1.6 2.2 2,0 64 46 73 61 
—5.3 — 8.8| 28 7|— 9 1.4 oKL "7 1.6 8952/96, 162 59 
—5.1 — 8.9| 19 4\— 9| 1.5 UA, 20 1.8 blesolm Moz 63 
—3.1 — 7.4| 25 7 —11]| 32.0 1.8 2.9 a) I Sen 62 
—0.5 — 8.1| 23 8s |—-15| 1.8 NZ 6 1.7 65 41 38 45 
2 ls .880|,28 , 12.|—77 2.0 2.4 3.2 2 4 43 32 56 
—2.2 — 6.4| 13 2 |—11| 2.6 3.3 3 3.0 J2nS9, 786 sg 
—0.5 — 5.8| 24 9 I—11| 2.7 3.0 2.9 2.9 80m 069 87 81 
—3.4 — 5.9 1 -2-./—11 12.9 3.1 3.2 3.1 937. 92 3188 91 
—0.3 — 4.5| 20 6 |— 7 3.1 3.4 3.8 3.4 9a Tı 93 38 
0 01.9 4 21-5] 4.4 4.4 4.8 4.5 OMU ION ET 95 
6.2 0.8) 25 16 |— 1l| 4.8 5.8 9.3 9.93 97-1186 7794 92 
7.2 2er 295, 15 = 9.7 9.3 3.2 9.4 807 1 172, 779 7 
ul 0.3] 20 11 |— 4| 5.0 6.2 8.0 9.4 96:71, S4 97 92 
6.3 0.6) 25 14 |— 4| 4.8 6.1 5.1 5.83 29730723730 93 
6.4 — 0.1| 30 16 |— 4| 4.5 9.8 5.7 5.3 98 .83 88 90 
13.3 0.7| 36 22 |— 31 4.7 6.0 6.8 5.8 30) 1.00, 2.87 us 
10.1 A| 297 173.9 5.9 4.9 5.6 7 Bar 767 70 
9.5 1.9] 29 18 |— 3 4.7 Oi! 6.0 5.6 By Alm 289 82 
1.2 3.38) 84 21 |— 1l 5.8 5.2 5.9 9.6 So SAT, 12 
8.3 BED m 220 01 5.5 6.8 6.9 6.4 83 84 m 
6.3 3.3, 31. 17 1| 4.9 4.5 4.8 4,7 32, 69 75 
2.9 - 2.5|21.6 9.6|-5.81 3.6 3.9 4.0 3.8 837 21004280 78 
Höchster Stand des Schwarzkugelthermometers: 36° C am 23. 
Größter Unterschied zwischen Schwarz- und Blankkugelthermometer (stärkste: 


Strahlung): 21° C am 8. 


Tiefster Stand des Ausstrablungsthermometers: —15° C am 11. 


Höchster Dampfdruck: 6.9 mm am 27. 
Geringster Dampfdruck: 1.4 mm am 8. 
Geringste relative Feuchtigkeit: 410/, am 11. 


1 In luftleerer Glashülle. 
* Blankes Alkoholthermometer mit gegabeltem Gefäß, 0:06 n über einer freien Rasenfläche. 


Anzeiger Nr. 9. 


13 


108 


48° 14°9' N-Breite. 


Beobachtungen an der Zentralanstalt für Meteorologie 


im Monate 


| Windrichtung und Stärke | Windgeschwindigkeit Niederschlag B 
| "n.d. 12-stufigen Skala in Met. in d. Sekunde inmm gemessen 3 
Tag u E 
= 
7 14h 21% | Mitteli Maximum I 7h 14h 217775 
| 102) 
1 NeSEeNeeler SSE 8.1 = = 0.0% 
2 SE 1 ESE 1WNWiI|l 2.2 SE 9.3 0.1%x = 0.5%* 
3 W.NWaLENSV TE Ey 20, NW TR) 0.3% 0.0%x _ =] 
4 | WNWIi1 . W 3WNW3l. 4.2 IWW: 11 0.0x 0.4* 0.0x 
5 W ln N W2r Es Din io: 1 NNW 0 5B.1 _ -- _ & 
6 SE 1 NW 3 NNW4| 4.4 | WNW 13.3 0.0%x 0.4x 0.0x* 
7 N PA Narr EN 2150 N 15.0 0.5%* = 0.0x 
8 N’ 24 7NNWIB, ENG le 6:6 NNE 18.1 0.0x _ 0.0x 
9 N AWNW3 NNW 2| 5.8 NW . 15.3 = 0.0x _ 
10 NNW1 . NNW2 NNWIÄl 3.4 |. NNE 11.6 _ 0.0x 
11 I SER NV 25 ANNVE 88.95 3 OYVENIWVaHTZ 1 —_ — _ 
12 WNW5 N.3 0 .— 04.9 W 20.0 _ _ — 
13 NWVeWaLz SEI II FSSE A 125 SSE 6.9 == _ = 
14 0... SE 24 SE ll, Lei SSE 5.3 _ —_ —_ = 
15 — 0 SE Wa ll, 0,56 ESE 3.3 _ _ — — 
16 SE a IE O8, due = | 
17 SB RISSE AI ISEBe| 1R.9 SSE 8.3 —_ — = 
18 Ele N IE NINIW IN 059 SE 7.9 0.08 0.08 — 
19 I WINIWSE DWae 27 WE 22.083 SVEN WIEL3.6 1.5e 0.08 _ 
20 Sie ala SSEN 21, — KO len SE 10.9 _ —_ _ == 
21 NV #0 EINE 1 We ALNMORD S 9.0 0.0=: _ == _ 
22 WINE IE SEHON SSI VEN VER. 3 = — 0.l=e | — 
23 Weal2 SE 85 SSE le 14.3 SSEN E11 .7 0.0= _ — — 
24 NW 4 WNW3 WNW3| 4.6 NW... 16.1 _ 0.08 = _ 
25 N else Bas li Ey 25 NW 1.8 —_ — 0.4e | — 
26 WNWLWNW3 SW 2|' 2.2 W 13.7 0.1® — 0.le | — 
27 — :0 ESE 1 ,SW il; 1.9 W N! — = 6.08 | — 
28 wWNwWw4 W 4 WNW3l 7.1 | wNW 21.9 || 13.1e — 0.08 | — 
Mitte 16 a8) ABI] 7228 11%83 01559 0.8 Fa! 
Ergebnisse der Windaufzeichnungen: 
N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NN 
Häufigkeit (Stunden) 
39 b) 14 6 34, 26°. 68.50) ,28. wis’ 12784 0BPESEEEE 
Gesamtweg in Kilometern 
538 44 57 21: 135 165 532 A587 171 7 v8 92 1080178305 71 
Mittlere Geschwindigkeit, Meter in der Sekunde 
3.8 2,4:1.1 1.0 1.1 1.8 2.2. 2.6018 Ko 41.8 :12:hi72407 Aa 
Maximum der Geschwindigkeit, Meter in der Sekunde 
7.8.78.6.1.9 1,70 287 8.1 5.8 5.383.907 2.27 8.1 6 10:6, 2 


Größter Niederschlag binnen 24 Stunden: 19.1 mm am 
Niederschlagshöhe: 23.8 nm. 


Anzahl der Windstillen (Stunden): 63. 


DR Ur 


1 Den Angaben des Dines’schen Druckrohr-Anemometers entnommen. 


23. 


ii 


und Geodynamik, Wien, XIX., Hohe Warte (202°5 Meter), 


Februar 1919. 


109 


16° 21°7' E-Länge v. Gr. 


W itterungs- 
charakter 


Bewölkung in Zehnteln des 
sichtbaren Himmelsgewölbes 1 


Bemerkungen (Dr TS TerTeTEe 
AZ as 
Th 2 |nS|n® 
Ss=alan 
JB EIE SE 
ggggg | x0 189% u. nachts. 101 101 101 |10.0|10.0 
ggggg | x —5, #071 1550 — 101 101 101x1110.0/10.0 
ggggg | x —830, 900730, 101x0 101 102 [10.010.0 
gefgm | #071 5— 1330, «Fl. abends. 101x0 100 101x0 |10.0|10.0 
cbnfe | rU0 abends. 20 sl 9071| 6.3] 6.3 
ggegf | x 550—640, 2071 115 — 15, 2230 — | 101 101x0 1 10071%0110.0|10.0 
emnfe | x'—1, xFl. 16, x0 18 — 22. er Nez Fa Molse 
1 faden | x0 1630; [JO abends. I 91 801134 079,4 
gefmb | «Fl. 10; &1 mittags, |)! abends. 10071 80-1 100 9:31.97 
cmnaa | x0 730— 12 Zeitw. | Elsa lie SE, 3.072.0 
1 nfmba — | 30 101 10 , | 4.7.4.3 
bbaaa E= z | 80 0 0) 1.0) 0.3 
ngema | 01 vorm. u. abends; =1”? mgns. bis nachm. 101=1 100 0 6.71, 094 
abcaa | .l mens. 0) nz 9 2. Se 
neggg | vl gz. Tag, —! nuV0 mgns.; =1 gz. Tag. 101=1 101=1 101=11|10.0|10.0 
gfegg |=1 mgns. 101=1 100 101. 110.0) 9.0 
ggg | =17? gz. Tag. 101=1 101=1 101=1|10.0/10.0 
fedcg | e) 63° — 10 zeitw. 90-180 6071 30 6.0 
sgmdd ed 1 045 — 710, eo) 730, 101809 ZOLL 101 9,01 9.0 
ggmec |=1 vorm. 101=1 101 0) 6.71 0.4 
ggmea | =:0, =1 mgns. | 101=1 100 0 6.71,3.3 
ngggm | e0 =:0 1730750, 1945 — 22; =1vorm. u. abends. 100=1 101 10180 |10.0/10.0 
cdnfg | 0 mgns., a abends; &° 15. [20 50 100 6.71 6.0 
gfeee | 00 33 — 920, Bl 14. 101 801 70 8.31 8.3 
mbden| e071 1745— 19, 0 mgns. 1 SUR RSG) 80 5.3] 5.0 
ffeed | e' 4—7 zeitw., eTr. 15—16; N! 72. 90180 100-1 30 7.3| 7.3 
egggg | -al mgns., eTr. 17, ei 1735 — Ruzie 10l 101e1| 9.3| 9.0 
gmefg | e971—7, e) 18—21 zeitw. 907180 91 go-1e0| 8.71 8.3 
| 
Mittel | 8.0. 8.0 OS a! 
| 
I ı 
Schlüssel für die Witterungsbemerkungen: 
Ku klar. f = fast ganz bedeckt. k = böig. 
b = heiter. s = ganz bedeckt. l = gewitterig. 
.c = meist heiter. h = Wolkentreiben. m = abnehmende Bewölkung. 
d = wechselnd bewölkt. i = regnerisch. n = zunehmende » 


e = größtenteils bewölkt. 


Der erste Buchstabe gilt für morgens, der zweite für vormittags, der dritte für nachmittags, 
.der vierte für abends, der fünfte für nachts. 


Zeichenerklärung: 
Sonnenschein ©, Regen ®, Schnee x, Hagel 4, Graupeln A, Nebel 


=, 1 


\ebelreißen =:, 


"Tau «a, Reif —, Rauhreif V, Glatteis ro, Sturm ne, Gewitter R, Wetterleuchten <, Schnee- 


-#, Dunst oo, Halo um Sonne $, Kranz um Sonne ®, Halo um Mond (]), Kranz 
um Mond W, Regenbogen f}.. 


eTr. — Regentropfen, xFl. = Schneeflocken, Schneeflimmerchen. 


‚gestöber 


i 1 Ta 
„ohne Index. 


ı 
gesmittel A aus den mit Index versehenen Beobachtungen; Tagesmittel B aus solchen 


110 


Beobachtungen an der Zentralanstalt für Meteorologie und 
Geodynamik, Wien, XIX., Hohe Warte (202°5 Meter), 
im Monate Februar 1919. 


Ver- Dauer |> „ © er Bodentemperatur in der Tiefe von 
dun- ds |2323 
Ta rung Sonnen- 223 E 0.50 m 1.00m 2.00m 3.00m 4.00m | 
scheins |< & 
u in Q 03 &0 Be en 14h 14h 14h 
Braun | Stunden |O > mitte mitte 
1 0.0 0.0 6.0 1.6 3.7 6.6 8.5 9.6 
2 0.2 0.0 927 1.5 3.6 6.5 8.5 9.6 
3 0.2 0.0 11.0 1.8 3.5 6.5 8.4 9.6 
er 0.4 1.3 9.0 1.5 3.5 6.5 S.4 9.6 
5 0.2 5.0 77, 1.5 3.5 6.4 8,3 9.5 
6 0.0 0.0 9.3 1.3 3.8 6.4. 8.3 9.5 
7 0.4 6.6 9.0 3) 3.4 6.4 8.2 9.5 
8 0.5 5.0 11.0 1.2 3.3 6.3 8.2 9.4 
9 0.4 2.0 TREU 1.0 3.3 6.8 8.2 9.4 
10 0.3 9.2 12.0 0.9 3.2 6.3 s.1 9.4 
11 0.4 2.0 8.0 0.8 3.1 6.2 8.8 9.4 
12 1.0 78 8.3 027 3.1 6.2 8. 9.3 
13 0.2 0.3 2.8 0.6 2.9 6.2 8.0 9.83 
14 0.1 6.4 3.7 0.6 3.0 Dres 8.0 9.3 
15 0.1 0.0 0.0 0.5 2.9 6.1 8.0 9.3 
16 Oi 2.2 1.0 0.5 Bat, 6.0, Te 9.2 
7 0.0 0.0 4,3 0.5 2.8 6.0° 7.9 9.2 
18 0.0 2.9 0.0 0.6 2.7 5.9 Ze 9.2 
19 0.5 129 1 220 0.6 I 5.9 12 9.2 
20 0.3 0.1 3.0 0.6 2.7 3.8 7.8 9.2 
21 0.1 27 0.0 0.7 2.7 5.8 7.8 9.1 
22 0.1 1.5 0.05 07 2.3 9.7 ER u, 
23 0.5 9.8 0.0 1. 2.5 SEE 0.7 | 
24 1.3 2.5 7.9 2.2 2.7 8.6 DM 31 
25 0.1 7.5 7.0 2.9 2.8 5.6 7.6 9.0 
26 0.5 0.5 3.7 3.4 3.1 5.6 7.6 3.0 
27 0.5 0.1 4.0 4.0 3.8 5.9 7.6 9.0 
28 1.3 3 11.3 4.4 3.6 0) 1.8 9.0 
Mittel 0.3 2.6 6.0 1.4 a 6.1 8.0 958 
Monats- Sen 72.4 


summe 
Größte Verdunstung: 1.3 mm am 24. und 28. 
Größte Sonnenscheindauer: 7.8 Stunden am 12. 
Prozente der monatl. Sonnenscheindauer von der möglichen: 250/,, von d. mittleren: 850'9, 
Größter Ozongehalt der Luft: 12.0 am 10. u. 19. 


Der vorläufige Bericht über Erdbebenmeldungen in Österreich wird wegen des spär- 
lichen und unregelmäßigen Einlaufes der Meldungen in den nächsten Monaten zusammen- 
fassend nachgetragen. 

Berichtigung. 

In den Hefien von Juli 1918 bis Jänner 1919 sind auf Seite 2 die Indices 1 und 2 
fälschlich zu dem Kopf des Tagesmittels des Luftdruckes und der Temperatur gesetzt, es. 
gehört Index 1 nur zum Kopf »Tagesmittel« der Temperatur, Index 2 aber zu »Temperatur- 
mittel« in der letzten Zeile dieser Seite. 

In den Heften von Dezember 1918 und Jänner 1919 ist auf Seite 4 (unten) bei 
»Ergebnisse der Windaufzeichnungen« der Index 1 fälschlich zu »Gesamtweg in Kilometern« 
bis » Maximum der Geschwindigkeit« gesetzt, er gehört nur zu »Maximum« im obersten Kopf. 


Aus der Staatsdruckerei. 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr. 10 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 3. April 1919 


Erschienen: Monatshefte für Chemie, Bd. 40, Heft 1. 


Das w. M. Hofrat J. v. Hann dankt für die ihm anläßlich 
seines 80. Geburtstages von der Akademie der Wissenschaften 
überreichte Glückwunschadresse. 


Das’ Rektorat” der »Tecehmechen: Hochschulen 
Wien übersendet die Preisausschreibung aus der Karoline 
und Guido Krafft-Stiftung für folgende Aufgaben: 


1. Entwurf von Tragrollensätzen für die Lokomotiv-Prüf- 
anlage (K 2000 und K 1500); 

. Erstattung von Vorschlägen über die Anlage und Ein- 
richtung eines baukonstruktiven Versuchsfeldes (K 1500 
und K 1000); 

3. Entwurf eines großen Hörsaales für Experimentalchemie 

(K 1000 und K 500). 


[Se 


Zeitpunkt der Einreichung: 2. Jänner 1920, mittags 12 Uhr, 
im Rektorat der Wiener Technischen Hochschule, wo auch 
die näheren Bedingungen für die Preisbewerbung erfahren 
werden können. 


Dr. Heinrich Freiherr von Handel-Mazzetti übersendet 
folgenden (16.) Bericht über den Fortgang seiner botani- 
schen Forschungen in Südwestchina. 


Tschangscha, am 29. Oktober 1918. 


Im Laufe des heurigen Sommers war es mir möglich, 
eine Reise in die Gebirge im Südwesten der Provinz Hunan 
zu unternehmen, in ein Gebiet, das bis zu meiner vorjährigen 
Reise botanisch ganz unerforscht war. Trotz der durch den 
Bürgerkrieg hervorgerufenen Schwierigkeiten und des abnorm 
feuchten Sommers waren die Ergebnisse sehr befriedigend. 
Ich reiste am: 2. Mai von hier ab und begab mich über Luti 
direkt nach Sikwangchan bei Sinhwa, wo ich den Mai über 
blieb. Die Kalkberge der Umgebung, die sich bis zu einer 
Höhe von 700 bis 800 m erheben, lieferten eine reiche Aus- 
beute; die interessanteste Entdeckung ist vielleicht die von 
Psendolarix. Von da begab ich mich nach Wukang, um den 
Juni, Juli und halben August in den Bergen.des Yun-chan 
zu verbringen, deren Pflanzenreichtum mir vom Vorjahre her 
bekannt war. Der Urwald im Ausmaße von 5 bis 6 km’, sich 


von 900 bis 1400 m erstreckend, ist aus mehreren Hunderten ' 


von Baum- und Straucharten zusammengesetzt; so enthält er 
beispielsweise nicht weniger als 10 Eichenarten zum größten 
Teile aus. der Sektion »Lithocarpus«. Die krautige Pflanzen- 
welt ist ungemein üppig, aber weniger artenreich; als reicher 
erwies sich die Formation der Buschwiesen in der Umgebung 
des Waldes. Von Farnen allein zählte ich zirka 100 Arten. 
Meine besondere Aufmerksamkeit wendete ich den Kryptogamen, 
vor allem den Moosen und den sehr interessanten Pilzen zu. 
Gegen Ende August trat ich die Rückreise auf einer anderen 
Route nach Sikwangchan an, arbeitete dort noch während 
des September, indem ich meine Aufmerksamkeit insbesondere 
dem Tale des Tsikiang zuwendete und kehrte Mitte Oktober 
über Siangsiang hierher zurück. Meine Pflanzensammlungen 
erfuhren durch diese Reise eine Bereicherung um mehr als 
1500 Nummern. Überdies sammelte ich Insekten aller Gruppen, 
sehr bemerkenswerte Spinnen, Schlangen, eine Trionyx. u. a. m. 
Die photographischen Aufnahmen der wichtigsten Pflanzen- 


113 


formationen sind trotz vieler Schwierigkeiten gut gelungen. 
Ich bereite jetzt eine Abhandlung vor, welche eine Ergän- 
zung zu der im Vorjahre übersendeten Studie über die Vege- 
tation von Hweitchou und Hunan bilden soll. 

Ich bleibe bis auf weiteres hier und widme mich jetzt 
der Konservierung aller in den hiesigen Gewässern vorkom- 
menden Fische. 


Das w. M. Prof. J. v. Hepperger übersendet eine Abhand- 
lung von Dr. J. Holetschek mit dem Titel: Ȇber die in 
der Verteilung der uns bekannten Kometen nach- 
gewiesenen Perihelregeln und ihre Bestätigung durch 
die Kometen seit 1900.« 


Der Verfasser hat seine Untersuchungen über die in der 
Verteilung der uns bekannten Kometen bemerkbaren Regeln 
nunmehr auch auf die Kometen des Zeitraumes 1900 bis 1917 
ausgedehnt. Die Regeln können sämtlich auf Verschiedenheiten 
der Sichtbarkeitsverhältnisse, nämlich darauf zurückgeführt 
werden, daß die Kometen ‘umso leichter (schwieriger) gesehen 
und daher im allgemeinen auch entdeckt werden, je bedeutender 
(geringer) die Helligkeit und je günstiger (ungünstiger) die 
Stellung ist, die-sie für uns erreichen. 

Die Helligkeit eines Kometen wird für uns umso größer, 
je mehr seine Erdnähe mit der Zeit seiner Sonnennähe zu- 
sammentrifit. Dieser: Umstand hat zwei Regeln im Gefolge. 

Die auffallendste besteht darin, daß die infolge günstiger 
Sichtbarkeitsverhältnisse zu unserer Kenntnis  gelangenden 
Kometen umso zahlreicher sind, je kleiner die Differenz 
zwischen: der heliozentrischen Länge des Periheliums 7 und 
der zur Zeit des Periheldurchganges 7 stattfindenden helio- 
zentrischen Länge der Erde Z—+ 180° ist. In welchem Grade 
diese Regel bestätigt wird, zeigt das hier beigesetzte Ergebnis 
einer Abzählung, in welcher alle Kometen von 240 bis 1917 


. berücksichtigt und nebst den Längen (/, L) auch die Rektaszen- 


sionen (a, A) mit in Betracht: gezogen sind. 


Intervall I—- L+180° a — A 180° 
0° bis 130° 135 122 
30.» ...60 19 100 
BONTES, N 190 68 61 
90: 2204120 43 47 
120, 35 41 36 
1507%7#180 43 43 
409 409 


Daß die Zahlen des letzten Intervalls nicht kleiner, sondern 
sogar etwas größer sind als die des vorletzten, hat seinen 
Grund einfach darin, daß sich hier besonders die Kometen 
mit kleinen Periheldistanzen und überhaupt solche zusammen- 
gefunden haben, die nicht im Perihelium, sondern nur weit 
davon in die Erdnähe und zur Beobachtung gelangen konnten. 
Diese bilden daher für sich allein wieder eine regelrechte 
Gruppe. 

Die zweite, allerdings minder auffällig hervortretende 
Regel zeigt sich in der Weise, daß die Perihelbreiten 5 der 
uns bekannten Kometen umso kleiner sind, je größer die Peri- 
heldistanzen g der betreffenden Kometen sind, und kann damit 
begründet werden, daß bei dieser Kombination am leichtesten 
ein Zusammentreffen des Periheldurchganges mit der kleinsten 
Distanz von der Erde und somit die größte Wahrscheinlichkeit 
der Auffindung ermöglicht wird. Dasselbe ist, wenngleich in 
einem etwas anderen Grade, auch bei den Deklinationen der 
Perihelpunkte 6 zu erwarten, Wie weit diese zweite Regel 
bestätigt wird, zeigen die hier zusammengestellten Mittelwerte 
Du And 9. 

Diese zwei Regeln gelten für die Erde überhaupt, d. h. 
ohne Rücksicht auf eine bestimmte Hemisphäre. Es ergeben 
sich aber sofort mehrere Abzweigungen, wenn auch auf die 
Stellung der Kometen zum Standpunkt der Beobachter und 
insbesondere darauf Rücksicht genommen wird, daß die meisten 
Kometenentdeckungen bisher unter höheren geographischen 
Breiten einer der zwei Erdhemisphären gemacht worden sind. 


Periheldistanz q Pan Om zul. der | 
== Zr Kometen 

0°00.bis 0°'24 35°9 3423 34 

0:25 » 0'49 310 32°5 58 

0 50.» 074 31-7 324 78 

02791124 02.99 28°8 30-2 95 

1.00, 2221524 233 26°5 60 

E25 31. 49 19:8 24°9 34 

| 1:50 >17 17°4 24:6 20 

| — 173 211,6 23°3 30 
409 | 


Aus der Zahl der unter günstigen Umständen erschienenen 
und daher am leichtesten zu unserer Kenntnis gelangten 
Kometen läßt sich andrerseits mit einiger Sicherheit auch 
entnehmen, wieviel Kometen, abgesehen von sonstigen Ursachen, 
schon infolge größerer Differenzen zwischen Z und Z—+ 180° 
für uns verloren gehen; und da die Verluste dieser Art nicht 
nur beträchtlich sondern großenteils sogar unvermeidlich sind, 
ist die Folgerung nicht abzuweisen, daß wir sehr weit davon 
entfernt sind, aus der Verteilung der uns bekannten Kometen 
sichere Schlüsse auf die Verteilung der Kometen überhaupt 
ziehen zu können. 


F. Heritsch übersendet eine Abhandlung: »Über Bron- 
tidi der Ranner Erdbebenserie des Jahres 1917 nebst 
Bemerkungen über Erdbebengeräusche.« 


Ausgehend von der Erörterung von  Brontidi vor und 
nach dem Ranner Erdbeben vom 29.1. 1917 wird der Zusam- 
menhang dieser Erscheinung und habituellen Stoßgebieten 
betont. Die Brontidi werden auf Spannungsauslösungen, ana- 
log den Bergschlägen, zurückgeführt. Starke Bergschläge ver- 
ursachen Schallerscheinungen und Erschütterungen der Erd- 
oberfläche, leichtere Bergschläge aber bringen nur Brontid! 
hervor. Die Ursache der Schallerscheinungen bei Erdbeben sind 


116 


in den Ripple-Wellen zu suchen; deren Periode ist deratt, 
daß sie Töne zwischen dem g der Subkontraoktave und dem 
as der Kontraoktave hervorbringen. Die Ursachen von Brontidi 
und Erdbeben sind Spannungsauslösungen; während aber bei 
den Brontidi nur Ripple-Wellen auftreten, kommen bei den 
Erdbeben Wellen mit relativ großer Amplitude und langsamer 
Periode dazu. 


Ing. Dr. Ernst Adler in Wien übersendet ein versiegeltes 
Schreiben zur Wahrung der Priorität mit der Aufschrift: »Die 
Selbsterregung des Induktionsgenerators.« 


Das w.M. Hofrat Karl Grobben legt eine Arbeit vor, 
betitelt: Ȇber die Muskulatur des Vorderkopfes der 
Stomatopoden und die systematische Stellung dieser 
Malakostrakengruppe.» 

In der Abhandlung werden die der Bewegung des Vorder- 
kopfes dienenden und die im Vorderkopfe selbst gelegenen 
Muskeln von Sguilla beschrieben und mit den bisher be- 
kannten Muskeln der Dekapoden verglichen. In einer folgenden 
Erörterung der Ansichten über die verwandtschaftlichen Be- 
ziehungen der Stomatopoden sind die Gründe dargelegt, die 
für eine Ableitung der Stomatopoden von ehemaligen Proteu- 
malakostraken sprechen. Anknüpfend wird die systematische 
Stellung des fossilen Pygocephalus erörtert, dem auch gewisse 
Ähnlichkeiten mit. Stomatopoden zugeschrieben wurden, der 
sich jedoch als Schizopode erweist, 


Das w.M. Prof. Wirtinger legt drei weitere Mitteilungen 
des Prof. Dr. Roland Weitzenböck in Prag vor: »Über 
Bewegungsinvarianten.« 


XIN. Mitteilung: 


Der Verlasser bringt eine geometrische Diskussion der 
wichtigsten Bewegungsinvarianten zweier Punkte, Geraden 
und Ebenen. Das volle System der Invarianten dieser Figur 
im Raume wurde in der VIII. Mitteilung aufgestellt. 


IN? 


XIV. Mitteilung: 


In dieser, Arbeit wird ein kleinstes voliständiges System 
von Bewegungsinvarianten für einen Punkt, eine Gerade, eine 
Ebene und einen R, im vierdimensionalen Raume aufgestellt. 
Es besteht aus 50 Invarianten. 


XV,Mitteilung: 


Im Anschlusse an die vorhergehende Mitteilung werden 
die wichtigsten Invarianten einer geometrischen Diskussion 
unterzogen. Es werden die einfachsten Formeln für Abstände 
und Winkel von linearen Räumen des R, aufgestellt. 


Das w. M. Hofrat J. M. Eder legt eine Abhandlung vor 
Busse dem snlstel.sPhotometrie, der siehtbaren Lıichrt- 
strahlen mit lichtempfind!ichen Leukobasen organi- 
scher Farbstoffe sowie mit Chlorsilber- und Chromat- 
papier.« 


IıyEs wird „die. Lichtempfindlichkeit.der. Leuk.o- 
basen von Brillantgrün, Malachitgrün, Krystallvio- 
lett, Rhodamin 3, 3B und 6G, Leukanilin und Leuko- 
blau zur Messung der Helligkeit der roten, gelben und grünen 
Lichtstrahlen benutzt. Sie sind für die komplementäre Farbe 
entsprechend dem Absorptionsmaximum lichtempfindlich und 
färben sich in ihrer ursprünglichen roten oder grünen oder 
dergleichen Farbe. Die mit Kollodium gemischten Leukofarb- 
stoffe übertreffen an Farbenempfindlichkeit weit die bisher in 
der Photometrie versuchten, mit Farbstoffen sensibilisierten 
Bromsilber- oder Chlorsilberpapiere. ß 

2. Außer dieser Lichtempfindlichkeit für langwelliges Licht 
sind die Leukobasen für Blauviolett und für Ultraviolett bis 
\= 3000 und darüber hinaus empfindlich. 

3. Hinter Graukeilphotometern auf Glas ist das Rhod- 
amin 6G ein vorzügliches Photometerpapier, für Grün 
und Gelbgrün, Leukobrillantgrün besitzt dominierende 
Empfindlichkeit rotes und orangefarbiges Licht. Das Leu- 
kobrillantgrün reagiert photometrisch ungefähr auf denselben 


118 


Spektralbezirk, der bei der Chlorophylibildung in der 
lebenden Pflanze in Betracht kommt, wodurch dieses Photo- 
meterpapier für die Pflanzenphysiologie Beachtung verdient. 

4. Die Lichtempfindlichkeit der Leukobasenpapiere und 
die Intensität ihrer Färbung ändert sich mit der Konzentration 
der Leukobasenlösung, der Dicke der aufgegossenen Leuko- 
basen-Kollodiumlösung, der Temperatur und wird auch durch 
iremde Bestandteile beeinflußt. Man hat deshalb die relative 
Empfindlichkeit dieser Papiere bei Magnesiumlicht, bezogen 
auf Bunsen’sches Normal-Chlorsilberpapier, vor Beginn der 
photometrischen Messung festzustellen. 

5. Die relative Farbenempfindlichkeit frischer, nahezu 
weißer oder wenig gefärbter Leukobasenpapiere gegen Drei- 
farbenlichtfilter ist annähernd konstant, verändert sich aber 
bei den durch Selbstzersetzung stärker gefärbten Papieren, 
weshalb sie analog dem Bunsen’schen Chlorsilberpapier am 
Tage ihrer Herstellung verarbeitet werden müssen. 

6. Während die Leukofarbstoffe besonders für den lang- 
welligen sichtbaren Spektralbezirk als lichtempfindliche Schich- 
ten verwendbar sind, erscheinen Chromatpapiere zur Mes- 
sung der Lichtintensität im blauen Spektralbezirk, das Bunsen- 
sche Chlorsilber-Photometerpapier für das äußere Violett 
und Ultraviolett maßgebend. Als neuartiges haltbares 
Chromat-Photometerpapier für blaues Licht wird eine 
neue haltbare Präparation mit Kaliummonochromat und 
Ammoniumoxalat angewendet. 

‘. Die Lichtreaktion bei dem Leukobasenpapier ist eine 
Photooxydation, beim Chromat- sowie beim Chlorsilberpapier 
ein Reduktionsvorgang. 

8. Statt des Bunsen’schen Normal - Chlorsilberpapiers 
können käufliche Sorten von mehrere Monate lang haltbarem 
Chlorsilber-Zelloidinpapier verwendet werden, da ihre 
Farbenempfindlichkeit parallel läuft. Es soll jedoch vor Ver- 
wendung bestimmter Sorten außer der Empfindlichkeitsprobe 
bei ungedämpftem Magnesiumlicht auch eine relative Empfind- 
lichkeitsprobe hinter Dreifarbenfiltern (im Tageslicht oder elek- 
trischen Bogenlicht) im Vergleich mit Originalbunsenpapier 
machen, wozu man hinter drei gleichen Graukeilphotometern 
arbeitet. 


119 


9. Die zu diesen Versuchen verwendeten Violett-Grün- 
und Rotfilter sowie die blauen Flüssigkeitsfilter aus Kupfer- 
oxydammoniak und gelben Filter aus Kaliummonochromat- 
lösung sind in der Abhandlung genau definiert. 


Das w. M. Hofrat C. Toldt überreicht den vorläufigen 
Bericht des Fräulein Dr. phil. Hella Schürer von Wald- 
heim über ihre anthropologischen Untersuchungen in dem 
Flüchtlingslager von Niederalm. 

Dr. phil. Hella Schürer von Waldheim hat in den 
Monaten September und Oktober des Jahres 1917 und im 
Jänner sowie März und April des Jahres 1918 rassen- 
anthropologische und vererbungswissenschaftliche 
Untersuchungen an wolhynischenFlüchtlingsfamilien 
vorgenommen. 

Die Akademie der Wissenschaften unterstützte diese 
Arbeiten mit einer Subvention von 1000 Kronen. 

Es wurden im ganzen 754 Personen gemessen, und zwar 
195 Frauen, 101 Männer und 458 Kinder. Die vererbungswissen- 
schaftlichen Untersuchungen verteilen sich auf 70 Familien, 
bis jetzt liegen 156 Photographien fertig vor, das somato- 
skopische und somatometrische Material ist auf 48 Blatt 
Maßtabellen und 24 Blatt Vererbungstabellen übersichtlich 
zusammengestellt. Bei der rassenanthropologischen Bearbeitung 
wurde auch das mit Unterstützung der Akademie der Wissen- 
schaften in den Kriegsgefangenenlagern gewonnene Material 
herangezogen. 

Die im Lager Niederalm bei Salzburg untergebrachten 
Flüchtlinge stammten aus dem westlichen Wolhynien, aus 
den Bezirken Pinsk, Luzk, Kowel, Dubno, Kremjanezj, 
Potschajiw. Sie stellen raßlich ein starkes Gemisch dar, 
doch ließen sich 5 Rassentypen gut herausschälen: ein 


finnischer, ein mongolischer, ein alpiner und dinarischer und 


ein nordischer. Im Gegensatze zu Rudnyckyj wurde festge- 
stellt, daß die dinarische Beimischung unter den Wolhyniern 


' nicht so groß ist, hingegen der finnische und alpine Einschlag 


den Wolhyniern den charakteristischen Anstrich gegeben 


120 


hat. Diese Beobachtung bestätigt sich auch an dem zahlen- 
mäßig behandelten Material: Körpergröße, Kopf- und Gesichts- 
form entsprechen im Durchschnitt einer mehr finnischen und 
alpinen Menschheitsgruppe, während die Maxima und Minima, 
in welchen diese obgenannten Merkmale schwanken, in den 
für die nordische, beziehungsweise dinarische Rasse charakte- 
ristischen Werten zu finden sind. Haar- und Augenfarben 
richten sich auch nach dem Beitrage der zur Mischung 
gelangten Rassen. 

Im Anschlusse an die rein anthropologischen Fragen 
wurden noch einige rassenbiologische Aufzeichnungen ver- 
wertet. Die Kindersterblichkeit, hauptsächlich im Säuglings- 
alter, ist außerordentlich groß (31°05°/,) infolge der unglaublich 
unhygienischen häuslichen Zustände; auf eine Ehe entfallen 
durchschnittlich 7°36 lebend geborene Kinder, so daß, wäre 
der Abbruch nicht durch die Säuglingssterblichkeit gegeben, 
die wolhynische Bevölkerung sich ungemein vermehren müßte. 
Ernährungszustand und Konstitution sind fast durchwegs 
gut. Die Stillfähigkeit der Mütter ist, trotzdem man nach der 
stark vorhandenen Zahnkaries das Gegenteil erwarten würde, 
nicht beeinträchtigt. 

Zu den vererbungswissenschaftlichen Untersuchungen 
wurde das anthropologische Meßblatt von R.Pöch herangezogen, 
außer den auf diesem enthaltenen Punkten wurden noch 
Beobachtungen über Antihelix und Handlinien in Form von 
neuen Schemen beigefügt. Auch wurden alle erblichen, außer- 
halb des Meßblattes liegenden Eigentümlichkeiten vermerkt. 

Trotzdem nur zwei Geschlechtsfolgen, nämlich Eitern 
und Kinder zur Aufnahme gelangten, darf man von den Auf- 
zeichnungen ein günstiges Ergebnis erwarten. In einer auf 
einer größeren Vorfahrenreihe fußenden Untersuchung würden 
sich die Merkmale genealogisch wiederholen, während wir 
‚sie hier nebeneinander konstatieren können. 

Dabei stellt es sich heraus, daß Merkmalkomplexe, wie 
z. B. die Form der Ohrmuschel, durchaus nicht eine Einheit 
bilden, sondern auf viel mehr Erbeinheiten zurückzuführen 
sind, als man vermuten möchte: es mendelt die Gestalt des 
Öhrläppchens selbständig, ebenso die Breite und Wölbung 


121 


des Antihelix, sowie die Einrollung des Helixrandes. Das- 
selbe sei von den Merkmalen der Lidspalte und der Nase 
gesagt: so vererben sich z. B. Gestalt der Nasenlöcher und 
des Nasenrückens, ebenso wie die Höhe der Nasenwurzel 
ganz selbständig. Diese oft bis in die kleinsten Einzelheiten 
zu verfolgende Selbständigkeit in der Vererbung Konnte von 
den bisherigen Erblichkeitsforschern nicht festgestellt werden, 
weil sie an der Hand des Meßblattes und ihrer Aufzeichnungen 
arbeiteten, „während die vorliegenden Ergebnisse aus der 
unmittelbaren Gegenüberstellung von Eltern und Kindern 
gewonnen und immer wieder an den Personen selbst kon- 
trolliert wurden. 

Es ist nun Aufgabe solcher vererbungsanalytischer 
Untersuchungen, die Erbeinheiten zu bestimmen, welche zur 
Bildung eines Merkmales führen. So scheinen an dem Zu- 
standekommen der Haarfarbe ein, beziehungsweise zwei 
Erbeinheiten für Farbe beteiligt zu sein, ein rötlich-gelbes 
und ein braun-schwarzes Pigment. Histologisch entspricht dem 
rötlich-gelben Farbstoff das »diffuse« Pigment, chemisch das 
»Lipochrom«; dem braunschwarzen das körnige Pigment der 
Rindensubstanz, beziehungsweise das »Melanin«. Die mensch- 
lichen Haarfarben sind durch den verschiedenen Gehalt an 
Farbsubstanz, durch die Art der Fermente und durch die 
Alkaleszenz des Gewebes bedingt, wobei sich rassenhafte 
Unterschiede feststellen lassen. Für die Mongolen und die 
mit ihnen verwandten Finnen ist lipochromfreies, melanin- 
hältiges Haar in allen Stufen von fahlblond über rot zu 
blau-schwarz charakteristisch, für die nordische Rasse ein 
rein lipochromhältiges Haar, das zwischen rotblond und 
flachsblond schwankt, für Neger, Buschmänner, Negritos, 
Australier, Araber, Armenier usw. ein sowohl melanin- wie 
lipochromhältiges Haar. Die verschiedenen Abstufungen von 
braun-schwarz zu dunkelblond sind das Resultat von 
Kreuzungen. 


7 
Das k. M. Bergrat Fritz Kerner v. Marilaun überreicht 
oO 
folgende zwei Arbeiten: 


1. »Zur Kenntnis der zonalen Wärmeänderung im 
reinen Land- und Seeklima.« 


Auf Grund der von Zenker, Liznar, de Marchi, Precht 
Spitaler und Forbes gefundenen Paralleikreistemperaturen 
im reinen Lard- und Seeklima wurde untersucht, inwieweit 
die Annahme zutreffe, daß der Temperaturabfall im Seeklima 
ungefähr dem Cosinus, im Landklima dem Cosinusquadrat 
der geographischen Breite proportional erfolge. Es wurden zu 
dem Zwecke zunächst die dieser Annahme entsprechenden 
Werte und dann die Ausdrücke Acos®+ Bcos?». abgeleitet 
und mit den gefundenen Temperaturen verglichen. 

Dann wurde für jeden‘ zehnten Parallel der. Exponent 
von cos», welcher der gefundenen ‘Temperatur entspricht, 
bestimmt. Hierbei zeigte sich, daß diecer Exponent nur bei 
den Seeklimawerten von Forbes ungelähr konstant ist und 
bei seinen Landklimawerten und Precht’s Solltemperaturen 
eine lineare Änderung mit dem Bogen der Breite zeigt, in 
allen übrigen Wertereihen sich aber gemäß einer Sinuskurve 
ändert. Für die Seeklimawerte von de Marchi und für beide 
Klimawerte von Liznar ergibt sich in. abgerundeter Form als 
Exponent der Ausdruck 2— cos», welcher besagt, daß die Wärme- 
änderung von einer zu cosp proportionalen am Äquator in 
eine zu cos?» proportionale am Pol übergeht. Für die See- 
klimawerte Zenker’s wurde ein dem Ausdruck 21/, —cos%, 
für seine Landklimawerte ein dem Ausdruck 2?/,—cos® nahe- 
kommender Exponent gefunden. Daß der Temperaturabfall 
bei Liznar und Zenker im Land- und Seeklima fast gleich 
rasch erfolgt, stimmt zu dem Umstande, daß die nach Zenker 


von Land und Meer empfangenen Wärmemengen — ausge- 
nommen das Zirkumpolargebiet — dieselbe zonale Änderung 
zeigen. 


2. »Die zonale Änderung des jährlichen Ganges der 
Luftwärme.« 


Mit Hilfe der aus Buchan’s Isothermenkarten von 
F. Hopfner abgeleiteten mittleren Monatstemperaturen der 


Breitenkreise wurde untersucht, inwieweit eine Beziehung 
zur Bedeckungsart dieser Kreise, wie sie Forbes für das 
Jahresmittel der Luftwärme aufzeigte, innerhalb der gemäßigten 
Zone auch für den jährlichen Wärmegang bestehe. Das Maximum 
läßt wohl eine wachsende Verspätung mit zunehmender 
Wasserbedeckung erkennen; die Änderung vollzieht sich aber 
äußerst ungleichmäßig. Das Minimum zeigt aber entgegen 
aller Erwartung in den gemäßigten Südbreiten frühere Ein- 
trittszeiten als in den nördlichen. Als Ursache dieser Unstimmig- 
keit ist eine Verschleierung des Normalzustandes durch einzelne 
größere Abweichungen oder eine Ungenauigkeit in der Zeich- 
nung der von Hopfner zur Ableitung seiner Werte benützten 
Karten zu’ vermuten. 

Eine deutlichere Beziehung zur Bedeckungsart zeigt sich 
bei den durch den Sinus und den durch den Arcus der 
geographischen Breite dividierten Amplituden der mittleren 
Parallelkreistemperaturen, von denen die nordhemisphärischen 
zwecks Vergleichbarmachung mit den südlichen um ein 
Fünfzehntel ihres Wertes erhöht wurden. Zum Schlusse 
wurden noch die Eintrittszeiten des Mediums und ihre Ab- 
stände von den Extremterminen bestimmt. 


Aus der Staatsdruckerei iu Wien. 


ur SuuRsissEt, Sruduchien ‚roborak, daran aha u 2% 
ern 23 Br sta: SlW: salz 1928ib sen: pe 
Banic na, ssldlstange rules Saakatuud ah. Zain 
Bun ABM Et „HE olr sd LRRuNN N PERL, il, No ht ihr 

| ehr 2 cudene lot. navi gern olitesrlone ‚sig A 

ER, cs Kae slöv Erin SF ‚Ha ER Aettöäheft 


i. 


sta. 4998 Falles, namen? "ac '& EEE 
id art RN BEN art Mag near‘ En m 
"2 man seh age PEN EEE nö 
starte rd ERBEN Tetakinght Bab atinsisktaisv‘ Sr 
HN Ay Ri Nodaiansgnl Suraı#ho nagarg: Ey HG “ 
Si kai ara‘ vr var ı a une? dr ER aigbH on ie 


IR He EG Inder He yo Ag 
take, Se Frag itolsat ae Baditsissgl RUHE Sieb an | 
0b, DA nah deu 'neh Kar ehare, sb’ Bub 

sale ah ER ads ET ee ROH odEee gi 
age buch si. rerıeb oe? dert imee 

5 BR Se nauofBl ie, ‚dia Hp *rkre En r $ 


Br GE her insitis Bahe Sastn 
Al Has tab‘ BER NL töos 


x‘ 


ERBEN: We Ahrkeert bedingt Rh 


Qt MEINEN AR eu a 


Pu An ri N TR er y 4 
UararT h: Pr. ARE ERLRE eK TURET. NOT, Dome De, 
. nv er N, I a a N ind ARRRN a 


ae un: Ir werk 
Baer Tr eine dat 
ee ö | Bu en 


ns = Ku A ro 


i Er \ 
or 


N 


= 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr. 11 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 10. April 1919 


Erschienen: Sitzungsberichte, Bd. 127, Abt. IIa, Heft 5, Heft 6, Heft 7; 
Abt. IIp, Heft 7, Heft 8. 


Das k.M. Hofrat A. Tschermak in Prag dankt für die 
ausgesprochene Bereitwilligkeit der Akademie, ihm für elektro- 
und thermogastrographische Studien seinerzeit eine Subvention 
zur Verfügung stellen zu wollen. 


Dr. B. Kubart in Graz übersendet folgende Mitteilung: 
»Ein tertiäres Vorkommen von Pseudotsuga in Steier- 
mark.« 

Zu Bauzwecken für das Gefangenenlager in Feldbach 
(Steiermark) wurde in den Jahren 1914 bis 1918 das mio- 
zäne Basalttuffvorkommen von Weisenbach bei Feldbach aus- 
gewertet. In dem Tuffe fanden sich reichlich Holztrümmer 
eingelagert. 

Die Holzstücke sind gebräunt, aber noch nicht in Lignit 
umgewandelt und befinden sich fast durchgehends in einem 
ganz ausgezeichneten Erhaltungszustande. Auf Grund einer 
eingehenden Untersuchung des zur Verfügung stehenden 
Materials wurde als häufigst vertreten das Holz der Koni- 
ferengattung Pseudotsuga nachgewiesen, die heute nur mehr 


_ an der pazifischen Seite von Nordamerika und in Japan vier 


lebende Vertreter besitzt. 


 Prill hat 1913 laut Referat im Botanischen Zentralblatt, 
Bd. 123, aus tertiären Schichten Schlesiens auch eine Pseudo- 
!suga, und zwar unter dem Namen Ps. macrocarpa Mayr 
miocenica Prill, beschrieben, wobei als Charakteristikum — 
laut Referat — Spiralverdickungen in den Quertracheiden 
angegeben wurden, ein Merkmal, das aber schon allein auf 
Grund umfassender Literatureinsicht ganz sicher nicht als 
Artmerkmal benutzt werden kann. Ein genauer Vergleich der 
beiden — übrigens meines Wissens ersten — Funde in Europa 
war bisher bei der Unmöglichkeit der Erlangung der Prill- 
schen Arbeit nicht durchführbar. Ob sie also derselben Art 
angehören oder nicht, muß augenblicklich dahingestellt bleiben; 
im negativen Falle würde es sich empfehlen, den steirischen 
Fund als Pseudotsuga stiriaca zu bezeichnen. 

Ganz abgesehen von der allgemeinen Bedeutung, welche 
das sichere Auffinden von Psendotsuga in Europa besitzt, hat 
der steirische Fund noch seine besondere Lokalbedeutung 
durch die direkte Nachbarschaft und Gleichaltrigkeit mit den 
fossilen Pflanzenfunden von Gleichenberg, welche schon durch 
Unger 1853 einen Bearbeiter gefunden, aber längst eine Neu- 
bearbeitung verlangt hatten, worüber Näheres die ausführliche 
Arbeit mitteilen wird. 


Das k. M. Hofrat A. Wassmuth in Graz übersendet eine 
Abhandlung von Dr. Adolf Smekal mit dem Titel: »Zur 
Theorie der Röntgenspektren (Zur Frage der Elek- 
tronenanordnung im Atom).« 

Von Born und Lande ist kürzlich festgestellt worden, 
daß die Kräfte, welche die Stabilität eines regulären Krystall- 
gitters bedingen, im wesentlichen durch die einfache elektro- 
statische Wechselwirkung der in den Gitterpunkten befindlichen 
Ionen erklärt werden können. Bei der anschließenden Kom- 
pressibilitätsberechnung hat sich nun das wichtige Resultat 
ergeben, daß die Konsequenzen der Bohr’schen Vorstellung 
mehrfach besetzter Elektronen»ringe« zu keiner Überein- 
stimmung mit der Erfahrung führen können. Born hat daher 
ein kubisches Atommodell in Vorschlag gebracht, von dem 


127 


er zeigen konnte, daß es wenigstens qualitativ zu einer 
solchen Übereinstimmung führt. 

Das Nichtzutreffen der Elektronen»ring«-Vorstellung müßte 
sich, wenn wirklich vorhanden, naturgemäß vor allem in der 
Theorie der Röntgenspektren fühlbar machen. Hier hatte die 
Bestimmung der Elektronenzahlen des ersten und zweiten 
Ringes aus den Messungen der K„-Linie durch Kroo zwar 
eine gute numerische Übereinstimmung, hingegen aber einen 
auffallenden Widerspruch mit dem periodischen System der 
Elemente gebracht. In der vorliegenden Arbeit wurde nun 
angestrebt, die Besetzungszahlen der beiden innersten »Ringe«, 
unabhängig von dem Kroo’schen Ergebnis auf Grund der 
Messungen der L.„-Linie zu berechnen, um auf diese Weise 
das letztere und damit die Elektronenring-Hypothese einer 
Prüfung unterziehen zu können. Zu diesem Zwecke wurde 
außer dem K- und ZL-Ringe ein dreiquantiger M-Ring ange- 
nommen, von dem ein Elektron während des Emissionsaktes 
von L.„ auf den L-Ring übergehen sollte, ferner wurde auch 
die Möglichkeit des Vorhandenseins eines zweiquantigen 
l-Ringes oder eines dreiquantigen M’-Ringes zwischen L- und 
M-Ring eingehend diskutiert. Weiter kann auch versuchsweise 
angenommen werden, daß die Emission von L, an einen 
Elektronenübergang zwischen /- und M-Ring geknüpft wäre. 
In allen erwähnten Fällen ergab sich, daß die Kroo’schen 
Besetzungszahlen mit einer numerischen Darstellung von ZL, 
auf keinen Fall verträglich sind. Die mit Berücksichtigung 
der Störungen zwischen den einzelnen Elektronenringen 
gefundenen Resultate weichen nur fast unmerklich von den 
störungslos berechneten ab, so daß die gefundene Nichtüber- 
einstimmung auch auf geneigte Ringe ausgedehnt werden 
kann, wo bei rein elektrostatischer Rechnung die Störungen 
im allgemeinen kleiner sind als im komplanaren Fall. Nimmt 
man gewisse, durch das periodische System gerechtfertigte, 
aber doch noch sehr weit gesteckte Beschränkungen für die 
Elektronenzahlen an, wie hauptsächlich die, daß die Zahl 
der Elektronen des K-Ringes kleiner sein muß, als jene des 
 L-Ringes, so ergibt sich überhaupt keine brauchbare 
Darstellung für Z,„ auf Grund der Ringvorstellung. Die 


128 


Abweichungen der nach den günstigsten Formeln berechneten 
Frequenzwerte von den gemessenen betragen sogar erheblich 
mehr als das Zehnfache jener, welche z. B. dem Unterschiede 
von L, und Z„ beiz=41, Nb, wo L,' zuerst isoliert gemessen 
worden ist, entsprechen würde. Abgesehen von der Ver- 
nachlässigung aller magnetischen Einflüsse, die aber 
bei komplanarer Anordnung auf jeden Fall gerecht- 
fertigt ist, beruhen diese durch zahlreiche Tabellen 
numerisch gestützten Schlüsse bloß auf der Voraus- 
setzung exakter Giltigkeit der Bohr’schen Frequenz- 
bedingung. 

Da neben den diskutierten Annahmen über den Emissions- 
mechanismus von ZL„ (wegen der angenäherten Giltigkeit der 
Kossel’schen Frequenzbeziehungen zwischen den Serien) keine 
weiteren in Betracht zu kommen scheinen (die Unverwend- 
barkeit der Debye’schen Vorstellungen ist schon früher für X, 
dargetan worden, vgl. F. Reiche und A. Smekal, Ann. d. 
Phys. 57; 'p. 124, 1918, A. Smekal, 'Wien, Ber., 127. Bd., IIa, 
p. 1229), wird man in Übereinstimmung: mit dem von Born 
und Lande aus ganz anderen Wirkungen erschlossenen 
Befunde anzunehmen haben, daß die Elektronen»ring«- 
Vorstellung, abgesehen etwa vom innersten »Ringe« 
zu Gunsten einer räumlichen Anordnung der Elek- 
tronen im Atom fallen gelassen werden muß. Die hier 
gegebene Begründung wäre übrigens wegen des universellen 
Aufbaus der Elemente nach der Van den Broeck’schen Hypo- 
these, wie er bei den Röntgenspektren für alle Elemente zur 
Geltung kommt, als die allgemeinere zu bezeichnen. Es liegt 
nahe, die Notwendigkeit einer räumlichen Konfiguration der 
Elektronen im Atom auf das Zutreffen der mechanischen Sta- 
bilitätskriterien zurückzuführen, nach denen, wie schon frühere 
Untersuchungen ergeben haben, ein »Ring« höchstens aus 
fünf Elektronen bestehen könnte, während nach dem perio- 
dischen System vom zweiten Ringe an, deren etwa acht zu 
erwarten gewesen wären. Diese Mutmaßung scheint sich an 
der Sommerfeld’schen Kurve der »Atomgrößen« zu bestätigen, 
bei der ein äußerster Elektronenring nur bis zu vier Elektronen 
Übereinstimmung mit der Erfahrung ergibt. 


129 


Die Notwendigkeit einer Aufgabe der Elektronen»ring«- 
Vorstellung erfordert eine völlige Neugestaltung der Theorie 
der Röntgenspektren und könnte damit sogar den Anlaß zu 
einer neuerlichen Vervollkommnung der Quantentheorie, be- 
ziehungsweise Quantenelektrodynamik geben. Während die 
Vernachlässigung magnetischer Wirkungen bei den bisherigen, 
so außerordentlich symmetrischen, ebenen Ring-Modellen un- 
bedenklich scheint, könnte es sein, daß dies im Räumlichen 
nicht mehr zulässig ist. Die bisherige Form der Quantentheorie 
könnte dann vielleicht bloß für ein einzelnes Elektron zutreffen, 
für Systeme mit mehreren Elektronen hingegen einer Ausge- 
staltung in elektromagnetischer Hinsicht bedürfen, die ja ohne- 
dies für das Verständnis der Strahlungserscheinungen unum- 
gänglich sein wird. 

Am Schluß der Arbeit werden noch zwei allerdings 
ziemlich unwahrscheinliche Hypothesen diskutiert, die eventuell 
zur Rettung der Elektronen»ring« -Vorstellung versucht werden 
könnten. Die Annahme, daß zwischen A und Na noch ein 
unbekanntes (nicht mit den bekannten isotopes) Element 
existieren könnte, das mangels einer Kontrolle der leichteren 
Elemente durch Röntgenspektren die Van den Broeck’sche 
Zählung unzutreffend erscheinen ließe, ist ebenso wie der 
Versuch, die Bohr’sche Frequenzbedingung bloß auf das 
einzelne übergehende Elektron anzuwenden, unvereinbar mit 
einer Theorie der X,„-Linie. 


Prof. Dr. Karl Fritsch (Graz) übersendet eine Abhand- 
lung: »Blütenbiologische Untersuchungen an einigen 
Pflanzen der Ostalpen.« 

Die Abhandlung beschäftigt sich mit den Bestäubungs- 
verhältnissen folgender Pflanzenarten: 

1. Heliosperma quadrifidum (L.) Rchb. Die Blütenein- 
richtungen dieser Art sind sehr ähnlich den bereits bekannten 
von Silene rupestris L. und Gypsophila repens L. 

2. Aconitum tauricum Wulf. Die Beschreibung des Blüten- 
baues bietet Anlaß, morphologische Irrtümer von H. Müller 
und P. Knuth zu berichtigen. 


130 


3. Eryngium alpinum L. Die schon vorhandene Beschrei- 
bung von Kirchner wird in einigen Punkten ergänzt. 

4. Heracleum austriacnm L. Die Pflanze ist andro- 
monöcisch. Zahlreiche Insekten wurden als Besucher beob- 
achtet. 

5. Euphrasia versicolor Kern. Der Vergleich mit Euphrasia 
Rostkoviana Hayne ergab fast vollkommene Übereinstimmung 
des Blütenbaues. 

6. Campannla Scheuchzeri Vill. Die Art gehört nach der 
Ausbildung der Fegehaare demselben Typus an die verwandte 
Campannula rotundifolia L. Interessant ist der F arbenkontrast 
zwischen ihr und der an denselben Standorten wachsenden 
Campannla barbata L. 

7. Solidago alpestris W.K. Die Unterschiede gegenüber 
Solidago virga aurea L. werden besprochen. 

8. Senecio cacaliaster Lam. Die Pflanze wächst mit dem 
viel dunkler gelben Senecio Fuchsii Gmel. zusammen. 

9. Cardnus viridis Kern. Einer ausführlichen Beschrei- 
bung der Blüteneinrichtungen folgt eine längere Besucherliste. 

10. Leontodon pyrenaicus Gouan. Die Köpfchen machen 
drei Stadien durch: ein männliches, ein zweigeschlechtiges 
(mit »weiblichen« Randblüten) und eın weibliches. 


Das w.M. Hofrat E. Müller legt eine Abhandlung von 


Josef Krames in Wien vor mit dem Titel: «Die Striktions-' 


linie.‘ der. :Normalenfläche” des "Torus!Wlängs” eies 
Loxodromenkreises.« 


Das w. M. Hofrat F. Exner legt folgende Arbeit vor: 


»Mitteilungen ausdem Institut für Radium- 
forschung, Nr. 119. Über die chemischen Wir- 
kungen der durchdringenden Radiumstrahlung. 
11. Der Einfluß 'der dufchäringenden‘ Strahlen 
und der des ultravioletten Lichtes auf Toluol 
allein, sowie auf Toluol bei Anwesenheit von 
Wasser«, von Anton Kailan. 


131 


Bei 16.344 stündiger Einwirkung der von etwa 1 mm Glas 
durchgelassenen Strahlen eines SO mg Radiummetall enthal- 
tenden Präparates auf 100 cm? Toluol bei Lichtabschluß ent- 
stehen neben Benzaldehyd 0'22 Milligrammäquivalente Säure, 
und zwar größtenteils Benzoesäure, daneben vielleicht noch 
Ameisensäure. In ihrer Bildung war ein Drittel des überhaupt 
zur Verfügung stehenden Luftsauerstoffes nötig. Wie jedoch 


aus dem Gewichte des Verdunstungsrückstandes — 67 mg — 
25° 
und der Erhöhung der Dichte des Toluols von re 2e 


085954 auf 0'85994 geschlossen werden kann, ist die 
Benzoesäure nicht das Haupteinwirkungsprodukt, sondern 
dieses wird dargestellt durch eine gelbe zähflüssige Masse, 
die aus Kohlenwasserstoffen nebst Kondensationsprodukten 
des Benzaldehyds bestehen dürfte. Insgesamt erfahren weniger 
als 1/,°/, der vorhandenen Toluolmoleküle eine Einwirkung. 
Veränderungen der gleichen Art und Größenordnung werden 
im Toluol schon durch 22-stündige Bestrahlung mit einer 
Quarzquecksilberlampe in 8 bis 9 cm Abstand hervorgerufen. 
Bei 16.344 stündiger Einwirkung der von etwa Il mm Glas 
durchgelassenen Strahlen eines 110 mg Radiummetall enthal- 
tenden Präparates auf je 50 cm” Toluol und Wasser bei 
Lichtabschluß entstehen in der Toluolschichte 0'055, in der 
Wasserschicht 0:60 Milligrammäquivalente Säure, die, wie aus 
Leitfähigkeitsmessungen hervorgeht, zu etwa 70°), aus 
Benzoesäure und zu etwa 30 °/, aus Ameisensäure, bestehen. 
Die erstere Säure stellt mit 58 mg das Haupteinwirkungs- 
produkt dar, während nebst 3 mg Ameisensäure. unbestimm- 
baren, aber jedenfalls geringen Mengen von Benzaldehyd 
noch 35 bis 40 mg eines nichtsauren Rückstandes erhalten 
werden. Das Mehr an Säure gegenüber dem Versuche bei 
Abwesenheit von Wasser ist zum größten Teil auf direkte 
Reaktion des Sauerstoffes der Wassermoleküle, beziehungs- 
weise der letzteren selbst mit Toluol und dessen Einwirkungs- 
produkten zurückzuführen, Eine Reaktion von intermediär: 
entstandenem Wasserstoffsuperoxyd käme daneben kaum 
merklich in Betracht. Bei 22 stündiger Bestrahlung mit einer 
Quarzquecksilberlampe in 8 bis 9 cm Abstand erfährt die Ge- 


132 


schwindigkeit der Säurebildung eine verhältnismäßig geringere 
Erhöhung als in der durchdringenden Radiumstrahlung, andrer- 
seits ist die Einwirkung insofern eine energischere, als nebst 
den auch in der Radiumstrahlung und bei Abwesenheit von 
Wasser erhaltenen Produkten, des zähflüssigen Rückstandes, 
des Benzaldehyds, der Benzoesäure und der Ameisensäure, 
auch noch Oxalsäure entsteht, wie aus Leitfähigkeitsmessungen 
hervorgeht. In einem Falle, wo die Toluolschicht durch 70, 
die Wasserschicht durch 48 Stunden bestrahlt worden war, 
enthielt letztere im Liter 0'0244 Grammäquivalente Säure, die 
zu etwa 46°/, aus Benzoesäure, zu 36°/, aus Ameisensäure 
und zu 18°), aus Oxalsäure bestanden. 


Das w. M. Hofrat S. Exner legt folgende Arbeiten vor: 


»Mitteilungen aus der Biologischen Versuchs- 
anstalt der Akademie der Wissenschaften in Wien 
(Physiologische Abteilung, Vorstand: E. Steinach). 
Nr. 36. Die antagonistisch-geschlechtsspezifische Wir- 
kung der Sexualhormone vor und nach der Pubertät, 
von E. Steinach (ausgeführt mit Zuwendung aus der 
Treitl-Stiftung).« 


Die Trennung der Geschlechter geschieht durch den 
Antagonismus der Sexualhormone. Bei experimenteller 
Erforschung des Sexualitätsproblems tritt jener Antagonismus 
dem Forscher besonders in zweierlei Gestalt entgegen. 

Erstens als Antagonismus der Hormonquelle selbst, 
‘dem hormonspendenden Gewebe (»Pubertätsdrüsen«). Diese 
Seite des Antagonismus äußert sich darin, daß künstliche 
Umwandlung des Geschlechtscharakters nur nach voraus- 
gegangener Totalkastration gelingt; verbleibt dagegen die 
homologe Drüse unversehrt im Individuum, so vermag eine 
implantierte heterologe Drüse nicht einmal Wurzel zu fassen. 
Sie wird nicht vaskularisiert und verfällt alsbald der Degene- 
ration. 

Zweitens macht der Versuch den Antagonismus der 
Sexualhormone in seinen Wirkungen auf die Sexus- 


133 


zeichen augenfällig: das Hormon der männlichen Pubertäts- 
drüse bringt lediglich die männlichen Charaktere zur Aus- 
bildung, das der weiblichen Pubertätsdrüse lediglich die weib- 
lichen Charaktere; mit solchen fördernden Einflüssen auf die 
homologen Merkmale geht ein hemmender Einfluß auf die 
heterologen Merkmale Hand in Hand. 

So machen die Feminierungs- und Maskulierungsversuche, 
die sich als eine künstliche und verspätete Nachahmung der 
natürlichen embryonalen Geschlechtsausbildung darstellen, un- 
ablässig technische Anwendung von dem normalen, physio- 
logischen Antagonismus der Sexualhormone. 

In bisherigen Mitteilungen (Akad. Anzeiger Nr. 3, 1914: 
Nr. 12, 22 und 27, 1916; Nr. 10, 1917) wurde der Antago- 
nismus stets in bezug auf die in Entwicklung begriffenen 
Geschlechtscharaktere verfolgt und in Betracht gezogen. 

Die zur Maskulierung führende Einsetzung von Testikeln 
in kastrierte Weibchen, ferner die zur Feminierung führende 
Einheilung von ÖOvarien in kastrierte Männchen, sowie die 
zur Hermaphrodisierung führende gleichzeitige Einfügung von 


‚Testikel und Ovarium in den zuvor neutralisierten Organismus 


geschahen durchwegs an infantilen Tieren (Ratten wie Meer- 
schweinchen). Alle Operationen, deren Ergebnisse Gegenstand 


. bisheriger Veröffentlichungen waren, sind präpuberal vor- 


genommen worden. 

Nunmehr aber wird über neue, technisch schwierigere 
Versuche berichtet, in denen all jene Eingriffe und ihre 
Folgen den geschlechtsreifen erwachsenen oder schon 
älteren Organismus betreffen; Experimente, in denen die 
Erneuerung oder Umstimmung der Geschlechts- 
charaktere postpuberal angenommen wurde. 

Meerschweinweibchen, die eben geboren hatten, wurden 
kastriert. Daraufhin wurde die Laktation schwächer und hörte 
nach einigen Tagen auf, welcher Rückgang von makroskopisch 
sichtbarer Verkleinerung der Mammae und Mammillae, mikro- 
skopisch feststellbarer Degeneration der Brustdrüse begleitet 
war. Auch der Geschlechtstrieb kam zum Stillstand. 

Bei subkutaner Implantation zweier Ovarien einer Primi- 
para jedoch begannen all diese Reaktionen nach zirka 


134 


16 Tagen rückgängig zu werden: die Mammae wölbten sich, 
die Zitzen streckten sich wieder; neue Milchsekretion und 
Brunst setzte ein. Obduktion ergab eine Uterusausbildung 
wie zu Schwangerschaftsbeginn, während beim Vergleichstier 
die Kastrationsatrophie auch im Uterus schon sehr vorge- 
schritten war. 

Ausgewachsene 11/, jährige Rattenmännchen hatten drei 
Monate nach Kastration leere, schlaffe, verkleinerte Vesicae 
seminales, blasse und geschrumpfte Prostatalappen, geschwun- 
dene oder stark herabgesetzte Potenz. Durch Implantation 
jugendlicher Hoden auf die Bauchmuskulatur wurden all die 
Ausfallserscheinungen widerrufen. Alle bereits in Atrophie 
begriffenen sekundären Geschlechtscharaktere, ins- 
besondere Samenbläschen und Vorsteherdrüsen sowie 
die Potentia coeundi wurden wieder zur alten Höhe 
emporgebracht. 

Nicht nur die Wiederherstellung des ursprünglichen 
Geschlechtsgepräges nach Spätkastration und langem 
Verweilen im kastrierten Zustande, sondern auch die Um- 
schaltung ursprünglich weiblichen Geschlechtscharakters 
nach Spätmaskulierung halbjähriger oder etwas älterer 
Weibchen hatte sowohl mit Bezug auf das in förderndem 
Sinne beeinflußte Wachstum des Kopfskelettes (männliches 
Attribut!) als auch mit Bezug auf die männlich gewordene 
Stimme, männlich gerichtete Libido deutlichen Erfolg. 

Diese Ergebnisse am adulten Tier waren die unmittel- 
bare Veranlassung, das Verfahren in Fällen von Verlust, 
Erkrankung oder Schwächung der Geschlechtsdrüsen 
beim Menschen in Anwendung zu bringen. Lichtenstern 
hat kKriegsverletzte und hodenkranke Männer durch Implan- 
tation kryptorchischer Testikel geheilt; der älteste Erfolg einer 
derartigen morphischen und funktionellen Wiederbelebung 
dauert bereits 3°/, Jahre ungeschwächt an. Ein weiterer Fall 
betrifft einen 32jährigen Mann, der vor 10 Jahren wegen 
beidseitiger Hodentuberkulose kastriert worden war; trotz 
vieljährigen Kastratentums war die Einpflanzung der fremden 
Keimdrüse sowohl hinsichtlich der Behaarung und Muskel- 
„ausbildung als auch der Potenz und Seelenverfassung außer- 


135 


ordentlich wirksam. Lichtenstern ist es kürzlich noch ge- 
iungen, einem Infantilen durch Hodeneinpflanzung zur Voll- 
männlichkeit zu verhelfen. 

Die Wiederherstellung und Auffrischung männlicher Eigen- 
schaften und Fähigkeiten erstreckte sich schließlich auf femi- 
nine Männer, auf operative Behandlung der Homo- 
sexualität: Zwittererscheinungen verursachende Keimdrüsen 
wurden entfernt, nachweisbar eingeschlechtlich wirkende 
Pubertätsdrüsensubstanz an deren Stelle im Körper zur Ein- 
leitung gebracht. Das Resultat war einerseits Verdrängung 
der abnormalen, homosexuellen Erotisierung und Rückbildung 
etwa vorhandener weiblicher Sexuszeichen; andererseits Er- 
zeugung der normalen, heterosexuellen Erotisierung und Aus- 
bildung bis dahin fehlender oder gehemmter männlicher Sexus- 
zeichen. 

Das biologische Prinzip der antagonistisch-ge- 
schlechtsspezifischen Pubertätsdrüsenwirkung hat 
demnach für die menschliche Therapie ganz erhebliche 
Bedeutung gewonnen. Die Implantation geeigneter Gonaden 
ist diesbezüglich durch eine sogenannte »Organtherapie« (In- 
jektion oder innere Verabreichung von Extrakten und Drüsen- 
präparaten) nicht zu ersetzen — wegen der Dauerfähigkeit 
eingeheilter, dem Organismus funktionierend zur Verfügung 
gestellter Drüsen im Vergleiche zur bloß vorübergehenden 
Einverleibung ihrer endokrin wirksamen, aber aus dem natür- 
lichen Gewebsverbande, ihrer Produktionsquelle, gelösten Sub- 
stanzen. 

Die ausführliche Mitteilung erscheint im Archiv für Ent- 
wicklungsmechanik. 


»Mitteilungen aus der Biologischen Versuchs- 
anstalt der Akademie der Wissenschaften in Wien 
(Physiologische Abteilung, Vorstand: E. Steinach). 
Nr. 37. Künstliche Zwitterdrüsen bei Säugern und 
Vögeln, von E. Steinach.« 


Zwischen der männlichen und weiblichen Pubertätsdrüse 


- besteht Antagonismus in der Weise, daß die eine in jenem 


Organismus, wo die andere noch ihren normalen Platz 


136 


behauptet, nicht gedeihen kann. Hoden im weiblichen, Eier- 
stöcke im männlichen Organismus gedeihen nur, wenn dieser 
Organismus seiner homologen Geschlechtsdrüse zuvor beraubt 
{»kastriert«) wurde. 

Dieser anläßlich der Maskulierungs- und Feminierungs- 
versuche zutage getretene Antagonismus kann aber bis zu 
einem hohen Grade abgeschwächt werden, wenn in einem 
durch Kastration neutralisierten Organismus beiderlei Puber- 
tätsdrüsen gleichzeitig eingesetzt werden. Es kommt dann 
(vergl. Akademischer Anzeiger Nr. 12, 1916) zur künstlichen 
Zwitterbildung, dadurch gekennzeichnet, daß beide Pubertäts- 
drüsen die ihnen zuständigen Geschlechtsmerkmale (z. B. 
Hoden die Penisschwellkörper, Eierstock die Mammae) im 
Wachstum fördern, dagegen ihre hemmende Wirkung auf 
die. jeweils unzuständigen Geschlechtsmerkmale (z. B. des 
Hodens auf die Brustorgane, des Ovariums auf die Kopu- 
lationsorgane) unterbleibt. Die psychischen Geschlechtsmerk- 
male sind dabei inbegriffen, von denen männliche und 
weibliche in den bisherigen Versuchen zumeist periodisch 
alternierend zum Ausdruck kamen: ein und derselbe Zwitter 
verhielt sich in seinem Triebleben regelmäßig abwechselnd 
bald als Männchen, bald als Weibchen. 

Nachdem die Feminierungsversuche an Meerschweinchen 
durch Athias, ferner durch Sand, Feminierungs- und Masku- 
lierungsversuche am Damhirsch durch Brandes, am Huhn 
durch Goodale und P£&zard ihre vollinhaltliche Bestätigung, 
beziehungsweise Erweiterung auf andere Objekte gefunden 
hatten, sind nunmehr auch die Hermaphrodisierungsversuche 
mit übereinstimmenden Ergebnissen an Ratten und Meer- 
schweinchen durch Sand unabhängig wiederholt worden. 

Das psychische Hermaphrodisierungsergebnis Sand's 
lieferte dauernd doppelgeschlechtig empfindende Zwitter, wie 
solche auch in eigenen Versuchen vereinzelt beobachtet 
wurden: Trotz des permanenten, sowohl hetero- als auch 
homosexuellen Instinktlebens solcher Zwitter trat perioden- 
weise bald die gleich-, bald die gegengeschlechtliche Tendenz 
wenigstens gradweise verstärkt hervor. Da außerdem sogar 
normale, vom Experiment gar nicht berührte Tiere in Zeiten 


höchster geschlechtlicher Erregtheit keinen Unterschied mehr 
machen, sondern sich aller ihnen dargebotener, gleichgültig 
ob demselben oder anderem Geschlechte angehörigen Tiere 
zur Stillung ihres Triebes bedienen, so wurde den selteneren 
Fällen unperiodisch-doppelgeschlechtigen Triebes bisher keine 
unbedingte Beweiskraft zugesprochen. Nach neuen, sorg- 
fältigen Prüfungen und Dauerbeobachtungen kann aber kein 
Zweifel darüber obwalten, daß auch bei der experimentellen 
Hermaphrodisierung derartige nicht bloß in ihrem Habitus, 
sondern auch ihrer Psyche permanente Zwitter entstehen 
können. 

Sie sind ein neuerlicher Beitrag zur Erkenntnis der außer- 
ordentlichen Variabilität des Zwittertumes. überhaupt. 
Diese Variabilität hängt hauptsächlich von folgenden beiden 
Faktoren ab: 

1. Ein substanzieller Faktor: die Menge vorhan- 
dener’ männlicher im Vergleiche‘ zur; Menge"gleich- 
zeitig vorhandener weiblicher Pubertätsdrüsensub- 
stanz. Je nachdem die eine über die andere zeitweilig oder 
lebenslänglich quantitativen Vorrang gewinnt, kommt ' auch 
die Hemmungswirkung jener auf die von diesen geför- 
derten sekundären Geschlechtscharaktere wieder zum Vor- 
schein. Beispiel: beim Überwiegen des weiblichen Implantates 
hört das Peniswachstum auf, während Zitzen und Mammae 
zur Vollreife gedeihen. 

2. Ein temporärer Faktor: der mit einem bestimmten 
Mengenverhältnis männlichen und weiblichen Pu- 
bertätsdrüsengewebes- zeitlich zusammentreffende 
Wachstumszustand in den einzelnen, dem Einflusse der 
Sexualhormone unterworfenen Körperregionen. Beispiel: das 
mächtige Wachstum des männlichen Skelettes, namentlich des 
Schädels, setzt bei Meerschweinchen erst im vierten Monate 
ihres Lebens ein, zu welcher Zeit die übrigen männlichen 
Merkmale bereits ausgebildet sind. Geht nun gerade in dieser 
Phase das männliche Implantat zurück, so gerät das Skelett- 
wachstum unter dem hemmenden Einfluß des wuchernden 
weiblichen Implantates: es entsteht ein milchgebender Zwitter, 
bei welchem zwar Penis, Samenblasen, Prostata etc. von 


138 


früher her entwickelt sind, Skelett und Kopfform hingegen 
weiblichen Habitus aufweisen. . 

Diese und ähnliche Erfahrungen mit der experimentellen 
Zwitterbildung können ohneweiters auf das Naturvorkommen 
der Hermaphroditen Anwendung finden; je nachdem die 
besondere Wachstumstendenz der einzelnen Ge- 
schlechtsmerkmalsanlagen während der embryonalen 
und puberalen Entwicklung mit erhöhter Aktivität 
der einen oder anderen Substanz einer unvollständig 
undabnorm differenzierten Pubertätsdrüse zusammen- 
fällt, entstehen männliche und weibliche Charaktere 
verschiedenster Abstufung. 

Die ausführliche Mitteilung erscheint im Archiv für Ent- 
wicklungsmechanik. 


»Mitteilungen aus der Biologischen Versuchs- 
anstalt der Akademie der Wissenschaften in Wien 
{Physiologische Abteilung; Vorstand: E. Steinach). 
Nr. 38. Experimentelle und histologische Beweise 
für den ursächlichen Zusammenhang von Homo- 
sexualität und Zwitterdrüse, von E. Steinach (aus- 
geführt mit Zuwendung aus der Treitl-Stiftung).« 


Unter den Homosexuellen lassen sich zwei Gruppen 
unterscheiden: Erstens solche mit periodischen Anfällen 
des homosexuellen Triebes; zweitens solche mit konstanter 
Homosexualität. 

Die erste Gruppe findet ihre Erklärung in schon 
früher (Akad. Anzeiger Nr. 12, 1916) beschriebenen, 
experimentell erzeugten Zwittern, bei denen — unbe- 
schadet großer Variabilität in Ausbildung der somatischen 
und psychischen Geschlechtsmerkmale — das gewebliche 
Schicksal der beiden geschlechtsverschiedenen Implantate (je 
einer männlichen und weiblichen Pubertätsdrüse) ein an- 
nähernd übereinstimmendes war: beide nämlich blieben trotz 
vorübergehender Schwankungen ihres wechselseiti- 
gen Mengenverhältnisses dauernd erhalten; beide 
konnten daher dauernden hormonalen Einfluß auf die Ent- 


139 


wicklung der somatischen, wie psychischen Geschlechts- 
charaktere nehmen, deren periodisch wechselnder Auf- und 
Abbau dem inneren Wechsel des Vorrates männlicher und 
weiblicher Pubertätsdrüsenzellen entsprach. 

Die zweite Gruppe Homosexueller findet erst 
durch’neue DauerbeobachtungeniihrevolleErklärung; 
Beobachtungen, die sich namentlich auf die sozusagen miß- 
ratenen Fälle der experimentellen Zwitterbildung stützen, bei 
denen die eine Einpflanzung trotz Neutralisierung ihres 
Trägers und trotz gleicher Lebensbedingungen den ant- 
agonistischen Einflüssen der anderen, kräftigeren Einpflanzung 
nach und nach unterlag. Dieses Unterliegen braucht aber 
erst in einem Zeitpunkte stattzufinden, zu welchem die 
schließlich verschwindende Pubertätsdrüse ihre somatischen 
Einflüsse schon unwiderruflich geltend gemacht hat. So kann 
eine männliche Pubertätsdrüse Schwellkörper und Stachel- 
organe des Penis bereits zur Entfaltung gebracht haben und 
erst nachher der weiblichen Pubertätsdrüse erliegen. Bei 
solchen Tieren tritt ein relativ spät erwachender Geschlechts- 
trieb von Anbeginn in homosexueller Form auf: seinem 


Körperbau nach ist das Tier — dank noch voll zur Geltung 
gekommener Wirkung der zuletzt zugrundegehenden männ- 
lichen Pubertätsdrüse — vorwiegend oder ausschließlich 


männlich; seinem Triebleben nach ist es — dank Umschaltung 
durch die nachträglich zur Herrschaft gelangte weibliche 
Pubertätsdrüse — ausschließlich weiblich. 

Die typischen Fälle »konstanter Homosexualität« 
des Menschen sind hier ebenso experimentell repro- 
duziert wie in den früheren Versuchen die Fälle 
»periodischer Homosexualität<: sie entstehen durch 
das funktionelle Nachlassen oder Ausscheiden des 
männlichen Anteiles im zwitterig angelegten System 
der Pubertätsdrüse. Die Heilbarkeit dieser Fälle, 
wobei der Einwand suggestiver Beeinflussung durch die 
körperlich gestaltenden Wirkungen der eingepflanzten männ- 
lichen Pubertätsdrüse entkräftet wird, zwingt zur Annahme, 
daß die abweichende Geschlechtsneigung -homo- 
sexueller Männer mit der Zwitterigkeit ihrer Puber- 


140 


tätsdrüse zusammenhängt und dadurch zustande- 
kommt, daß die männlichen Elemente derselben schon 
zur Pubertätszeit die innersekretorische Kraft ein- 
büßen, während die weiblichen Elemente »aktivierte, 
die auf den Zufluß der Sexualhormone äußerst fein 
reagierenden nervösen Apparate in weiblicher Rich- 
tung »erotisiert« werden. 

Die AuffindungeinerZwitterdrüse imhomosexuell 
veranlagten Individuum — also gewissermaßen des herm- 
aphrodisierenden Naturexperimentes — schließt.die Beweis- 
kette. Eine derartige Möglichkeit war bei Ziegen ge- 
boten, wo Hermaphrodismus keine Seltenheit ist. Von zwei 
vorwiegend weiblichen Ziegenzwittern, die zur Untersuchung 
gelangten, ließ die eine schon äußerlich ihre Zwitterigkeit 
deutlich erkennen: die Clitoris war zu einem penisartigen 
Organ umgeformt, Skelett- und Gesamtkörperwäachstum über- 
trafen bei weitem die eines normalen Weibchens. Weiblicher 
Trieb fehlte, der männliche äußerte sich in Bocksprüngen. 

Die zweite Ziege war ein Fall reiner, konstanter Homo- 
sexualität. Vagina, Clitoris, Zitzen, Mamma, Knochenbau, 
Länge und Stärke der Gliedmaßen, Breite des Kopfes wiesen 
den dem Alter entsprechenden jungfräulichen Zustand auf, 
wie bei einem normalen weiblichen Zicklein gleichen Alters 
und gleicher Abstammung. Als aber dieses Vergleichstier 
brünstig und — ganz seinem Äußeren entsprechend — 
»bockig« wurde, blieben bei der »Schwester« solche Brunst- 
zeichen aus; dafür beschnüffelte und besprang sie in unstill- 
barer Leidenschaft die übrigen Ziegen des Stalles. Allmählich 
nahm ihr Kopf breitere, massigere Formen an, sonst aber 
blieben alle körperlichen Merkmale auf jungfräulicher Stufe 
stehen, was — wie nachmals der Sektionsbefund erwies — 
auch für den Uterus gültig war. n 

Mikroskopische Untersuchung ergab zwitterige 
Beschaffenheit beider, am normalen Ort wachsender 
Ovarien. Eine Ovarialzone enthielt ein Stück Hodensubstanz 
eingesprengt, mit atrophischen Samenkanälchen, deren Lumen 
verödet, deren Wandung verdickt, deren Wandbelag aus 
Sertoli'schen Zellen teilweise gut erhalten war. Üppige 


141 


Wucherungen typisch ausgebildeter Leydig’scher Zwischen- 
zellen bilden nicht bloß das Interstitium der Samenkanälchen, 
sondern finden sich auch im ovariellen Stroma und umstellen 
in dichter Reihe die hiedurch stellenweise eingedrückten 
Follikel. Die Follikel selbst sind zwar zahlreich und in allen 
Größen vorhanden, aber durchwegs atresierend: ihr Belag aus 
Thekazellen zwar vielerorten noch mehrschichtig, aber dem 
Gesamt- wie dem Kernumfang nach kleiner, im Wachstum 
zurückgeblieben oder bereits rückgebildet. 


Ein zweites Bild unterscheidet sich vom ersten nur 
durch Fehlen der Samenkanälchen: Die Leydig’schen Zellen 
umlagern in Klumpen, Inseln und Strängen die von ihnen 
eingeschnürten, atretischen Follikel. Das allen Bildern dieser 
Zwitterdrüse gemeinsame und eigenartige ist also die Zer- 
störung der generativen Gewebe und die große quantitative 
wie qualitative Überlegenheit der männlichen über die weib- 
lichen Pubertätsdrüsenzellen. 


Hieraus läßt sich die Geschichte, welche die Geschlechts- 
entwicklung jener homosexuellen Ziege genommen hat, ohne- 
weiteres ableiten: Vor der Geschlechtsreife war die weibliche 
Pubertätsdrüse innerhalb der Zwitterdrüse so gut ausgebildet, 
daß sich alle weiblichen Organe rechtzeitig und richtig 
geformt entwickeln konnten. Nach und nach verschlechterten‘ 
und verringerten sich die ovariellen Elemente und stellten 
ihre innersekretorische Tätigkeit ein. Dadurch wurde die 
männliche Pubertätsdrüse aktiviert, fing an zu wuchern und 
machte zur Reifezeit ihre männlich-erotisierende Wirkung 
aufs Gehirn und zum Teil noch eine fördernde Wirkung auf 
das Skelettwachstum geltend; so entstand der andauernd 
heftige, homosexuelle Trieb und so bildete sich der mächtige 
Kopf aus. 


Mit denobenbeschriebenen neuen Beobachtungen 
bei experimenteller Zwitterbildung; sowie mit Auf- 
findung der zwitterigen Pubertätsdrüse bei einem 
naturgegebenen Falle konträrer Geschlechtsempfin- 
dung ist die Frage nach der biologischen Grundlage 
der Homosexualität wohl endgültig gelöst. 

Anzeiger Nr. 11. 16 


Die ausführliche, mit mikroskopischen Abbildungen aus- 
gestattete Mitteilung erscheint im Archiv für Entwicklungs- 
mechanik. 


»Mitteilungen aus der Biologischen Versuchs- 
anstalt der Akademie der Wissenschaften in Wien 
(Physiologische Abteilung, Vorstand: E. Steinach). 
Nr. 39. Histologische Beschaffenheit der Keimdrüse 
bei homosexuellen Männern«, von E. Steinach (aus- 
geführt mit Zuwendung aus der Treitl-Stiftung). 


Die experimentelle Zwitterbildung, welche die periodische 
wie die permanente Homosexualität nachzuahmen vermochte; 
die Auffindung natürlicher Zwitterdrüsen beim homosexuellen 
Tier; endlich die Heilung jener Zustände beim homosexuellen 
Menschen erbrachten den Beweis, daß die Gleichgeschlechtigkeit 
eine der zahlreichen Formen ist, in denen das Zwittertum 
auftreten kann und daß diese wie jede andere Art des 
Hermaphrodismus auf unvollkommener Differen- 
zierung der zwitterig veranlagten Pubertätsdrüse 
beetumhit. 

Von diesem neuen Gesichtspunkte aus mußten nun auch 
die Keimdrüsen homosexueller Menschen untersucht 
werden. Als Material dafür dienten die Hoden von sechs homo- 
sexuellen Männern, die diesen entnommen wurden, um durch 
kryptorchische, normal wirksame Testikel zwecks Umstimmung 
der Erotisierung ersetzt zu werden (Operationen Lichten- 
stern’s). 

Schon der erstbehandelte Fall (Münchener medizinische 
Wochenschrift, 1918, Nr. 6) zeigte mikroskopische Eigentüm- 
lichkeiten des Hodengewebes, die aber, weil es sich nur um 
gut erhaltene Reste eines eiternden, tuberkulös zerstörten 
Hodens handelte, durch den entzündlichen Prozeß selbst her- 
vorgerufen sein konnten. 

Der vorliegenden Untersuchung sind fünf neue Fälle 
zugrunde gelegt, herrührend von durchwegs gesunden, kräftigen 
Homosexuellen im Alter von 22 bis 43 Jahren. Die erhobenen 
auffallenden Erscheinungen erstrecken sich sowohl auf die 
Samendrüse wie auf die Pubertätsdrüse. 


| 


143 


Samendrüse: In allen fünf Hoden unverkennbare 
Zeichen von Degeneration, die mit dem Alter des Hodens 
fortschreitet und bis zur vollständigen Atrophie des samen- 
bildenden Gewebes führt. Die Samenkanälchen stehen nicht 
dicht aneinander wie beim normalen Testikel, sondern in bald 
kleineren, bald größeren Abständen; ihre Querschnitte sind 
verengt, verkleinert; ihre Wandungen verdickt oder 
geschrumpft und von höckerigem oder zackigem Ver- 
lauf. Das Bild erinnert diesbezüglich sofort an den Krypt- 
orchischen Hoden. Einerseits beim jüngeren Hoden, andrer- 
seits auch bei ein und demselben Altersstadium in der ober- 
flächlichen, der Albuginea nahen Schichte sieht man zwischen 
den randständigen Sertoli’schen Zellen noch einzelne Spermato- 
gonien liegen. Zahlreichere Spermatogonien sitzen zentralwärts 
den Sertoli'schen Zellen in einfacher oder mehrfacher Lage 
auf; dazwischen befinden sich kernlose Zellen und Zellreste, 
sowie größere Gewebslücken. In der Oberflächenschicht des 
Hodens begegnet man noch Spermatiden und Spermaköpfen, 
die in der Tiefenschicht vollkommen fehlen. 

Beim älteren Hoden ist vollkommene Atrophie 
der Samendrüse eingetreten: die Sertoli'schen Zellen sitzen 
wie ein einschichtiges Epithel gedrängt der Membrana propria 
auf; im übrigen sind die Kanälchen leer und sehr verengt. 
Aber auch die Sertoli'schen Zellen beginnen vielfach schon 
zu zerfallen. Und doch sind auch hier in der oberflächlichsten 
Schicht ganz vereinzelte Kanälchen unversehrt, wobei 
dahingestellt bleibt, ob es sich um ausnahmsweise Resistenz 
oder um Regeneration handelt. Diese Einzelkanälchen mit allen 
Stadien der Spermiogenese erklären es, daß sich im Ejakulat, 
welches vor der Operation untersucht wurde, geringe Mengen 
lebender und abgestorbener Spermatozoen gefunden haben; 
sie machen es verständlich, daß auch schwere Homosexuelle 
in ihrer Jugend Zeugungsfähigkeit besitzen. 

Pubertätsdrüse: So sehr homosexueller und Krvpt- 
orchischer Hoden im Bau ihrer Samendrüse übereinstimmen, 
ebensosehr weichen sie in ihrer Pubertätsdrüse vonein- 
ander ab. Bei Kryptorchismus zeichnet sich die Pubertäts- 
drüse durch kräftige Wucherungen Leydig’scher Zellen 


144 


aus, die in Inseln oder Haufen die weiten Zwischenräume 
„wischen den geschrumpften Samenkanälchen erfüllen. Beim 
homosexuellen Hoden dagegen sind die typischen Leydig’schen 
Zellen nicht vermehrt, eher verringert: ein Teil davon hat 
normale Größe und gesundes Aussehen. Ein anderer Teil ist 
plasmaarm, klein, unregelmäßig gestaltet, hie und da stark 
vakuolisiert, Zell- und Kernbegrenzung oft eingedrückt und 
verwischt: es handelt sich um atrophierende Zellen. 

Außerdem finden sich in der Pubertätsdrüse der Homo- 
sexuellen vereinzelt oder zu Gruppen gesellt noch andere 
Elemente, die vor allem durch ihre Größe auffallen 
und verglichen mit dem Durchschnitt der Pubertätsdrüsen- 
zellen im normalen oder kryptorchischen menschlichen Testikel 
folgende Eigentümlichkeiten vorweisen. Sie sind besonders 
reich an Protoplasma, infolgedessen zwei- oder dreimal so 
groß. Sie sind etwas schwächer färbbar. Sie besitzen große, 
vermöge geringeren Chromatingehaltes hellere Kerne, von denen 
in derselben Zelle sehr oft zwei, seltener drei vorhanden 
sein können. Das Zytoplasma ist stärker und gröber granuliert. 
Krystalle sind darin nur ausnahmsweise enthalten, im Gegen- 
satz zu deren häufigem Vorkommen in den typischen Leydig'- 
schen Zellen. Unverkennbar ist die Ähnlichkeit dieser 
strotzenden, sukkulenten (aber nicht etwa Zellkonglomerate 
darstellenden, sondern einheitlichen) Gebilde mit Lutein- 
zellen, besonders mit solchen, welche an rissigen Stellen 
oder am Rande des Corpus luteum frei aus der gepreßten 
Zellmasse heraustreten. 

Unter dem Eindruck der bermaphroditischen oder homo- 
sexuellen Erscheinungen wird man dazu gedrängt, den be- 
schriebenen, bisher unbekannten (ganz unverbindlich als 
» F-Zellen« benannten) Elementen ähnlichen funktionierenden 
Charakter wie den Luteinzellen und somit feminierende 
Wirkung zuzuschreiben. 

Somit wurden als histologische Kennzeichen des Hodens 
von Homosexuellen erhoben: Degeneration bis Atrophie 
der Samendrüsen; Verringerung und teilweise Degene- 
ration der männlichen Pubertätsdrüsenzellen; Vor- 
handensein Yeroßer’ Zellen, >idie Zim!liAussehen #4en 


« 


145 


weiblichen Pubertätsdrüsenzellen nahekommen. Ihr 
Auftreten im Zwischengewebe ist, wie der Vergleich mit 
dem: kryptorchischen Testikel zeigt, keineswegs Begleit- 
erscheinung jedes degenerativen Prozesses im Hoden; und 
daß in allen fünf bisherigen Fällen ein übereinstimmender 
Zufallsbefund vorliege, wird durch Vertiefung des Vorganges 
mit zunehmendem Alter widerlegt. Die mikroskopischen Bilder 
werden vielmehr voraussichtlich zur forensischen Begutachtung 
der angeborenen Homosexualität und zur Indikation für die 
operative Behandlung verwertet werden können. Letzteres ist 
an der Hand einer Probe-Exstirpation bereits geschehen. 

Folgende genetische Deutung der mikroskopischen 
Befunde dürfte den tatsächlichen Verhältnissen am nächsten 
kommen: Beim homosexuellen Mann hat sich durch unvoll- 
ständige Differenzierung des Keimstocks eine zwitterige Puber- 
tätsdrüse entwickelt. Im embryonalen und präpuberalen Leben 
bleiben die M-Zellen an Zahl und Kraft vorherrschend und 
hemmen die Tätigkeit der F-Zellen: es entsteht also der 
männliche Habitus mit allen zugehörigen Mannesattributen. 
Vor der Reife oder später geschieht nun eine Umschaltung: 
die großen F-Zellen werden aktiviert und betätigen 
von da an erstens ihre Hemmungswirkung, die zur 
Rückbildung der männlichen produktiven Gewebe (Samendrüse) 
und zum Teile auch der M-Zellen (männlichen Pubertätsdrüse) 
führt. Zweitens machen die #-Zellen ihre Förderungs- 
wirkung geltend auf bisher unbeeinflußte Apparate; beschränkt 
sich diese auf das hiefür besonders empfindliche Zentralorgan, 
so entsteht bloß die weibliche, auf den Mann gerichtete 
Erotisierung' (Homosexualität); erstreckt sie sich weiter, so 
entstehen auch körperliche Weibattribute als Busen, Hüft- 
ausladung, weibliche Form des Kehlkopfes, der Behaarung 
u. dgl. (Hermaphrodismus). 

So sind die Möglichkeiten der Natur, durch Aus- 
stattung der Pubertätsdrüsen mit geschlechtsver- 
schiedenen Zellen und durch Abtönungen in deren 


Aktivität sexuelle Zwischenstufen zu erzeugen, genau 


wie bei der experimentiellen Zwitterbildung unbegrenzt. 
Vielleicht gibt es gar keine absolut vollständige Dif- 


146 


ferenzierung des Keimstockes; vielleicht sind die #-Zellen 
im homosexuellen Hoden nur in besonders auffälliger Weise 
verbreitet und ausgeprägt, tatsächlich aber vereinzelt auch 
im normalen Hoden vorhanden, wenn sie auch dort bisher 
nicht gefunden wurden. Hätte einer derartigen Vermutung 
zufolge jede Pubertätsdrüse einen gewissen Einschlag zur 
Doppeltgeschlechtigkeit, so hinge die normale hetero- 
sexuelle Erotisierung und der vollendete Ausdruck 
der Männlichkeit lediglich davon ab, daß die stets 
überwiegenden M-Zellen dauernd aktiv .bleiben, die 
eingesprengten F-Zellen dauernd in Hemmung ver- 
harren und dadurch zur Untätigkeit gezwungen 
bleiben. 

Die ausführliche, mit einigen histologischen Tafeln aus- 
gestattete Arbeit erscheint im Archiv der Entwicklungsmechanik. 


Das w. M. Hofrat F. Mertens legt folgende zwei Ab- 
handlungen vor: 


1. »Über einige diophantische Aufgaben.« 


Sie behandelt diophantische Aufgaben, welche allgemei- 
nerer Art sind als ganzzahlig zu lösende unbestimmte Glei- 
chungen mit mehreren Unbekannten, insofern die Aufstellung 
einer Reihe von ganzen Zahlen unter gegebenen Bedingungen 
gefordert wird, welche den größten gemeinschaftlichen Teiler 1 
haben. Die Lösung erfordert den Nachweis einer Vielfach- 
summe der gewünschten Zahlen, welche =1 ist. 


2. Ȇber die Form der Wurzeln einer rational- 
zahligen irreduktibelen zyklischen Gleichung 
von gegebenem Grade n.«< 


Die Form der Wurzeln einer rationalzahligen irredukti- 
belen zyklischen Gleichung, deren Grad eine ungerade Prim- 
zahlpotenz ist, ist aus den Arbeiten Kronecker’s bekannt. 
Soll aber der Grad eine beliebig gegebene Zahl sein, so 
empfiehlt es sich, die Lösung mittels des Kronecker’schen 


147 


Satzes zu suchen, daß die Wurzeln jeder rationalzahligen 
irreduktibelen Abel’schen Gleichung rationale Verbindungen 
von Einheitswurzeln sind. Kronecker hat diesen Weg in 
einer Abhandlung über die algebraisch lösbaren Gleichungen 
vom Primzahlgrad gewählt. Die Aufgabe erfordert dann nur 
die Bestimmung der Untergruppen der Gesamtheit aller Zahlen 
des Restsystems eines gegebenen Moduls m, welche zu letz- 
terem teilerfremd sind. In dem vorliegenden Aufsatze werden 
die gewünschten Untergruppen durch ein besonderes Ver- 
fahren abgeleitet. 


Aus der Staatsdruckerei in Wien. 


t ik ah U 
i 1 WR a) 


= 


| peatenis tollen ie hal lose? 3107 cas br } Ni HN, 008 
niage! Ir Hinnanm arm] > '% 7 dh Karad IB h5 
\ { ' ‘ ; h DATE‘ nes ul 
} Br ou Ye 8200 Int! 18 JU0r v Bi u Wo Yan aid 
| NEE RR: ‚ineh20 niobr innds} „ih Hl, BORN 


zZ D & . Pi 
fi a 


RE ih mebielis. aus at B en ‚las aD: Kerala 
. " Stla N N sb BagyrıgleN Na Fe Aaurcoiles0 
a sl we ana Ne elubül RER: at ers Kıms al 
r Ye re sstmloh Dahn ug a ms nl. ‚brnie AR: 177 
ki De ebaeest io, Mluh N ng rs HL OR "SE 
j [; (' PEN 73 > 2 


: L J f h 


ilofr re 


» PL RE 
' Mi . 2 . 1 f k . f i ß Fi 
ee RTL RER en. A 


f u“ a re aller yaler® gegde ve 2er: Bad A - 

“a u ne a hen sundirschä neh TE ug “ 
Wo ver 
ji er fer € N: 
Mi, | Ir un 2 yr 2 hi ven ser Anchwih ? sch, 


fi r n NY 
ae 1 RE ne ira. Fl Hrißt. rt 

% } N y je‘ N TE vv. er u BR 

MD" RE NER Se: eh. met 


\ 
3 he 


e 
e Dal 
ü 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr.,12 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 8. Mai 1919 


Erschienen: Denkschriften, Band 94, 1918. 


Prof.-Emil Fischer in Berlin und Prof, Hugo de Vries 
in Lunteren danken für ihre Wahl zu Ehrenmitgliedern dieser 
Klasse im Auslande. 


Das w. 1. Lrot.e W. Schlenk übersender eine Arbeii 
von Dr. Julius Zeliner, betitelt: »Zur Chemie der hetero- 
trophen Phanerogamen. III. Miteilung.« 

Im Anschluß an frühere Untersuchungen (Sitzungsber. d. 
Akademie d. Wissensch., 122. Bd., 1913, und 123. Bd., 1914) 
werden zunächst auf Grund der Aschenanalysen von fünf 
Pflanzenarten die Mineralstoffverhältnisse der Heterotrophen 
dargelegt und deren wahrscheinlicher Zusammenhang mit den 
biochemischen Vorgängen in diesen Gewächsen erörtert; im 
zweiten Abschnitt geht der Autor auf die Stickstoffverbindungen 
der chlorophyllarmen Parasiten und Saprophyten ein, insbeson- 
dere wird gezeigt, daß das Verhältnis des löslichen zum un- 
löslichen Stickstoff in jenen Organen, die der Aufnahme und 
Speicherung der Nährstoffe dienen, ein höheres ist wie bei 
autotrophen Pflanzen; im dritten Abschnitt werden die osmo- 
tischen Verhältnisse der Zellsäfte erörtert; es wird wahrschein- 


Fi 


150 


lich gemacht, daß die Heterotrophen trotz ihres hohen Wasser- 
gehaltes reicher sind an löslichen. krystalloiden Stoffen wie 
ihre Substrate, wodurch ihre Wasserversorgung möglich wird; 
im vierten Abschnitt endlich faßt der Autor auf Grund fremder 
und eigener Untersuchungen jene biochemischen Erscheinungen 
übersichtlich zusammen, die sich nach dem gegenwärtigen 
Stand der Kenntnisse als charakteristisch und gemeinsam für 
die heterotrophen Phanerogamen erkennen lassen. 


Das w. M. .J. Hann, überreicht‘ eine, Arbeit”von Era 
V.Conrad mit dem Titel: »Der tägliche Gang der Tem- 
peratur in Belgrad«. 

Die vorliegenden Monatsstundenmittelwerte der 10 Jahre 
1896 bis 1905 werden zu zehnjährigen Mitteln für die Monate» 
Jahreszeiten, Halbjahre und das Jahr vereinigt. Die sommer- 
lichen Amplituden sind größer als die, die dem mittel- 
europäischen Klima zukommen. 

Versuchsweise wurde trotz der geringen Zahl der Jahre 
die mittlere Veränderung der Monatsstundenmittel berechnet. 
Eine Tabelle bringt die mittleren Veränderungswerte für die 
Stunden der Monate, ‘Jahreszeiten und Halbjahre. Der aus 
der Tabelle resultierende tägliche Gang wird mit der harmo- 
nischen Analyse berechnet und die Konstanten der Formeln 
mitgeteilt. Dabei ergibt sich die Tatsache, daß die relative 
Amplitude im Sommer groß, im Winter sehr klein ausfällt. 
Die Anwendung des Kriteriums der Schuster'schen »Expektanz« 
ergibt das Resultat, daß wir auf Grund zehnjähriger Mittel 
einen täglichen Gang der mittleren Veränderung nur in der 
warmen Jahreszeit als erwiesen betrachten können, während 
im Winter ein solches Phänomen eventuell überhaupt nicht 
existiert. 

Der tägliche Gang der mittleren Veränderung ist dem 
der Temperatur ungefähr gleichlaufend. In der warmen Jahres- 
zeit wird der Wärmehaushalt vorherrschend durch Ein- und 
Ausstrahlung besorgt. Die Bewölkung ist in der warmen 
Tageszeit bedeutend größer als in den Nacht- und Morgen- 
stunden. Kühle Sommermonate mit reichlicher Bewölkung 


151 


werden daher auch im Mittel Temperaturgangkurven mit 
stark abgeflachtem Maximum aufzeigen, während der Verlauf 
der Kurve in den Nacht- und Morgenstunden wenig alteriert 
wird. 

Im Winter tritt die Wärmezu- und -abfuhr infolge Inso- 
lation und Ausstrahiung gegen die Advektion kalter und 
warmer Luft zurück, es ist kein vorherrschendes Prinzip 
mehr vorhanden, das einen ausgeprägten täglichen Gang der 
mittleren Veränderung erzeugen kann. 

Diese Überlegungen basieren auf der Annahme, daß im 
Winter die Zahl der Tage mit aperiodischem Temperaturgang 
groß, im Sommer klein sein muß. Es wird nun der Versuch 
gemacht, bei einer 33monatligen Registrierperiode der in den 
Jahren 1916 bis 1918 in Belgrad etablierten Feldwetterstation 
eine Trennung der Tage mit periodischem und aperiodischem 
Temperaturgang vorzunehmen. Tage mit letzterem Gang, der 
in einem halbwegs kontinuierlichen Ansteigen (Erwärmung) 
oder Absinken (Abkühlung) der Registrierkurve besteht, müssen 
ihr Minimum am Ende oder am Anfang des Tages haben; 
an Tagen mit periodischem Gang wird das Minimum um 
Sonnenaufgang eintreten müssen. 

Als Mittel zur Trennung der Tage mit periodischem und 
aperiodischem Gang wird daher die Bestimmung der Eintritts- 
zeiten der Extreme für jeden der vorliegenden 1014 Registrier- 
tage (auf O.1 Stunde genau) gewählt. Die gefundenen Eintritts- 
zeiten wurden in eine Verteilungstafel (Häufigkeitskurve) 
zusammengefaßt. Nach dem Vorhergesagten müßte die Ver- 
teilungstafel eine singuläre Häufigkeitsstelle um Mitternacht 
und ein Maximum um den mittleren Sonnenaufgang zeigen, 
welch letzteres eine dem Fehlergesetz entsprechende Streuung 
aufweisen müßte. Da die Wirklichkeit infolge der Vielfältig- 
keit der Witterungsverhältnisse diesen Idealfall nicht voll 
ergibt, wurden aus den Daten der Verteilungskurve eine kom- 
binierte Fehlerkurve berechnet und den Beobachtungsdaten 
gegenübergestellt. Der Vergleich zeigt, daß der erste Teil der 
Minimumhäufigkeitskurve (aperiodischer Teil) bedeutend steiler 
ansteigt als die zugeordnete Fehlerkurve und sich von dieser 
prinzipiell unterscheidet, während: der zweite Kurventeil (peri- 


152 


odischer, Maximum Sonnenaufgang) mit der entsprechenden 
Fehlerkurve nahe identisch ist. 

Die Verteilungstafel gibt uns daher wirklich das Mittel 
an die Hand, die aperiodischen von den periodischen Tagen zu 
trennen. Die Scheidung ergibt sich in natürlicher Weise durch 
die Eintrittszeit des tief eingeschnittenen Minimums der Häufig- 
keitskurve, das zwischen dem aperiodischen und dem peri- 
odischen Teil liegt. Eine entsprechende Auszählung der 
Extremzeiten selbst läßt dann eine weitere. wenn auch grobe 
Teilung der aperiodischen Tage in zwei Gruppen zu, von 
denen die eine die Tage mit Abkühlungen, die andere die 
mit Erwärmungen umfaßt. 

Im’ ganzen Jahre haben in Belgrad 35'1°/, aller Tage 
einen aperiodischen Teemperaturgang, von denen 21'4°/, auf 
Winter und Herbst entfallen. Im Winter halten sich aperiodische 
und periodische Tage ungefähr die Wage, im Sommer über- 
wiegen die periodischen nahe um das vierfache, so daß die 
Erklärung der Verhältnisse des täglichen Ganges der mittleren 
Veränderung der Monatsstundenmittel hierdurch eine feste 
Stütze erhält. 

Im ganzen Jahre gibt es ungefähr doppelt soviel Tage 
mit ausgesprochenen Abkühlungen, als mit Erwärmungen. 
Dieses Verhältnis schwankt zwischen 1'58 im Winter und 
2:45 im Sommer. 

Die Bestimmung der Extremzeiten direkt aus den Regi- 
strierkurven und ihre Verwertung zu Verteilungstafeln lassen 
eine Reihe von klimatischen Details erkennen, die auch zur 
Beurteilung des Wärmehaushaltes von Bedeutung sein könnten. 
In dieser Beziehung wäre die Aufstellung von Verteilungs- 
tafeln für eine größere Anzahl ausgewählter Stationen von 
Wichtigkeit. Auch schon kurze Registrierperioden (zirka 3 Jahre) 
ergeben gute Resultate. 


Das w. M. R. Wegscheider überreicht zwei Abhand- 
Jungen aus dem Chemischen Institut der Universität Graz: 


* 


ER. 


153 


1. »ZurKenntnisvonHarzbestandteilen.5.Mitteilung. 
Notiz über den Abbau der d-Sumaresinolsäure«, 
von Alois Zinke. 


Es wird gezeigt, daß man durch Einwirkung von Chrom- 
säure auf d-Sumaresinolsäure zu einer Säure C,. H,O, 
gelangt. Die neue Säure ist isomer dem Oxydationsprodukt 
der d-Siaresinolsäure (Monatsh. f. Ch. 39, 632 [1918)). 


2.»Synthese des 2, 3-Pyridinoacenaphtens«, von 
Alois Zinke und Emmy Raith. 


Durch Einwirkung von Glycerin, Schwefelsäure und Nitro- 
benzol auf 3-Aminoacenaphten wurde 2, 3-Pyridinoacenaphten 
erhalten. Von der neuen Base werden mehrere Derivate 
beschrieben. Durch Oxydation mit Chromsäure gelangten die 
Verfasser zum «-Naphtochinolin-6, 7-diearbonsäureanhydrid. 


Das w.M. Hofrat F. Exner legt vor: 


»Mitteilungen aus dem Institut für Radium- 
forschung. Nr. 120, Über die harte Sekundär- 
strahlung der y-Strahlen von Radium, 2. Mit- 
teilung«, von K. W. Fritz Kohlrausch. 


Die von der Ra y-Strahlung beim Auftreffen auf Materie 
erzeugte Sekundärstrahlung erweist sich nach Absorptions- 
versuchen als komplex. Die in der Arbeit verwendeten Beob- 
achtungsmittel liefern zunächst zwei Komponenten S, und S;. 
Durch Filterung der Primärstrahlung gelingt der Nachweis, 
daß, die härtere S,-Strahlung von der harten X,-, die weichere 
S,-Strahlung von der A,-Strahlung erregt wird, wenn A, und X, 
die beiden harten Komponenten des primären Y-Gemisches 
bedeuten und durch die Absorptionskoeffizienten up —= 054, 
beziehungsweise 1'49 cm”! charakterisiert sind. 

S, hat die gleiche Härte wie X, ist mit diesem wesens- 
gleich und als Streustrahlung anzusprechen. Die Intensitäts- 
verteilung ist eine derartige, daß S,, von hohen Werten für 
kleine Winkel @& zwischen Beobachtungs- und Primärrichtung 


ausgehend, scharf abnimmt und für « = 90° unmerklich wird. 


154 


S; wird demnach nur im Austrittsraum gefunden. Die 
gesamte im Austrittsraum vorhandene S,-Strahlung (%,), be- 
zogen auf gleiche Atomzahlen, d. i. der Atomstrahlungskoeffi- 


&,A wur; 4 . 
zient 6, = —— erweist sich als proportional der im Atom vor- 


handenen Elektronenzahl, wobei gemessen wurde an C, Al, 
Zn, Sn, Pb. 

S, wird im allgemeinen von geringerer Härte als sein 
Erreger X, gefunden, doch sind die experimentellen Grund- 
lagen für diese Konstatierung unsicher. Die Intensitätsverteilung 
weist auch im Gegensatz zu diesem Befund den Charakter 
einer Streustrahlung auf und verläuft von hohen Werten für 
kleine @ zu kleinen Intensitäten für 2—= 180°; S, ist also 
sowohl im Austrittsraum wie im Eintrittsraum vorhanden. Der 
analog wie früher aus der Gesamtstreuung X, gerechnete 
Atomstreuungskoeffizient o, nimmt für leichtere Elemente 
mit Z, für schwerere mit Z? zu. Bezeichnen 0} und 9’ die 
Atomstreuungen, bezogen auf den Austritts-, beziehungsweise 
Eintrittsraum allein, so ergibt sich s’’ proportional mit Z und 

o) 
dl 


= 


nimmt 


o, hat den gleichen Gang wie o,. Die Asymmetrie 


mit der Atomnummer zu. 

Die Diskussion dieser Ergebnisse auf Grund der einzigen, 
Asymmetrie der Streustrahlung liefernden Theorie von Debye 
zeigt: 

Das Verhalten von o,, beziehungsweise o, folgt aus dieser 
Theorie, wenn die erregende Wellenlänge %, im ersten Fall 
klein gegen den Radius a der in Betracht kommenden kleinsten 
Elektronenringe (hier ap, in Blei) und wenn A, im zweiten 
Fall ungefähr von der Größenordnung ap, ist. Daraus folgt 
% >), in Übereinstimmung damit, daß K, weicher ist als X.. 
Und in Übereinstimmung mit dieser Annahme steht weiter 


auch die Abhängigkeit von o/ und 0) sowie der Asymmetrie 


I 
8, 
Br 


7 


von der Atomnummer. 


Geht man aber auf die von der Theorie geforderte Inten- 
sitätsverteilung ein, so ergeben sich Unstimmigkeiten, indem 
die experimentell gefundene Abhängigkeit vom Emissions- 


155 


winkel von der Theorie nicht erfüllt wird. Insbesondere ist 
die vollkommene Asymmetrie der S,-Strahlung, die nur im 
Austrittsraum konstatiert werden kann, anscheinend unver- 
einbar mit der derzeitigen Form der Theorie. 


Arthur Wagner legt folgende Arbeit vor: »Beitrag zu 
den Temperaturverhältnissen in Spitzbergen nach 
fünfjährigen Registrierungen in Greenharbour«. 

Es werden bearbeitet der jährliche und tägliche Tem- 
peraturgang (letzterer ist im Winter dem Luftdruckgang 
parallel), die aperiodischen Temperaturänderungen (Ableitung 
eines mittleren meteorologischen Bildes für intensive Wärme- 
und Kälteeinbrüche) und Vergleich mit den gleichzeitigen 
Registrierungen des Deutschen Observatoriums Adventbay 
1911/12. 


Das w. M. Prof. Dr. Wettstein überreicht eine Abhand- 
lung von Prof. Dr. Fridolin Krasser (Prag) mit dem Titel: 
»Studien über die fertile Region der Cycadophyten 
aus den Lunzerschichten: Makrosporophylle«. (Durch- 
geführt mit Unterstützung aus dem Erträgnisse der Erbschaft 
Treitl). 

Der wesentliche Inhalt dieser Abhandlung ergibt sich 
aus der folgenden Zusammenfassung der wichtigsten Er- 
gebnisse. 

1. In der Triasflora der Lunzerschichten finden sich Cycado- 
phyten-Makrosporophyllie, welche sich unter den rezenten 
Cycadinae nur mit den Makrosporophyllen von Cycas vergleichen 
lassen. 

2. Sie repräsentieren eine eigene Gattung, Haitingeria 
F. Krasser. Die typische Art ist die Haitingeria Krasseri 
(Schust.) von Pramelreuth bei Lunz. In dieselbe Gattung 
gehören aber auch Fossile aus den rhätischen Kohlenschichten 
von Tonking, Haitingeria Zeilleri F. Krasser, und aus dem 
Lias der Rajmahalgroup des Gondwanasystems von Östindien, 
Haitingeria Rajmahalensis (Wiel.). 


156 


Die Gattung Hailingeria ist somit aus der alpinen Trias, 
dem indosinesischen Rhät und dem Lias Ostindiens bekannt. 
Auch in dem skandinavischen Rhät kommen im fragmenta- 
rischen Zustande habituell ähnliche Reste vor, die jedoch 
cher an Westersheimia F. Krasser anschließen. 

3. Haitingeria F. Krasser stellt sich als ein tief fieder- 
schnittiges (fiederlappiges) sitzendes oder kurzgestieltes Makro- 
sporophyll dar, welches zahlreiche Samenknospen (Samen) 
an den Rändern der Abschnitte trägt und in der Knspenlage 
dütenförmig eingedreht ist. Dadurch ist Haitingeria als 
eigener Typus charakterisiert. 

4. Unter den fossilen Pflanzenresten waren nach den 
morphologischen Verhältnissen mit Haitingeria in erster Linie 
zu vergleichen: Cloughtonia Halle aus dem Dogger von 
England, welche nach diesem Autor einen Vorläufer der 
Angiospermenpetalen repräsentieren kann, sowie die verschie- 
denen als Oycadospadir Sap. zusammengefaßten, gewöhnlich 
schlechtweg als zu den Uycadinae gehörig betrachteten fossilen 
Makrosporophylle, welche von der Trias bis in den oberen Jura 
vorkommen. Es zeigt sich, daß die Arten nach ihren Merk- 
malen meist zwischen Dioon und (ycas . vermitteln. Der 
permische Uycadospadir Milleryanus Renault stellt indes als 
gefiedertes Makrosporophyll einen eigenen Typus dar: 
Autunia F. Krasser gen. nov. 

Die gleichfalls für die Vergleichung mit Haitingeria in 
Betracht kommenden Gattungen Noeggerathia Sternb. aus 
dem Carvon und Propalmophylium Lign. aus dem Lias 
vereinigten Cycadophytenmerkmale mit Merkmalen anderer 
Gruppen. Erstere weist auf gewisse Coniferengruppen, letztere 
auf die Palmen hin. 

5. Der Kohlebelag von Haitingeria Krasseri (Schust) 
zeigt an Mazerationspräparaten eine ganz ähnliche Epidermis, 
wie die Makrosporophylle von Cycas und wie die Clonughtonia 
rugosa Halle, es sind jedoch die Zellen meist größer und 
das Gewebe polymorpher als bei den letzteren. 


157 


Selbständige Werke oder neue, der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Mayer, Carl, Dr.: Zur Kenntnis der Gelenkreflexe der oberen 
Gliedmaßen. Rektoratsschrift. Innsbruck, 1918; 8°. 


N u ur Als; Yy 
327 £ h wi 7 Pr Ablce r Ar 
ag ade ae Ne ha A 


„Ja 


" 
A rg #i Mer PB” e “rs I 
Aarau: el 


1919 Nr. 3 


Monatliche Mitteilungen 


der 


Zentralanstalt für Meteorologie und Geodynamik 


Wien, Hohe Warte 


48° 14:9' N-Br., 16°21°7' E v. Gr., Seehöhe 202-5 m 


Zeitangaben, wo nicht anders angemerkt, in mittlerer Ortszeit; Stundenzählung bis 24, 
beginnend von Mitternacht —= ON 


März 1919 


160 


Beobachtungen an der Zentralanstalt für Meteorologie 


48° 14-9' N-Breite. im Monate 
Luftdruck in Millimetern | Temperatur in Celsiusgraden 

7 fg Tea Baker Baer: -, 
ni) Tages- chung v Tages- |chungv 
h Ah 7411 ei s t t | 7 e 

ü 5 se mittel |Normal- 2 =‘ u mittell |Normal- 

| stand stand 

1l 743,7 744.9 DA9.0 AA Z en 2.9 3.6 238 2.1 ee 
2.46.28 Ale Az Eh na Aae.D Dee Pa 
3 | 9.0 1I8 Zain. alte 20 4.2 5.0 | 3.71.00 
4 | 47.0 46.4 45.7 | 46.4 | + 3.7 2200) IN 7E2 6.5| 5.2/4 3.0 
5 1449.40 HAB A aa 58 18 3.6 9:4 
6 | 40.9 40.5 39. a0 er TS 19.00 6.8 8. Ola 
7. 21.3 43.58 24.9 43 an 2038 RO) 9.1 4.8 7.3)+ 4.7 
8, +43.» 20.2 ago Asse a U.8 5.8: |. A. Se 
9% 3907, 23a aaa as 3.2 9.4 6.6 6.41 -1.8.4 
10 44.0 44.7 45.8 | 44.9 11 9%.7 5.0 1005 9.3 8.51. 9.4 
11 NUN all ku. We IV Ele 19:0 Pirok 25/1794 
12 | 227 20.440.020 = 1 a 15ER 11.6| 10.4 
Ban. 3906 Aa age 0,9 te 5.9 | 2.3 -Ee 
12% 1,405. 8879 239.0. Waoa5) nertos 5.3 6.6 5.0 | 5.6 an 
15 | 39.2 39.4 41.1 | 39-02 dl 2.7 3.6 DD 2.8 08 
16 | 43.1 45.5 47.5 | 45.4 + 3.4 1.0. ler 0.3 1.1120 
17 \\.26.9° 46,5 A581 a6. led 0.9 3.1 1253) 1.8 
18.) 49.89 Aa 30. ee 0.2 4,0 1.8) 2.0 
192121. Re A N, (012 0.0 2.9 0,8): VO. 
Bor ad are ara 3ER 5.4 2.0| 2.0 Se 
21 | 36.10 082.16. 20.90] 32.9, = 95017020, 2889 3.0 |° 3.8) mE 
22 /20.9 23.5°30.2125:0 | 16.9 47 5:0 ats 3.71 008g 
23. | 36.4 .35.,0..3458 | 35.0. 08 le] Ba 5.8 | 5.0.2 
545 "SL szeizgrgungg szız PEN Cal DL 8.0 71O Ten 
95. |87.0..40.2 42.6. |W8d-gHan 7.7 TO 2.0 5.7. 
26 | 38:70 ga. , "87.921 872:167 = An 1.9 2,9 2.0 2.0 en 
27.1.37.,8. B008 48305 Pass Neo 2.5 N! 6.6 | 5.2 
as 290 318 as3|l>oL,- 9,9 4.5 4.9 47 4.7 2 
»9.| 37.9 362 530.5 84.97 eee,g 2.5 1.3 6.7 5. 
20, 1 82,4. . 28.8.8157 °30,9 | 10,9 Eee 0.8.07 aa ee 
all 88.15 40.48.139.8|.39%8 2.5 8:7 58 1.0 2.3 a4 
Be 739.77 740.001739.90 —2.25 Beh 7.8 4.5 5.01 + 1.0 

| 


Höchster Luftdruck : 749.0 mm am 3. 
Tiefster Luftdruck: 720.9 mm am 22. 
Höchste Temperatur: 17.2°C am 11. 
Niederste Temperatur: — 1.5° C am 20 
Temperaturmittel2: 4.9° C. 


1 1,.(7, 14, 21). 
»1/, (7, 14,21, 21). 


und Geodynamik, Wien, XIX., Hohe Warte (202:5 Meter), 


161 


März 1919. 163 21.2. Erlänge;v..Gr. 
Temperatur in Celsiusgraden | Dampfdruck in mm Feuchtigkeit in Prozenten 
"Schwarz- Blank- | Ans- ? 
Max. Min. | kugelt kugs!stahl 7n 4m gın |TABES-| Zn 4n gyn | Tages- 
| lung ? | mittel | mittel 
Max. Max. | Yin, | 
I | | 
| 
3.8 Us) 6 1| 4.7 4.8 4.5 4.7 SD U] 81 
6.5 07817237 160) 3 4.4 4.9 4.8 4,7 88 AONRERO) 83 
Sr ET TE 9.5 5.4 5.0 983 9083 90 
8.5, 1.6.16 4419 Bl. 0. ya 9 ee |elz 
14.9 Dual Al 24 3 6.7 7.0 7) 649 97 59 1616) sl 
12.4 5.81 35 24 71.8 02 029 v1 38 63 93 si 
Sa) man A021 ZI OT 4.9 4.4 9.0 71 6 69 65 
KNIE EONG 88 19 | 513.9 6.8 5.6 9.4 59 Ss6 Sl 85 
Vs ER er B| 1 15.2. 775.44 5.0 um "IB. Bliyr 68 73 
113 #.6.|, 3219 0| 5.1 5.4 6.1 5.5 74 87 70 67 
mE 7.8| 45 29 3| 5.6 6.6 6.1 6.1 GR Anm 09 57 
IHRUOW 4.5 AO W224 15.3 6.5 Or 6.0 SA | 65 
' Da 35 #2 01 6.1 6.2 5.2 5.8 Glhae nu loy tu AR: 
Te] 3.4| 14 9 3| 5.8 5.9 5.8 8.7 SE engere) 83 
ET 17 3 4 1| 4.9 Sy 5.1 560 Sy 18090497 91 
2 0.8 2501 |— 174,4 4.2 3.6 4.1 SOSE LT 82 
3.2 (Org En ra a he a 3.6 BE ee Tom NooE 72 70: 
4.4 Varel] ee. 2.8 3.9 8.1 70° 45 63 BY) 
3.3 — 0.8| 34 16 |— 2|| 3.8 2.2 3.1 3.0 824 188510,69 63 
848 ı— 1481: 34,416: #]lar8.5 3.0 3.1 3.2 85 4458 62 
Dear 087 1437 720 513.9 5.2 9.9 4.8 AI! s1 
7.3 0.8| 12 9 I— 1 5.4 5.0 4.0 4.8 s4 77 78 s0 
8.5 IR. m St 18 | 214*3.9 4.0 4.6 4.2 78 49 7 65 ; 
12.5 1.8 042 m23, = Bllard.7 9.3 5.8 5.9 SER ats WR 72; 
10.1 1.1|,40 23 O5 5.7 5.9 3.8 4.9 72 69 7 11: 
| Bl 60) 7 4 01 4.8 5.4 5.0 5.1 92° "95 95 94 | 
j 8.0 son 202 127 | 3°#5..8 1.3 7.4 6.6 ET 97 
| 6.5 Ba 2 | er. Dt 4.4 Dan REN 69 83: 
8.6 2.5] 388.19 |— 2| 4.3 3.2 4.2 3.9 78 Zn 59 
| 2.36 0.7 23. 14 0. 4.0 4.2 4.4 4.2 65 64% 72 
| 8.8 0.6 827161 273.0 2.7 4.4 3.4 62. 40 90 64 , 
4 1.8| 28.8 16.3|-1.0| 4.8 5.0 5.0 4.9 83 65 78 75 
a 
Höchster Stand des Schwarzkugelthermometers: 45° C am 11. 
Größter Unterschied zwischen Schwarz- und Blankkugelthermometer (stärkste 


Birahlung):.19° C,am .7., 8.,.24. u. 29. 

Tiefster Stand des Ausstrablungsthermometers: —7° C am 20. 
Höchster Dampfäruck: 7.8 mm am 6. 

Geringster Dampfdruck: 2.2 mm am 19. 

Geringste relative Feuchtigkeit: 380), am 19. 


! In luftleerer Glashülle. 


® Blankes Alkoholthermometer mit gegabeltem Gefäß, 0-06 m über einer freien Rasenlläche. 


162 
Beobachtungen an der Zentralanstalt für Meteorologie 


„ 48” 1a N -Breite. 540147 dieoitu DE gi > teen 14°9' N-Breite. im Monate 
| Windrichtung und Stärke || Windgeschwindigkeit Niederschiet 12) suloMnärichtung und Stärke | Windgeschwindigkeit| - Niederscnke ii 
.n.d. 12-stufigen Skala in Met. in d. Sekunde inmm gemessen 3 
Tag ARE En ERTEETUSTH Te oT SeeeeaG Te oT, 2 
= 
7h 14h 21h Mittel| Maximum I 7h 14h 21h | -S 
un 
1 INIWI 277 5NT IEENINIWE2 E25 NW ERT2EB 0.0e 1.08 0.08 | — 
2 WNW1 NNE 1 ESE 1l 0.9 NNE 5.6 = _ — En 
3 EN a VS: ll 0 SE 3.3 = 0.2® _ = 
4 NNWiI 5 1 WSW1j 1.5 SE 9.6 _ 0.08 2.4® 
b) SW. 1 W 2 WSWil 3.2 | WNW 14.9 1.50 0.70 0.0. | — 
6: | SWVINDVVELE ua NyE 1110220 2 WENDVER 0 B 1.0e _ _ _ 
7 WNW4 WNW1 WNW2| 4.6 | WNW 16.7 0.0® = = 
8 Wi H NNEA ESS 2.0 SSE 10.6 — _ _ -- 
) NW 1.NW 3 NNW3| 3.4 | WNW 13.3 _ _ 0.08 || — 
107 | WNWe, WW 88 21 527478 W 13.3 _ _ 0.08 | — 
11 We SEITZ ESSEN 1.8.1 W 118 _ _ — _ 
12 SE 1 SSE 4 SSE 4| 4.0 SSE 15.5 _ — = — 
13 Si le WW 979.5 SV All 152,4 W 17.4 = _ 0.08 | — 
14 WNW3 WNW3 NNWA4| 5.4 NW 15.0 — 5.4e | — 
151 15 WVIN WA NVNDVVASWENDNVG2 271 zEENVENNSNZ Alloseı 6.90 1. Ir 12.60 | — 
16 NNW3 N 3 NNW3l| 5.1 |:.NNW 13.3 || 10.1e 0.08 0.08 || — 
17 NW 3 NNW4 NW 3| 4.4 | WNW 12.4 0.0A _ 0.08 | — 
18 NW3 N 4 NNW2| 4.4 | WNW 13.1 _ ns = Ei 
19 N el NNIW2R SW N 9 NNE 9.4 0.0x _ _ _ 
2 Wal? ISBN SSH al 920 SSE 10.5 0.0x _ _ 
2] SE 1 SSE 4 SE 4| 4.2 SSE 16.3 _ = 0.4e | — 
22 W AWNW4 NW 4| 7.4 | wsw 24.4 1.2® 1.0® 4.35 | — 
23 WNW3 WSW2. N 1l 3.0 NW 19.4 0.3% 0.0x — _ 
24 — 0 Wis Au vl 1253 W 15.5 = _ En _ 
25 W208 N BENNERB| 328 W 11.9 | - — 0.0e _ - 
26 SEM BE SIE, BR NW AI a. SE 11948 0.50 7.70 1.20 | — 
27 — 0% E 1WSW1l.0.6 W 4.4 —_ 0.68 3.80 | — 
283 — 0 W 3WNW3l|l 4.6 W 20.6 0.3e 1.5e 0.08 | — 
29 W.2 WN\WBA=S 12 428 al SW NW 21487 _ —_ _ 
30 We5 KB Bang 28 W Dar = _ WE 
31 WNWo WW 8058.21 16.6, u WNIVv 117.8 0.4x _ Ur 
Mittel 2.0 2.5 2.03] 48:7 13.8 


Ergebnisse der Windaufzeichnungen: 
N NNE NE ENE E ESE SE SSE 5 SSW SW WSW W WNW NW NNW 
Häufigkeit (Stunden) | 
527082 18 2.0.24 5,19, ,46 , 48 0,542 4 .18 .35, 108 ,.. 1487.63 50 
Gesamtweg in Kilometern 

602 347 127 42 120 146 558 743 392 51 95 471 1604 2985 1015 688 
Mittlere Geschwindigkeit, Meter in der Sekunde | 
3,0 2.071.420 147221 3.47 4.1 215. EAN Or | 
Maximum der Geschwindigkeit, Meter in der Sekunde 
6.7 2.8 .3.6 5.83. 7.818458 5095 611 45.89.11. Wi0!0. 1OSSURETEE | 
Anzahl der Wındstillen (Stunden): 23. | 
Größter Niederschlag binnen 24 Stunden: 20.9 mm am 15. 

Niederschlagshöhe: 66.9 mm. 


[&6] 


LS) 
[0 2) 
“o 


i Den Angaben des Dines’schen Druckrohr-Anemometers entnommen. 


163 
und Geodynamik, Wien, XIX., Hohe Warte (2025 Meter), 


März 1919. 16° 21°7" E-Länge v.-Gr. 
Bi, Bewölkung in Zehnteln des 
= | sichtbaren Himmelsgewölbes 1 
5 = Bemerkungen 7 a ee 
23 za za || 
> 5) s53|I8% 

BEE BEN BAND Me N 
I 

gggef | 00 «0 A— 16, zeitw. 10172x080101 8071| 9.3] 9.8 

gmcan —_ 101 71 0 SOUND 

ggmcc | 0, =! vorm. [zeitw. || 101=1 10 90-1 | 6.7| 6.3 

nggff | 00 740°—10 ztw., 16-17, e1 1830 — 2140, eOnachts | 100-1 100-1 10181 |10.0[10.0 

ffedn | e071 530— 815, 0 vorm. zeitw.; a? abends. 10181 SIzLzEEI 8.3.96 

feebf | e' 4—7 zeitw. 100180 8071 0 6.0] 6.0 

ffmaa | eTr. 1215, g1 lu) 6.01 6.0 

bncen | —! mgns.; WI abends. 10 4071 100 DON ec 

gfdef | e® abends zeitw. ı 101 61 g1 8.31 8.3 
ffdfg | eTr. 15. || 19071 291727 591 9.0| 9.0 

febaa E= ı 7071 10 0 2.7| 2.8 

aaaaa | I mens,., 1 KO 0) 0 0.0) 0.0 

enfeg | al mgns.; eT'r. 1620. iv si72 8 TU 7.8 

ggggg | e' 10— 16 zeitw., el 1715 — | 101 10160 10181 110,.0|10.0 

ggggg | el gz. Tag— 10!el 10181 10181 |10.0)10.0 
ggggg | %0 eI71— 10, x0 10-18 zeitw., AU 23— 24. 10180%x0 101x0 101 110.0|10.0 
gggsg | AV zeitw. mgns., x0 1815 — 19, @ 21. 101 101 10180 |10.0/10.0 
gdfgg | WI 5, 1 mittags. | 100-1 100-1 101 |[10.0|10.0 

gmcab| x0 4—8 zeitw., #1 850— 910, xFl. 920, | 101x041 0) 4.7) 4.3 

cedenf | x0 2—3; 1 mgns. \ NAD ST 0) 2.3] 2.3 

gmggf | 00 1640 — 1930, eTr. 21, 0) 2330 — 100 100 10180 |10.0|10.0 

efggg | ed —1, 2 —320, e172 635 — 755, eU 1150, «071 e0T1 10182 10181 10180 |10.0|10.0 
gefef | xFl. 8. [1320°— 2240, | 100-1 gı 40 | 7.7.7.7 

ffmca ._ ı 80 31 sı 6.3] 6.3 

bnggg | eTr. 11 — 12. ı 21 9071 101 7.05.7240 

| ggfmg | e! 5—1620; =0 vorm. [e0 abds ztw.; =1b.mittag | 10lel 101601 0 &.70P 647 
ggfdc | e0 8, 6071930 — 1030, 1120 — 1420, e1721540— 1710, | 101=1 1007180 10180 |10.0/10.0 

dgffe | e19— 11, e0 1245— 1315, 1500730; a172 mgns. 7071 101 1001| 9.0| 8.3 

eengg | a mgns. I H2051 4 31 101 5.0] 4.3 

ffgfe | x0 00 1815 — | 9172 101 10180x0| 9.7| 9.7 

edggg | x0—2, x0 e0 1930—23. | 60 101 10180x0) 8.7| 8.3 

Mittel N SR: 1.9,..06>6. 137.41: 7.2 

Schlüssel für die Witterungsbemerkungen: 
a= klar. f = fast ganz bedeckt. k = böig. 
b = heiter. g = ganz bedeckt. l = gewitterig. 
c = meist heiter. h = Wolkentreiben. m = abnehmende Bewölkung. 
d = wechselnd bewölkt. i = regnerisch. n = zunehmende » 


e = größtenteils bewölkt. | 4 
Der erste Buchstabe gilt für morgens, der zweite für vormittags, der dritte für nachmittags 
der vierte für abends, der fünfte für nachts. 


Zeichenerklärung: 
Sonnenschein ©, Regen e, Schnee x, Hagel a, Graupeln A, Nebel =, Nebelreißen =, 
Tau a, Reif —, Rauhreif V, Glatteis nv, Sturm , Gewitter R, Wetterleuchten $, Schnee- 
gestöber +, Dunst oo, Halo um Sonne 9, Kranz um Sonne D, Halo um Mond []), Kranz 
um Mond W, Regenbogen N. 
| eTr. — Regentropfen, xFl. = Schneeflocken, Schneeflimmerchen, 


ı Tagesmittel A aus den mit Index versehenen Beobachtungen; Tagesmittel B aus solchen 
ohne Index. 


ki 


164 


Beobachtungen an der Zentralanstalt für Meteorologie und 
Geodynamik, Wien, XIX., Hohe Warte (202°5 Meter), 


im Monate März 1919. 


Ausrn Dauer | Bodentemperatur in der Tiefe von 


De y 
d des a2u2ı- 78 
un- +8 =2=|0.50m 1.0m 2.0m 3.0m 4.00m 
Tag stung Sonnen- in lei, E ARE 
in mm scheins 5 du il Tages- Tages- h h I 
’ in |Se9 | mittel mitte 4 bi . 
A Stunden |O HH 
1 0.2 0.0 10.7 4.0 3.8 5.5 7.5 9.0 
2 0.0 4.9 a7 3.6 4.0 5.9 0) 8.9 
3 0 3.8 0.0 Seil. 4.1 5.6 5) 8.9 
4 22 0.0 0.0 ST. 4.1 546 10) 8.9 
5 1.0 3.4 4.0 4.6 4.2 BIT are 8.8 
6 0.6 4.1 7.0 5.5 4.83 DT 7.4 8.8 
7 12 3.0 8.0 5.6 4.2 DIES 7.4 8.8 
8 0.6 9.4 7.3 Dad 4.9 Da 7.4 8.8 
9 Ey! 4.1 9.3 De 4.9 5.8 7.4 8.8 
10 ber 0.8 927 5.2 De 5.9 7.4 8.7 
11 0.8 SE) 8.0 6.0 Del 5.9 7.4 8.7 
12 keit 11.1 8.0 St 5.4 Hal 7.4 8.7 
13 1! Bat hl so) 7.4 5.6 6.0 7.4 8.6 
14 0.3 0.0 Lil e 6.6 Del 6.0 7.4 8.6 
15 0.5 0.0 120) 5.9 DRS 6.1: 7.4 8.6 
16 0.6 0.2 13.0 4.8 DS 6.2 7.4 8.6 
17. 0.3 0.0 12.3 4.4 ll 6.2 7.4 8.5 
18 1.0 4,9 183 4,2 BES 6.2 7.4 8.8 
19 0.8 7.8 9.3 4.2 5.4 843 7,4 8.5 
20 0x5 ae) O7 3.8 DZ 6.8 7.4 8.5 
1 0.6 0.0 6.0 3.8 Mo 8,3 7,4 8.5 
22 0.7 0.0 Na 4.3 Dt 023 7.4 8.5 
23 0.8 3.0 388 4,1 5. 6.3 7.4 8.5 
24 0.8 5.8 10.0 4.7 Del! 6.3 7.4 s.4 
25 0.8 el RO 9.4 De 6.3 7.4 8.4 
26 Om 0.0 6.3 Da 5.4 6.4 7.4 8.4 
27 (Oepil 0.0 EZ. 4.8 5.4 6.4 7.4 S.4 
28 0r9 0.0 8.0 Dez 5.4 6.4 7.4 8.4 
29 0.6 8.7 TESK. DZ 9.4 6.4 7.4 8.4 
30 INse 078 10.7 De 5.4 6.4 7.4 3.4 
31 0.8 3.0 10.3 4,8 5.4 6.4 7.4 8.4 
Mittel 087 3.2 8.4 4,9 4.9 6.1 7.4 8.6 
Monats-| 21.9 99.1 
summe 


Größte Verdunstung: 1.7 mm am 10. und 12. 

Größte Sonnenscheindauer: 11.1 Stunden am 12. 

Prozente der monatl. Sonnenscheindauer von der möglichen: 270/,, von d. mittleren: 740,,. 
Größter Ozongehalt der Luft: 13.0 am 16. 


Der vorläufige Bericht über Erdbebenmeldungen in Österreich wird wegen des spär- 
lichen und unregelmäßigen Finlaufes der Meldungen in den nächsten Monaten zusammen- 
fassend nachgetragen. 


Aus der Staatsdruckerei, 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr. I * 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 15. Mai 1919 de, 


Erschienen: Sitzungsberichte, Bd. 127, Abt. I[b, Heft 9. — Mitteilun- 
gen der Erdbeben-Kommission, Neue Folge, Nr. 54. 


Das k.M. Hofrat Prof. Heinricher legt eine von a. o. Prof. 
Dr. Adolf Sperlich im botanischen Institute der Universität 
Innsbruck ausgeführte Arbeit vor, betitelt: »Die Fähigkeit 
der Linienerhaltung (phyletische Potenz), ein auf die 
Nachkommenschaft von Saisonpflanzen mit festem 
Rhythmus ungleichmäßig übergehender Faktor. Auf 
GrundvonUntersuchungen über die Keimungsenergie, 
Rhythmik und Variabilität in reinen Linien von 
Alectorolophus hirsutus All.« 

Um die höchst unregelmäßigen und wechselnden Keim- 
erfolge selbst bei Aussaat ausgewählt schöner Samen der 
Rhinanthoidee Alectorolophus zu klären, wurden vom Ver- 
fasser aus einer Freilandpopulation der Innsbrucker Umgebung 
seit 1912 reine Linien gezüchtet. Auch in solchen bleibt die 
Keimung aufeinanderfolgender Generationen nicht Konstant; 
es lassen sich die wechselnden Keimerfolge somit nicht auf 
Vermischung von Linien verschiedener Keimkraft oder auf 
Bastardierung von früh- und spätkeimenden Rassen zurück- 
führen. Vielmehr ergab sich, daß in jeder Deszendenz mit 
zunehmender Bevölkerung die Zahl von spätkeimenden und 
von äußerlich zwar vollkommen einwandfreien, aber keimungs- 


15 


166 


unfähigen Samen gesteigert wird (Inkonstanz der Keimungs- 
frequenzkurve in reinen Linien), selbst dann, wenn die Samen- 
träger noch vielfach zu kräftigster Individualentwicklung 
befähigt sind. Erst in deren fernerer Nachkommenschaft wird 
die innere Schwächung auch am Individuum selbst in ver- 
schiedener Weise offenkundig. Die Ausprägung der Schwächung 
ist abhängig von der Rangordnung der Kapsel, aus welcher 
der Same stammt und von der Fruchtbarkeit des Individuums: 
je später ein Individuum entstanden ist, umso schwächer ist 
seine Deszendenz, umso früher müssen die ihm entstammenden 
Linien zugrundegehen; je fruchtbarer die Pflanze, umso eher 
wird dieser Zusammenhang bemerkbar. Jedem Einzelwesen 
kommt ein von seiner Aszendenz abhängiges und in seiner 
Deszendenz erkennbares Maß phyletischer Potenz zu. 
So wird im Gegensatze zu der in den Grenzen des indivi- 
duellen Lebens sich äußernden Fertilität (Fortpflanzungs- 
fähigkeit) die Fähigkeit bezeichnet, vollwertige, die Weiter- 
existenz der Art verbürgende Nachkommen zu erzeugen. Die 
phyletische Potenz erreicht im Individuum bei normaler Ent- 
wicklung in den untersten Nodien der Blütenstandsmitte den 
höchsten Wert und ist experimentell verschiebbar. 

Auf Grund der Untersuchungen über die Keimungs- und 
Entwicklungsrhythmik der Pflanze gelangt der Verfasser zur 
Auffassung, daß die ungefähr fünf Monate andauernde 
Sommerruhe der Samen ein erbliches, zum Charakter der 
Pflanze gehöriges Merkmal ist. Diese Ruhe und die Ein- 
schränkung der Art in ihrer Vollkraft auf früh angelegte 
Keime der frühesten Individuen begründen gemeinsam den 
Saisoncharakter der im übrigen sehr .anpassungsfähigen 
Pflanze. | 

Anomalien der Beblätterung, der Blüten, Zwergwuchs, 
Albinismus und Alteration des festen Keimungsrhythmus 
werden als Folgen geschwächter phyletischer Potenz und von 
der Ernährung unabhängig erkannt; hierbei wird darauf hin- 
gewiesen, daß insbesondere mit Rücksicht auf die durch 
einige Generationen mögliche Erhaltung des Zwergwuchses 
echte Mutanten mit solchen Formen verwechselt werden 
könnten. 


167 


Die Schwächung der phyletischen Potenz ist'nach des 
Verfassers Ansicht durch Mängel in der enzymatischen Aus- 
rüstung gegeben. Hierin bestärkt ihn die Tatsache, daß das 
Licht, wenigstens was die Keimkraft anlangt, bei innerlich 
geschwächten Nachkommen fördernd und hebend einzugreifen 
vermag. 

Vom pfianzengeographischen Standpunkt aus und mit 
Rücksicht auf den Stammbaum des Genus ist schließlich 
bedeutungsvoll, daß A/. hirsutus von Mühlau bei Innsbruck 
in einigen Exemplaren heterozygotisch ist und den offen- 
rachigen A/. Facchinii (Chabert) Sterneck enthätt. 


Prof. Dr. L. Lämmermayr übersendet eine Abhandlung 
mit dem Titel: »Legföhrenwald und Grünerlengebüsch.« 


Das w. M. Hofrat F. Exner legt folgende Mitteilung vor: 
»Über langsame Veränderungen der ß-Strahlung 
radiumhaltiger Präparate, ill. Mitteilung«, von Prof. 
Dr. F. Lerch in Innsbruck. 

Bei der Wiederholung der Versuche, welche früher (vgl. 
Mitteilung II. diese Sitzungsberichte, CXXIU. Bd. Abt. Ila, 
Nov. 1914) Änderungen der durchdringenden Strahlung ge- 
zeigt hatten, ergab sich nicht der frühere Effekt. Auch blieb 
bei neuen Versuchen die Strahlung der Präparate nach dem 
Erreichen der Emanationssättigung konstant, so daß die früher 
beobachteten Aktivitätsänderungen, wie schon seinerzeit ver- 
mutet, auf eine räumliche substanzielle Umlagerung zurück- 
zuführen sein dürften. 


Ferner legt derselbe vor: »Mitteilungen aus dem 
Institut für Radiumforschung. Nr. 121. Thor- und 
Urangehalt einiger Erze; nebst Anhang: Über die 
zeitliche Änderung von ThB-Th Ce, von Stefan Meyer. 

Aus dem Radiumemanationsgehalt. wurde bestimmt, daß 
ein Monazitsand neben 7:23 °/, Thor nur 0'087 ®/, Uran ent- 


168 


hält, was das größte bisher bekannte Verhältnis Th/U in Erzen 
liefert. Der daraus berechenbare Anteil der Radiumwirkung in 
den im Umlauf befindlichen Mesothorpräparaten ist um eine 
Zehnerpotenz kleiner, als gewöhnlich angegeben wird; das 
ließe sich erklären, wenn die Lebensdauer des Thor über- 
schätzt würde. Der Thorgehalt von krystallisierter Pechblende 
(Morogoro) wurde aus der Thoremanation, beziehungsweise 
Th 5-Th € nach einer Strömungsmethode bestimmt; das Erz 
enthält neben 74'5°/, Uran, 0:5, Thor.. Pechblende aus 
St. Joachimstal enthält zu 1g Uran 196.107? g Ionium und 
4:68.10? g Thor, zusammen 664.107? Thorisotope. 

Im Anhang befinden sich Tabellen für die »induzierte 
Thoraktivität«, beziehungsweise die durch die Anzahl der vor- 
handenen ThC-Atome bedingte «-Strahlungsintensität, nach 
verschieden langer Exposition in konstanter Thoremanation. 


Das w.M. Prof. W. Schlenk legt folgende Arbeit vor: 
Ȇber die Einwirkung von Acetylen auf Arsentri- 
chlorid«, von Orville A. Dafert. 

Verfasser beobachtete, daß sich Acetylen mit Arsentri- 
chlorid in der Kälte in Gegenwart von Aluminiumchlorid zu 
einer neuen Verbindung von der Formel AsCl,.2(C,H,), dem 
Diacetylen-Arsentrichlorid, vereinigt. 

Dieses Diacetylen-Arsentrichorid ist ein schweres, gelbes 
Öl (spez. Gew. 1'6910), dessen Siedepunkt bei 250° C. liegt. 
Beim Erhitzen mit Kalilauge spaltet es Acetylen ab. Seine 
Dämpfe üben eine starke Reiz-, aber keine merkliche Gift- 
wirkung aus, sind aber stark baktericid. 

Das Diacetylen-Arsentrichlorid zeigt, verglichen mit den 
verwandten Antimon- und Aluminiumverbindungen, eine auf- 
fallende Beständigkeit, die durch die Destillierbarkeit und das 
Verhalten gegen Wasser gekennzeichnet ist. 

In der Wärme entsteht aus Arsentrichlorid und Acetylen 
in Gegenwart von Aluminiumchlorid eine tiefschwarzgefärbte 
gegen Reagentien sehr widerstandsfähige, aber lichtempfind- 
liche, hochmolekulare, organische Arsenverbindung, die in 
ihren Eigenschaften den von E. Baud entdeckten Aluminium- 
verbindungen gleicher Herkunft ähnelt. 


169 


Das w.M. R. Wegscheider überreicht eine Abhandlung 
aus dem Laboratorium für anorganische, physikalische und 
analytische Chemie an der Deutschen Technischen Hochschule 
in Brünn: »Über eine neue Methode zur maßanalyti- 
schen Bestimmung des Nickels«, von Josef Holluta. 


Ei 


YY 
# 


Verzeichnis 


der von Anfang April. 1918 bis Mitte April 1919 an die 
mathematisch-naturwissenschaftliche Klasse der Akademie der 
Wissenschaften gelangten 


periodischen Druckschriften. 


Agram. Südslawische Akademie der Wissenschaften und Künste: 
— — Izvjesca o raspravama matematicko - prirodoslovnoga razreda, 
svezak 8, 1917. 
— — Rad (Razred mat.-prirodosl.) knjiga 217 (62). 


Amsterdam. Wiskundig Genovtschap: 


— — Nieuw Archief voor Wiskunde, reeks 2, deel XII, stuk 3. 

— — Revue semestrielle des publications mathematiques, tome XXV, 
partie 2; tome XXVlI, partie 1, 2. 

— — Wiskundige opgaven met de oplossingen, deel XII, stuk 5, 6. 


Basel. Helvetica Chimica Acta. Volumen I], fasc. I—-V; volumen Il 
fascz ol 


— Naturforschende Gesellschaft: 


— — Verhandlungen, Band XXVIII. 


Bergedorf. Hamburger Sternwarte: 
— — Jahresbericht, 1917. 
— — Meteorologische Beobachtungen, 1917. 


Bergen. Museum: 
— — Aarbok (Naturvidenskabelig raekke), 1916— 1917, hefte 1, 3 (Druckort 
Christiania). 
— — Aarsberetning, 1916—1917; 1917—1918 (Druckort Christiania). 
— — An account of the crustacea of Norway, vol. VI, part XIII, XIV 
Druckort Christiania). 


172 


Berlin. Deutsche chemische Gesellschaft: 
— :— Berichte der deutschen chemischen Gesellschaft, Jahrgang 51, 
No 6—17; Jahrgang 52, No 1—3. 
— — Berichte, Jahrgang 51, Sonderheft: Festschrift zur Feier des 50 jährigen 
Bestandes. 
— — Chemisches Zentralblatt, Jahrgang 89, 1918, Band I, No 11-26; 
Band II, No 1—26; Jahrgang 90, 1919, Band I/II, No 1--10. 
— Deutsche geologische Gesellschaft: 


"Zeitschrift (Abhandlungen), Band 69, 1917, Heft 4. 
— — Zeitschrift (Monatsberichte), Band 69, 1917, Heft 12. 


— Deutsche physikalische Gesellschaft:;: 
— — Verhandlungen, Jahrgang 20, 1918, No 1—24; Jahrgang 21, 1919, 


No 1, 2 (Druckort Braunschweig). 


— Fortschritte der Medizin. Jahrgang 35, 1917/18, No 16-36; 
Jahrgang 36, 1918/19, Nr. 1-10. 


“ —_ Jahrbuch über die Fortschritte der Mathematik. Band 44, 
Jahrgang 1913, Heft 3. 


— Königl. astronomisches Recheninstitut: 
— — Berliner Astronomisches Jahrbuch für 1920, Jahrgang 145. 
— — Kleine Planeten, Bahnelemente und ÖOppositions-Ephemeriden, Jahr- 
gang 1919. 
— Königl. preuß. Akademie der Wissenschaften: 
— — Abhandlungen (phys.-math. Klasse), Jahrgang 1918, No 1—4; — 
Gedächtnisrede auf A. Brauer. 
— — Sitzungsberichte, 1918, I—-XLV. 
— Königl. preuß. geodätischesInstitut: 
— — Veröffentlichungen, Neue Folge, No 75. 
— Königl. preuß. meteorologisches Institut: 
— — Veröffentlichungen, No 297. 
— Naturwissenschaftliche Wochenschrift. Band 33, 1915, Heft 
12—52; Band 34, 1919, Heft 1—9. 
— Zeitschrift für angewandte Chemie (Organ des Vereines 
deutscher Chemiker). Jahrgang 31, 1918, Heft  23—105. 
 — Zeitschrift für Instrumentenkunde. Jahrgang XXXVII, 1918, Heft 
3—12; Jahrgang XXXIX, 1919, Heft 1—3. : 
— Zentralbureau der internationalen Erdmessung: 


— — Veröffentlichungen, neue Folge, Nr. 32. 


Bremen. Meteorologisches Observatorium: 
— = Deutsches meteorologisches Jahrbuch für 1917, Jahrgang XXVIM. 


Budapest. Kgl. ungarische Geologische Reichsanstalt: 


— — Jahresbericht, 1915, Teil 2. 


— Ungarische Akademie der Wissenschaften: 

— :— Mathematikai es termeszettudomänyi ertesitö, kötet XXXV, füzet 
5; kötet XXXVI, füzet 1, 2. 

— — Mathematikai es termeszettudomänyi közlemenyek, kötet XXXIV, 
szam 2. 

.— Ungarische Geologische Gesellschaft: 

— — Földtani közlöny, kötet XLVII, 1917, füzet 1—9. 

— Unsarischer Adrıa-Verein: 

— — A Tenger, evfolyam VII, 1915, füzet II-IX. 

— Ungarisches National-Museum: 

— —- Annales, vol. XVI, 1915, pars 1. 


Chur. Naturforschende Gesellschaft Graubündens: 
— — Jahresbericht, Neue Folge, Band LVII, 1917/18. 


Dürkheim. Naturwissenschaftlicher Verein der Rheinpfalz 
»Pollichia«: 


— — Mitteilungen, Jahrgang LXXI/LXXI, 1916/17, No 30. 


Genf. Journal de Chimie physique. Tome 16, No 1—3. 

— L’Enseignement mathematique. Annee XX, 1918, No 1—3. 

— Öbservatoire: 

— — Nouvelles moyennes pour les principaux elements meteorologiques 
de Geneve de 1826 a 1915 ou 1917. 

— — ÖObservations meteorologiques faites aux fortifications de Saint- 
Maurice, 1917. — Moyennes de 10 a 10 ans, 1908—1917. 

— — Resume meteorologique pour Geneve et le Grand Saint-Bernard, 1917. 

— Societe de Physique et d’'Histoire naturelle: 

— — Comptes rendus des seances, XXXIV, 1917; 35, 1918, 1—3. 


Göttingen. Königl. Gesellschaft der Wissenschaften: 


— — Nachrichten (mathem.-physik. Klasse), 1917, Heft 3; Beihetft. 
— Geschäftliche Mitteilungen, 1918 (Druckort Berlin) 


[a 
Sı 
TR 


Graz. K.k. Landwirtschafts-Gesellschaft für Steiermark: 
— — Landwirtschaftliche Mitteilungen, Jahrgang 67, 1918, No 7—28; Jahr- 
gang 68, 1919, No 1—14. 


Groningen. Astronomical Laboratory: 


— — Publications, No 27, 28. 


Güstrow. Verein der Freunde der Naturgeschichtein Mecklenburg: 


— — Archiv, Jahr 72, 1918, Abteilung 1. 


Haarlem. Hollandsche Maatschapij der Wetenschappen: 


— — Archives Neerlandaises des sciences exactes et naturelles, serie ITA 
(Sciences exactes), tome IV, livr. 2; tome V, livr. 1. 


— Musee Teyler: 


— — Archives, serie DI, vol. III. 


Halle. Academia Caes. Leopoldino-Carolina germanica naturae 
ceuriosorum: 
— — Leopoldina, Heft LIV, 1918, No 3—12; Heft LV, 1919, No 1—8. 
— — Nova Acta (Abhandlungen), Band 103. | 


-- Sächsisch-Thüringischer Verein für Erdkunde: | 


— — Mitteilungen, Jahrgang, 35, 1914. 


Hamburg. Deutsche Seewarte: 
— — Annalen der Hydrographie und Maritimen Meteorologie, Jahrgang 46, 
1918, Heft II— XII. 
-— — ÖOzeanographie und Klimatologie des Persischen Golfes und des. 
Golfes von Oman. ; 
— — Tabellarischer Wetterbericht, Jahrgang 43, 1918, No 60--365;. 
Jahrgang 44, 1919, No 1—31, 60-74. 


— Hamburgische wissenschaftliche Anstalten: 
— — Jahrbuch, Jahrgang XXXIV, 1916 (mit Beiheft 1—5). 


Hannover. Deutscher Seefischereiverein: 
— — Mitteilungen, Band XXXIV, 1918, No 3—12; Band XXXV, 1919, 
No 1—3 (Druckort Berlin). 


Heidelberg. Akademie der Wissenschaften: 
— — Jahresheft, 1917. 
— — Sitzungsberichte A (mathematisch - naturwissenschaftliche Klasse), 
Jahrgang 1917, Abhandlung 1— 17; — B (biologische Wissenschaften), 
Jahrgang 1917, Abhandlung 4—7. 


175 


Heidelberg. Naturhistorisch-medizinischer Verein: 
— — Verhandlungen, Neue Folge, Band XIII, Heft 3. 


Hermannstadt. Siebenbürgischer Verein für Naturwissenschaften: 


— — Verhandlungen und Mitteilungen, Band LXVI, 1916, Heft 1—6; 
Band LXVII, 1917, Heft 1—6. 


Jena. Medizinisch-naturwissenschaftliche Gesellschaft: 


— — Jenaische Zeitschrift für Naturwissenschaft, Band LV, Heft 2, 3. 


Kiagenfurt. Naturhistorisches Landesmuseum für Kärnten: 


— — Carinthia II (Mitteilungen), Jahrgang 108. 
— — Jahrbuch, Heft 29. 


Kopenhagen. Conseil permanent international pour l’exploration 
de la mer: 


— —- Publications de circonstance, No 71. 


— Kommissionen for Ledelesen of de geologiske og geogra- 
fiske Undersggelser i Gronland: 


— — Meddelelser om Gronland, hefte XXII, afd. 2; bind LVII. 


— Kongelige Danske Videnskabernes Selskab: 

— — Biologiske Meddelelser, I, 3—8. 

— — Mathematisk-fysiske Meddelelser, I, 3—10. 

— — Oversigt over Forhandlinger, Juni 1917—Maj 1918. 

— — Skrifter (naturv. og math. afdeling), raekke 7, afd. VII, 2; raekke 8. 
I. No26; I. No- 1 25V, Noll. 


Laibach. Musealverein für Krain: 


— — Carniola (Mitteilungen), letnik IX, zvezek 1, 2. 


Leipzig. Annalen der Physik. 
— — Annalen, Vierte Folge, Band 54, Heft 1—8; Band: 55, Heft 1—S; 
Band 56, Heft 1—8; Band 57, Heft 1—8; Band 58, Heft 1, 2. 
— — Beiblätter, Band 41, 1917, No 23, 24; Band 42, 1918, No 1—23; 
Band 43, 1919, No 1. 


— Fürstlich Jablono wski’sche Gesellschaft: 
— — Jahresbericht, 1918. 


176 


Leipzig. Königl. Sächsische Gesellschaft der Wissenschaften: 


— '— Abhandlungen (mathematisch-physische Klasse), Band XXXV, 
No IV, V. 


— — Berichte über die Verhandlungen (mathematisch-physische Klasse), 
3and LXIX,. 1917, II, IV; Band LXX, 1918,71. 


— Naturwissenschaftliche Monatshefte für den biologischen 
chemischen, geographischen und geologischen Unter- 
richt. Band I, Heft 1, 2. 


— Physikalische Zeitschrift. Jahrgang 19, 1918, No 6—24; Jahr- 
gang 20, 1919, No 1—3. 


— Zeitschrift für Elektrochemie und angewandte physi- 
kalische Chemie. Jahrgang 24, 1918, No 7—24; Jahrgang 25, 
1919, No 1—4. 


Lund. Universität: 


— — Acta (Lunds Universitet Ärsskrift), Ny följd, afdelningen II 2 (Mediein 
samt matematiska och naturvetenskapliga ämnen), Bd. XIII, 1917. 


Luxemburg. Institut Grand-Ducal: 


— — Archives trimestrielles, nouvelle serie, annees 1912— 1917, tome VII. 


Madrid. Memorial de Ingenieros del Ejercito. Bboeg V, aio LXXIIL, 
1918, tomo XXXV, num. XI. 


Marburg. Gesellschaft zur Beförderung der gesamten Natur- 
wissenschaften: 
— °— Schriften, Band 14, Heft 1, 2 
— — Sitzungsberichte, Jahrgang 1916; Jahrgang 1917. 


München. Deutsches Museum: 


— — Verwaltungsbericht über das 14. Geschäftsjahr 1916—1917 und 
Bericht über die Sitzung in Wien, 20.—23. Oktober 1917. 


— Königl. Bayerische Akademie der Wissenschaften: 

— — Abhandlungen (mathematisch- nn Klasse), Band XXVIII, 
Abhandlung 9, 10. 

— — Sitzungsberichte (mathematisch- ofyäikälische Klasse), 1917, Heft II; 
Loltssssrlett II. 


— Königl. Sternwarte: 
— _— Neue Annalen, Band V, Heft I. 


4 Münster. Westfälischer Provinzial-Verein für Wissenschaft und 
Kunst: 


— — Jahresbericht 45, 1916/17. 


Neuchätel. Societe des Seiences naturelles: 


— — Bulletin, tome XLI, annees 1913—1916; tome XLII, annees 
1916— 1917. 


Nürnberg. Naturhistorische Gesellschaft: 


— — Jahresbericht, 1917. 


Pola. K. u. k. Hydrographisches Amt: 


— — Veröffentlichungen, Gruppe Il: Jahrbuch der meteorologischen, 
magnetischen und seismischen Beobachtungen (fortlaufende Num- 
mer 38); — Gruppe V: Ergebnisse der meteorologischen Beoh- 
achtungen in Pola für das Lustrum 1911—1915 (fortlaufende 
Nummer 39). 


Prag. Böhmische Kaiser Franz Josefs-Akademie der Wissen- 
schaften, Literatur und Kunst: 


— — Vestnik, 1917, rocnik XXVI, Cislo 3—9. 

— — Verschiedene Veröffentlichungen: O vyvoji a kliceni spör jakoz 
i sexualite kvasinek. 

— Kgl. Böhmische Gesellschaft der Wissenschaften: 

— — Sitzungsberichte (Vestnik) (mathematisch - naturwissenschaftliche 


Klasse), 1917. 


-—— Listy cukrovarnicke. Rocniık XXXVI, 1918, £islo 25—52; rocnik 
XXXVIl, 1919, Eislo 1—27. 


Rom. Pontificia Accademia Romana dei Nuovi Lincei: 


— — Atti, anno LXX, sessione I—II. 
— — Memorie, serie II, volume II. 


Stockholm. Forstliche Versuchsanstalt Schwedens: 
— —- Flygblad, No 10—15. 
— — Meddelanden, 1918, häfte 15. 


— Institut royal geologique de la Suede: 
— — Arsbok, 1917. 


— Kung. Vetenskaps-Akademien: 


— — Meteorologiska iakttagelser i Sverige, serie 2, band 44, 1916. 


178 


Straßburg. Kais. Hauptstation für Erdbebenforschung: 


— -— G. Gerlands Beiträge zur Geophysik. Zeitschrift für physikalische 
Erdkunde, Band XIV, Heft 4. 


Stuttgart. Verein für vaterländische Naturkunde: 


— — Jahreshefte, Jahrgang 73. 


Upsala. Observatoire met£orologique de l’Universite: 


— — Bulletin mensuel, vol. XLIX, annee 1917. 


Utrecht. Physiologisch Laboratorium der Utrecht'sche Hooge- 
school: 


— — ÖOnderzoekingen, reeks 5, deel XIX. 


Wien. Allgemeiner österreichischer Apotheker-Verein: 


— — Zeitschrift, Jahrgang LXXI, 1918, No 12-52; Jahrgang LXXII, 
1919. No 1-14. 


— Elektrotechnik und Maschinenbau. Jahrgang 36, 1918), Hei: 
12—52; Jahrgang 37, 1919, Heft 1— 14. 

— K. k. Geographische Gesellschaft: 

— — Mitteilungen, Band 61, 1918, No 3—12; Band 62, 1919, No 1. 


— K.k. Geologische Reichsanstalt: 

— — Geologische Karte der Königreiche und Länder der österreichisch- 
ungarischen Monarchie, Lieferung 14. 

— — Jahrbuch, Band LXVII, Jahrgang 1917, Heft 2—4; 

— — Verhandlungen, 1917, No 9—18; 1918, No 1—12. 

— K.k. Gesellschaft der Ärzte: 


— — Wiener klinische Wochenschrift, Jahrgang XXXI, 1915, No 12 -52; 
Jahrgang XXXLH, 1919, No 1— 14. 


— RK. k. Gradmessungs-Bureau: 


— -- Publikationen für die internationale Erdmessung, Band XV. 


— K.k. Hydrographisches Zentralbureau: 

— — Beiträge zur Hydrographie Österreichs, Heft X, Lieferung I. 
— — Jahrbuch, Jahrgang XX, 1912, I—XIV; Allgemeiner Teil. 
— K.k. Naturhistorisches Hofmuseum: 


—— — Annalen, Band XXXI, 1917, No 1—4; Band XXXII, 1918, No 1—4. 


Wien. K. k. Österreichische Fischereigesellschaft: 


— Österreichische Fischereizeitung, Jahrgang XV, 1918, No 7—24; 
Jahrgang XVI, 1919, No 1—3. 


K. k. Zentralanstalt für Meteorologie und Geodynamik: 

— Jahrbücher, Neue Folge, Jahrgang 1914, Band LI. 

— Klimatographie von Österreich, II; VII; VII. 

— Tabellen zur statistischen Wettervorhersage für Niederösterreich und 
die angrenzenden Landstriche, Sommer (Juni—August), Herbst 
(September— November), Frühjahr (März—Mai). 


K. k. Zoologisch-botanische Gesellschaft: 


— Abhandlungen, Band X, Heft 1. 
— Verhandlungen, Band LXVII, 1918, Heft 1-8. 


Monatshefte für Mathematik und Physik. Jahrgang XXIX, 1918, 
Vierteljahr 1, 2. 


Niederösterreichischer Gewerbe-Verein: 
— Wochenschrift, Jahrgang 'LXXIX, 1918, No 12-52; Jahrgang 
LXXX, 1919, No 1— 15. 


Österreichische Kommissionen für die internationale Erd- 
messung:! 

— Verhandlungen: Protokolle über die Sitzungen vom 31. Oktober 
und 12. Dezember 1916; vom 16. Jänner, 10. März, 4. April, 
4. Juni, 17. Oktober und 15. Dezember 1917. 


Österreichischer Ingenieur- und Architektenverein: 
— Zeitschrift, Jahrgang 70, 1918, No 12—52; Jahrgang 71, 1919, 
No 1— 14. 


Österreichischer Reichs-Forstverein: 
— Vierteljahrsschrift für Forstwesen, Neue Folge, Band XXXVI, 1918, 
Heft I-IV. 


Österreichischer Touristenklub: 
— Mitteilungen der Sektion für Naturkunde, Jahrgang XXX, No 3— 12; 
Jahrgang XXXI, No 1-—#. 


Volksbildungs-Verein: 
— Verlautbarungen des Volksbildungshauses Wiener Urania, 1915, 
No. 12—19. 


Wiener medizinische Wochenschrift. Jahrgang 68, 1918, 
No 12—52; Jahrgang 69, 1919, No 1— 15. 


180 


Wien. Wissenschaftlicher Klub: 
— — Jahresbericht, Vereinsjahr XLII, 1917 — 1918. 
— — Monatsblätter, Jahrgang XXXVII, 1917, No 9— 12; Jahrgang XXXIX 
und XL, 1918 und 1919, No 1—6. 


— Zeitschrift für das landwirtschaftliche Versuchswesen in 
Österreich. Jahrgang 21, 1918, Heft 1—12; Jahrgang 22, 1919, 
Hett 1402 


Ministerien und Statistische Ämter. 


— K.k. Ackerbauministerium: 

— — Anbauflächen und Ernteergebnisse der landwirtschaftlichen Boden- 
produkte im Jahre 1917. 

— — Statistik des Bergbaues in Österreich für das Jahr 1913, Lieferung 2; 
für. das Jahr 1914, Lieferung 3; für das Jahr 1915. 


— K. k. Arbeitsstatistisches Amt im Handelsministerium: 
— — Die kollektiven Arbeits- und Lohnverträge in Österreich. Abschlüsse, 
Erneuerungen und Verlängerungen in den Jahren 1914, 1915 und 1916. 


— KK. k. Einanzmıimister um: 
-— — Mitteilungen, Jahrgang XXIII, 1918. 


— K. k. Handelsministerium: 
— — Statistik des österreichischen Post- und Telegraphenwesens im 
Jahre 1916. 


— K. k. Statistische Zentral-Kommission: 
— — Österreichische Statistik, Neue Folge, Band 1, Heft 4; Band 14, 
kleitseln22,03: 


— Niederösterreichische Handels- und Gewerbekammer: 

— — Geschäftsberichte, Jahrgang 1917, No 11, 12; Jahrgang 1918, No 1-12, 

— — Protokolle über die öffentlichen Plenarsitzungen, Jahrgang 1917. 
No 6 (mit Beilage 3, 4); Jahrgang 1918, No 1. 

— — Sitzungs- und Geschäftsberichte, Jahrgang 1916. 


Wiesbaden. Nassauischer Verein für Naturkunde: 
— — Jahrbücher, Jahrgang 70, 1917. 
/ 
Zürich. Naturforschende Gesellschaft: 
— — Neujahrsblatt, 1919, Stück 121. 
— — Vierteljahrsschrift, Jahrgang 63, 1918, Heft 1, 2. s 


— Schweizerische Apotheker-Zeitung. Jahrgang 56, 1918, No 1# 
bis 52; Jahrgang 57, 1919, No 1—14. 


— Schweizerische Meteorologische Zentral-Anstalt: 
— — Annalen, 1916, Jahrgang 53. 


u 6 


1919 Nr. 4 


Monatliche Mitteilungen 


der 


Zentralanstalt für Meteorologie und Geodynamik 


Wien, Hohe Warte 


48° 14-93" N-Br., 16° 21°7' E v. Gr., Seehöhe 202-5 


Zeitangaben, wo nicht anders angemerkt, in mittlerer Ortszeit; Stundenzählung bis 24, 


beginnend von Mitternacht=0h. 


April 1919 


Änzeiger Nr. 13. ' 19 


Beobachtungen an der Zentralanstalt für Meteorologie 
48°14°9' N-Breite. im Monate 


Luftdruck in Millimeter | Temperatur in Celsiusgraden 

Tag | Abwei- wa | Abwei- 
= Tages- chungv.| _ Tages- chung v. 

h h h | h h h 
i n a | mittel Normal- 1: x mittell Normal- 
stand ‚ stand 
1 734.2 286 5) #33. 2 3) 136,.,6 |} Far.2 | £0.49 4.2 3.4 2.8701 Am 
2 | 40 41.6 3.4 | 41.8 0.0 "2.6 5.4 4,1 4.0 |— 8.1 
345.5 45.1 45.4 | 45.3 )—+ 3,5 2.9 Se 6.6 5.9 — 1L.& 
4 44.5 44. 45.6 | 44.9 I—+ 3.1 3.0 TEN ( D.0 — 2.0 
9.1 A620 Alert, 44.8 |—+ 3.0|| 5.9 12.0 8.7 Se —+ 1.2 
6, aBı7 a0 9 Mo 45 0.71, 5.0 ‚er 105 9.9 |+ 2.0 
7. | 43.7.’ 41.2 7580.21 41,2. = 0.410 6.17 36.8 12,2 11.38 + 3.6 
8.1 7322.0,027%2” 26.410286 188 9,68 ET 10.5 + 2.1 
gr 27 ,8.032 95 Fark, Bas 9.31 8.9 8.9 9.4 9.1.)&# 0.6 
10 41.3 41.38 44.2 | 42.3 |+ 0.5 5.0 12.7 7.4 Ss.4 .— 0.3 
11.) 47.1 47,8 48.7 | 47.9 | 6,1 ED 1089 8.1 8.2 — 0.7 
12 48.1 46.1 44.5 | 46.2 |—+ 4.4| 8.0 14.1 12.3 11.5. | + 2.5 
13 | 40.7 WEB IE. 11.9156 13.0 —+3.8 
14 37.4 371.6 35.9 1286, 84 z5r0.17 950 10.3 I: 9.5 —-. 0.1 
lo 792.9. ol al 23228 eB2leı 9rrz | 022 3.6 9.3 9:7. 102 
16273322, B5r2 1 735107352902 Tel 12.3 7.4 8.9 — 0.7 
17 |-4128 a3 a1. 77-6 12.0 10.4 10.0 + 0.2 
18 | 45.9 46.4 45.9 | 46.1 |+ 4.3|| 8.2 8.7 Se 8.9 le 
19 | 47.4 46.2 45.5 | 46.4 |4+.4.6| 9.1 182.0 11.4 |+ 1.3 
20 | 44.8 43.9 45.5 | 44.7 |—+ 2.8|| 11.1 15.8 10.4 12.4 + 2.1 
21 48.6 49.1 49.8 | 49.2 |+ 7.3| 5.1 6.8 4.1 5.3. | 2008 
22 48.7 47.4 48.6 | 48.2 | + 6.3| 0.0 0.3 RR, 0.3 —10.4 
23 | 47.6 45.1 43.2 |45.3| + 3.4| 0.4 4.3 RT 2.0 — 8.4 
24 | 40.1 31.3 86.0 | 88.0.1 8.911 2.4 Se 5.8 |— 59.8 
25 | 35.8 #486.9 1238.10 BoRsH erg I 9:0 5.9 6.6 — 4.7 
28 39,2 Massen sg 34 5.7 en 7.000 — 4.4 
27 | 36.2 786.6 787.8°| 86.9 | = 5.01 5.2 2155) 6.4 7.0 ,— 4.6 
28 | 38.3. 484.7 83.841.854 6 4], 46:3]. u426) 4 18.4; 10,0 9.3 1 2en 
29 | 32.7 284.7 735.94 84,411 7.91 22.9 32 4.1 3.4 — 8.6 
301 87.80 8122, 086.8 Nez la 24,8] 9.2 9.4 5.6 6.1 — 6.2 
Mittel |740.77 740.31 740.73|740.60 —1.24| 346. 1020 Tool 7.8 | 8 


Höchster Luftdruck: 749.8 mm am 21. 
Tiefster Luftdruck: 726.1 mm am 8. 
Höchste Temperatur: 17.1° C am 7. 
Niederste Temperatur: — 0.5°C am 29. 
Temperaturmittel 2: 7.8°C. 


1 1/, (7, 14, 21). 
a4, (2,18 21, 20% 


22 
=) 


und Geodynamik, Wien, XIX., Hohe Warte (2025 Meter), 


April 1919. 16” 2720 R-Tanpe v Gr 
% } j 
Temperatur in Gelsiusgraden Dampfdruck in man , Feuchtigkeit in Prozenten 
Sehwarz- Dlauk- | Aus- | | 2 
Max. Min. | Kugel! kngerr | stral- || 7 {4h oh Tages- 7h j4n 02h Tages- 
ung? || | mittel || mittel 
| Max, Max. | En | | 
29, 10.5: 1.16 a ET ARETT 4.3 86 718 u 77 
0.41.23, 18 Ol a A GE ART 4.6 79 69 76 #5 
9.6 P.8.|,28,- 22. 22, 5.0 4: Ay 5.0 90 Dt 10 72 
ner 2.8 | 12, 9 | —2 4.6 6.3 6,9 9:9 S1 854 96 37 
Bez. 15.7.1483 25 a RS Br 6.6 85 64 84 78 
15.1 SI 07 Ö 6.4,4508.01 7 769 7.4 | 98 ,.66 83 82 
Zul 5.0, 42 26 1216-7 6%.9..17n2 6.8 94 .. 45 67 69 
1228 9.4.| 13 14 6.|| 8.3 oma 8.8 8.8 93 91 93 92 
10.8 7.0 al: 14 balay ai 5.8 4.3 DS 33 68 49 67 
kart 322 ai —2 5.6 5.8 6.4 8.9 86 88 8 7 
12. l 5.4.40 22 B) 5.0 47 4.4 4.7 7 49 ; 55 59 
14.78 6.4.1 40 26 028-7. 257.9 0% 0 7:8 71. 66.078 71 
2.8. 19.7029. ‚21 7 | SI. 83) 29:61 .,.859 86262 5 94 S1 
mern, A708 1.20. 719 6.1 »6.4,..6,4 6,7 6.5 ZA u8 77 73 
18.80 15.8 | 8b: 23 Bil ce 2:3 OF. EN. 79 81 
2 lea dd 25 DEAL 06 Our 55574 238.1..79 v5 7 69 
12,80 06.721048, 24 2 Dur Are) a2 9.2 (2 46 58 58 
KOT SUR Sl a > Det ol 6% 7 6.0 B} ne.# 278 7 
14.3 Ss.5 | 40 24 6 BET 128 36) 1:8 77 TO E72 783 
16.8 8s.0Iı44 27 6 6.4 6 6.6 6.9 64 57 70 64 
8.2,.03.00148,,23, |, 70,1 54.0.154.1 24:6 |) 4.21 6iy456 N 75 64 
3.0 .-0.1 129 18 |—3.| ‚3.0,,4.4 „83.4 |, 3,6 65 995 2 71 77 
5552. 0:5 1.86. 18 —3 2.8 3:4 3n2 Sal 60 54 57 87 
9.3. 1.0.1389, 22 | -5.153.1,.2.9 4.2 | 3.4 | 58,.,84 58 | 50 
ou 41140 22 1010| 5.0 30 3.9] 43| zz 45 56 509 
9.3, 0A el Oli A. su ae A| Zr, 68 59 
10.4 2 LG ke ı + #.0 4.5 4.5 4.3 61 50 63 58 
1328 101 21, ZA 6545 4.9 5.5 9:0 il 43 60 58 
9.0 1021.26 19 I —12| 59.0 5.4 4.3 4.9 89 94 70 Ss4+ 
RO Niet 86 21 14 4,3 2,9. 494 Aus 79 Aa 72 65 
wo 100 0 oe 54 5 5 oe Ai 70 
ı 


Höchster Stand des Schwarzkugelthermometers: 44°C am 16. u. 20. 

Größter Unterschied zwischen Schwarz- und Blankkugelthermometer (stärkste 
Strahlung): 20°C am 21. 

Tiefster Stand des Ausstrahlungsthermometers: —6° C am 28. 

Höchster Dampfdruck: 9.6 mm am 13. 

Geringster Dampfdruck: 2.8 mm am 23. 

Geringste relative Feuchtigkeit: 34%, am 24. 


! In luftleerer Glashülle. 
® Blankes Alkoholthermometer mit gegabeltem Gefäß, 0.06 m über einer freien kasenfläche. 


154 
Beobachtungen an der Zentralanstalt für Meteorologie 


48°14°9' N-Breite. im Monate 


I [ 
Windrichtung und Stärke | Windgeschwindigkeit Niederschlag, 2 
n.d. 12stufigen Skala | in Meter in der Sekunde | in mm gemessen ® 
rn en | EEE ke} 
lag | | | 3 
zh 14h >ıh | Mittel Maximuml | 7 14h 2jh = 
N | IL @ 
1 SSE 13. AO 3.8 N 15.0 ( — a 
2) | DNW ZU UN Bar EN N PB ONNE Herr = E — - 
3 WE LABUN ME NEN 127 UNNWANS.B de Zu 
4 NE 1.0289, 7 sol FOROAENNEN: FD _ —_ 0.4e | — 
3 | WSW.ISBON. 381. ISBRRIN FI. HE NNE 4 6170.08 _ - = 
6 Wi IAUB. WEWSWILN 4:5 TENE.NY 859 — = | 
7 MR OHFISE 92 SER 2 Far WISSE. TB == _ = — 
8 E 2 SE 2 WSwW2| 4.1| wsw 13.6 | 4.0e 7.50 1.40 
9. |WSW5.:.W 5.WNW4| 8.8)" ww ©95.8|.1.68: 6.08 — | 
10 SS SE 5 er ze 0) — - 0.36 | — 
11 NW 4 N 3 WNW3 5.0 | WNW 16.1 1.0e = — ac 
12 Wie auNEW N SB was. Ford a — 0.08 z E: 
18: |INW: 34 18: I wei al 08.9|% ww 815.04. 0.10: 0.00 02 2er 
I EN are 2 AESBRLi 94729) AyNWa 20:87], 1ekerıı 0:0: -— | - 
15 N 1 NE 2 WNW2 29 | WNW 13.3 0.02 _ 0.08 | — 
IB | ENG 1A7 dawn Br wanna? 3.094 SWSW 01548: 0. - _ = 
lat: | UUDEV Bun "3 UN] 15%) Em Tao — _. _ = 
Re, BEN ENEN BR 17 N 19.7 —ı 2 1.70 70. | 
19 |NNW3 wNW3 NW 3|. 5.1 | wNW 16.1 |122.9Ae — - | - 
20 |NNW3 Nw4 NNW5| 6.0| N 18.1 4 — 0.08 | — 
21 |NNW4 N 4NNw3l| 6.3| uw 18.6 | — 0.05 '2.08Al = 
22 |NNWS NNW3 NNE3| 5.4 | NNE 16.4 || 1.24% 0.8xA 2.98 | — 
23 u N) 21H w Sp, NWwisall Fayon) ANNEY 10.8 = = 1 
24 |WNW3 wWNWw4 NW 3| 5.2 | WNW 14.2 - = — A Men 
25 NW 3 nw4 WNW2| 5.6| NW 15.3 | 0.0e 0.30 0.0e | — 
26 NW 4 WNWA4 \Ww22 DES ENWENDVVEE SE _ 0.0® 0.08 || — 
27 | w ı wSsw2 Ww 3j 4.3| wNW 17.8 = -— 0.08 | — 
23 — oo Ss 4 SE? AN ON NISSE. FALTER = = = = 
29 WNW4 WNW3 A 9 3.3| WNW 12.8 0.2® Rh: — _ 
30 —E ON FISHeDN SSH 2 2.3 SSE 9.0 _ = — Er 
Mittel 2.4 2.8 2.8 4,2.| 14.1 24.2 23.4 21 
Ergebnisse der Windaufzeichnungen (nach dem Schalenkreuz): 
N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW 
Häufigkeit, Stunden 
5b. nalen al 1404.08, Bd An zu 5 1% 50.0102 So 72 
Gesamtweg, Kilometer 
369 786 64 62 102 257 265. 614 109 36 34 453 1658 3058 1047 1410 
Mittlere Geschwindigkeit, Meter in der Sekunde 
4:3 3:8 1.5 1.2 2.6 2.6 3.1 4.3 8BMEHW 1.4 ABTEI 
Maximum der Geschwindigkeit, Meter in der Sekunde 
8.6 10.0 a Bi 56 5.3 5.3:78 6.7.8.1. 2.2 10.0459 TV Wir 
Anzahl der Windstillen (Stunden) = 11. 
Größter Niederschlag binnen 24 Stunden: 15.5 mm am 18. u. 19. 


Niederschlagshöhe: 08.6 mm. 
! Den Angaben des Dines’schen Druckrohr-Anemometer entnommen. 


185 
und Geodynamik, Wien, XIX., Hohe Warte (202'5 Meter), 


AUDIT ° tor 2er \E-Barnge’vrtır. 
n. | Bewölkung in Zehnteln des 
vi | sichtbaren Himmelsgewölbes 
Ein Bemerkungen! er E= 
E E s } 4! DER R = 2 = 
=. || zıh 14h 2]n 259» 
Si | sales 

= eure — ven ren MN FErRE 

ggggs | x! ed 1—A. 10° 101101. |10.0|10.0 
gEggE = - 101! 101 101 110.0|110.0 
fdfed | x071 0071 1—3; BI? 14— 16. 6071 100 0) 9.91 9.93 
egggg | eV! 14—15 zeitw., 16—21. 100 10180 10189 110.0/10.( 

sdmac | eTr. 590 —7. 100217 601 5.3] 9.: 

gmbba | .a? mens. ; =1 bis 9. (Ole 20 4.3] 4.0 

beben | almgns.; W121. 20 ı1 70 Sl 

gegef | 0 2—3, 0-1 435 — 1040, e2 — 1110, e0-1— 19, || 101el 101el 70-1| 9.0| 8.7 

ggema | e0 1315 — 1125, e0 1145 — 1410, jeTr. 23. || LOlel 101860 30 MDR 

enggg | e071 1610 — 23; a? mgns., ®1 10. 20,7 101 10180| 7.3| 7.3 

edmab | e! 4; &17. 707,71 0 4.7) 4.7 
enfef. | e071 915 — 10; .a0”1 mgns. [ed 1—24, 41 91 9071| 7.3] 7.0 

ggggg | 14-640, eTr. 12—15 zeitw., e 1910— 1950, || 101 10180 1018071)10.0|10.0 

gsgdme | e071 250— 530, @0 11—12 zeitw.; al abends. 101 101 90-1977 1.957 
nffeg | a?=1mgns.; e0 1%0— 2010, eı71 23 — 101=1 9071 101 az Iren 

fmecb | e071—140, 91 Bi} 7071| 6.3) 6.0 

deden — Bo Sl 28073 6.7 

ggegg | el 710—1215, 00 17, el 1810 — 2150, ei 722150 — || 101 101 10189 |10.0)10.0 

gdmac | e071 AD — 52%. BET S0z1, MO 5.7 8:4 

ne 0 1845 — 1910 — 4 
eeene | e0 18 1910, [-1730, 1815, x060 21- 8071" 91 101 9.0) 9.0 
edknf | x0 a0 92540, x0 „1123040, A172 Böen 15— a 91x0e0| 6.3] 6. 
dnggf | x071 Al Böen—3, x0930— 11, x172 1115—1630, | 30-1 101x1 101 Te 7. 
mdcaa _ [x0 18—20. gucu Z 7eul 0 4.71 4. 
bncde — 11 sl 80-1! 5.7| 5. 
fedne | e0 410740, 6, 12, e071 1430 — 1520, 10071 4071 31 Del 9. 

edman | e071 1030— 1110, @0 1610, 3071 ,,,7172 1,0 3.3| 3. 

gggma | oe) 1630750, 101 101 21 meslz. 

abbng | — mens. 0 al 4071| 2.3] 2. 

ggimd | #071 0071 6355 — 1255, 10160 10180 4071| 8.0] 8. 

meemn | D 7. 40 al 30 4.71 4. 

Mittel 7.3 Lei 5.8 | 6.9] 6 
Schlüssel für die Witterungsbemerkungen: 

a = klar. f = fast ganz bedeckt. k = böig. 

b = heiter. g —= ganz bedeckt. l = gewitterig. 

c = meist heiter. h = Wolkentreiben. m = abnehmende Bewölkung. 

d = wechselnd bewölkt. i = regnerisch. n = zunehmende n 


e = größtenteils bewölkt. 
Der erste Buchstabe gilt für morgens, der zweite für vormittags, der dritte für nachmittags 
der vierte für abends, der fünfte für nachts. 
Zeichemerklärung;: 

Sonnenschein ©, Regen e, Schnee x, Hagel a, Graupeln A, Nebel =, Bodennebel =, 
Nebelreißen =:, Tau a, Reif —, Rauhreif V, Glatteis ru, Sturm #, Gewitter R, Wetter- 
leuchten <, Schneedecke X, Schneegestöber #, Dunst ©, Halo um Sonne &, Kranz 
um Sonne (D, Halo um Mond U, Kranz um Mond W, Regenbogen N. 

eTr. — Regentropfen, xFl. = Schneeflocken, Schneeflimmerchen. 


1 Tagesmitteln A aus den mit Index versehenen Beobachtungen; Tagesmittel B aus solehen 
ohne Index. 


186 


Beobachtungen an der Zentralanstalt für Meteorologie und 
Geodynamik, Wien, XIX., Hohe. Warte (202:5 Meter), 
im Monate April 1919. 


| Dauer | 4% DS | Bodentemperatur in der Tiefe von 
Verdun-g re Min 3 © 5] sammen men ee Dei ee 
. we s'2l 0.9 \ 2 
Tag stungl | Sonnen- |" S S ‚0.50 m 1-0 Mn NR 
in mm | scheins Is o en) Tages- Tages- = | 
| 20 SE Op] mittel mittel 14° 14 14) 
Sole Stunden |O JEREN y 
0.5 00, 1 1.0-3 4.7 5.5 6.4 1 
2 0,4 0.0 ER 4,7 5.4 6.4 Mo 8.4 
3 05 Sn I SET | 5 5 6.4 2.9 8.3 
& 0.3 0.0 | 7 5.0 56 6.4 145 8.3 
> De 0.0” ı NOT 6.2 5.5 6.9 7.5 3.3 
6 0.5 a2 4.0 7 Al DT 6.8 0) 2 
7 Zul 103 6.0 BRD 50) 6.4 768 8.3 
8 0.6 0.0 7.0 8.9 (68) 6.4 03) 8.3 
®) 1.8 0.09 12.0 8.6 6.7 6.5 7.5 8.3 
10 1.3 5.6 | 12.0 8.0 6.9 6.5 7.5 8.3 
| - 
11 0.8 0. ae 8.4 7.0 6.6 ad 3.3 
12 1168) 1.4 12.0 8.6 2 AT, 1.8 8.83 
13 1.0 0.0 7 9.3 18 647 1 8.3 
14 a 0.0 il.8 9.9 1.9 6.8 [56) 8.3 
15 0.4 0.09 dl. 9,5 7.6 6.9 TG 8,3 
16 5 6.9. 10.3 9,9 Re) 7.0 7.6 2 
17 N 1.3 11.3 10.2 S.0 a) 2:6 8.8 
18 0.9 0.0. |. 370 9,9 8.4 ee 71.36 8.3 
19 1.0 4.91 12.7 9,5 8.3 71 7.6 8.3 
2 2.9 2.9 11.3 10.0 8.2 Zar 7.6 8.2 
zul 7 7.0 11.0 10.1 0) aoh,, Tea 2 
22 0.8 3.0 | 11.3 s.8 (13) 7.4 Te, 3.2 
23 0.8 7.600|| od a) BR 7.0 TE. 8.2 
24 .8 10.19 98.7 7.7 8:8 7.5 27 818 
25 ie. 5.1 98 10.2 8.2 8.2 1 Tat SE 
= ll { Fi SR 
26 0.8 8.028, 10:7 8.5 SR 7.6 RS 2 
27 h.7 EZ 8.5 8.2 RT 7.8 8.2 
28 120) re 8.0 ) 8.3 Hal 123 8.2 
29 0.6 Oz, 2:0 8.8 8.1 Mal Pe) 8.2 
30 1.0 7.0 Lou 8.0 8.2 18 79) 8.2 
Mittel 1.1 3.8 1209.% 8.2 1.8 TR 7.6 8.3 
Summe le 112.8 | | 
| | 
Größte Verdunstung: 2.9 mm am 20. 
Größter Ozongehalt der Luft: 12.7 am 28. 


Größte Sonnenscheindauer: 12.7 Stunden am 28. 
Prozente der monatlichen Sonnenscheindauer von der möglichen: 27%, von der 
mittleren: 66 %/,. 
Der vorläufige Bericht über Erdbebenmeldungen in Österreich wird wegen des spär- 
lichen und unregelmäßigen Einlaufes der Meldungen in den nächsten Monaten zusammen- 
fassend nachgetragen. 


Aus der Staatsdruckerei iu Wien. 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr. 14 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 22. Mai 1919 


Dr. Rudolf Wagner übersendet folgende, Mitteilung: 
»Über die Existenz von A,-Fächelzweigen.« 


Über Verzweigungssysteme, die sich in einer Ebene 
entwickeln, ist bisher herzlich wenig bekannt;‘ fast aus- 
schließlich handelt es sich um Blütenstände, deren Richtungs- 
indices a, respektive p Sichel-, beziehungsweise Fächel- 
sympodien charakterisieren, während die Bildung vegeta- 
tiver Scheinachsen von einigen wenigen Ausnahmen abge- 
sehen bisher übersehen worden zu sein scheint. Die eine betrifft 
die D,-Sympodien unserer Staphylea pinnata L., die schon 
Eichler angedeutet, aber nicht durch mehrere Generationen 
verfolgt hat, die andere einen früher zu den Hamamelidaceen 
gerechneten Baum, das Cercidiphyllum japonicum'‘S. et Z., der 
mit Harms wohl am besten- als Vertreter einer eigenen 
Familie, der Cercidiphyllaceen betrachtet wird. Seine 
Sympodien wurden zuerst durch Solereder analytisch bear- 
beitet und Verfasser dieser Zeilen hat dann in seinem 
Referate auf den Sichelcharakter der Zweige aufmerksam 
gemacht. 

Dagegen scheint Fächelcharakter bisher nur aus der 
Rubiaceengattung Scolosanthus Vahl bekannt zu sein, er 
kommt aber noch bei einem anderen, systematisch ziemlich 
isoliert stehenden Genus der nämlichen Familie vor, bei der 
in Japan und Östindien verbreiteten Gattung Damnacanthıs 


9 


188 


Gaertn. f., niedrigen Dornsträuchern von recht kompliziertem 
Aufbau. Hier finden sich durch mehrere Generationen hin- 
durch 9,-Sprosse, worauf durch Bildung von (-Sprossen 
eine rechtwinklig orientierte Medianebene eintritt. 

Nachdem nun im Rahmen dekussierter Sympodialsysteme 
Fächelsympodien festgestellt sind, kann das Vorkommen 
einer analogen Sproßverkettung bei zerstreuter Blattstellung 
nicht allzusehr befremden. A priori wahrscheinlich wird als- 
dann, daß durch Einschiebung heterogener Sympodial- 
glieder die Fächelebene verlagert wird, ein Analogon zu 
den oben erwähnten $-Sprossen, wie wir sie übrigens auch 
für die Acanthaceengattung Crossandra Sal. kennen. 

Bei 2/5-Stellung und Opisthodromie fällt das vierte Blatt 
median nach rückwärts; findet aus dessen Achsel mehrmals 
hintereinander Bildung des Fortsetzungsprozesses statt, so haben 
wir ein Fächelsympodium. Die in Frage stehende andere 
Ebene steht hier nicht rechtwinkelig, sondern sie bildet einen 
Winkel von 72 Grad mit der ersten Fächelebene. Analoges 
gilt natürlich für höhere Divergenzen. 

Bekannt sind mir solche Sympodien bisher einzig aus 
der Gattung Polygala L. Der Genfer Systematiker Chodat, 
der in einem 500 Seiten starken Quartbande die Gattung be- 
arbeitet hat, sieht von Angaben über Sympodien gänzlich ab; 
indessen kommen sie, soweit ich auf Grund eines relativ 
spärlichen Materials beurteilen kann, bei der ceylonischen 
Polygala Thwaitesii Hassk. vor, einem kleinen Strauche mit 
schlanken Zweigen, und besonders schön bei einer nieder- 
liegenden Pflanze, die Hooker fil. bei Madras in Südindien 
gesammelt hat, der er handschriftlich den Namen P. glaucoides 
gegeben, wegen der habituellen Ähnlichkeit mit der Primulacee 
Glanux maritima L. 

Für Polygala Thwaitesii Hassk. wurde ein Sympodium 
festgestellt von der Formel 


I; Ä, 4-7 Dass; 


für P. glaucoides Hook. fil. mögen einige Formeln mitgeteilt 
werden: 


NV yı ; 

= Ays-5 Zsp6 Bur Ä,s- 105 (1) 
/ N) / \ Y ON 

9; Vass Ena 4 Ap5, 6 Bas 7, sAy 9-12 aa 135 (2) 

9, A,3BaıEaas AN . (3) 


Bei der großen Anzahl von Arten, die mit 400 gewiß zu 
niedrig veranschlagt ist, dürfen wir wohl annehmen, daß 
A,-Sympodien noch des öfteren zu finden sind, deren Be- 
wertung im Sinne der phylogenetischen Erforschung von den 
Ergebnissen der die ganze Pflanze umfassenden Analyse 
sowie von den durch das Experiment gezeitigten Momenten 
in so hohem Maße abhängig ist, daß diese Basis für den 
modernen Monographen noch für lange Zeit auf das Gebiet 
der curae posteriores verwiesen werden muß. Vorerst bieten 
uns die Fälle lediglich Nova der morphologischen Casuistik 
und vielleicht Handhaben zur Charakterisierung von Arten. 


Dr. Johann Radon überreicht folgende Arbeiten: 


I. Ȇber lineare Funktionaltransformationen und 
Funktionalgleichungen.« 


Es wird ein von F. Riesz untersuchter Typus von Funk- 
tionaltransformationen eingehend behandelt und neben die 
von dem genannten Autor betrachteten linearen Transforma- 
tionen 7 f der stetigen Funktionen als duales Analogon lineare 
Transformationen 7’® absolut additiver Mengenfunktionen 
gestellt. Die sich bei wichtigen Anwendungen (vgl. die folgende 
Arbeit) ergebende Notwendigkeit, über den von Riesz be- 
trachteten sogenannten vollstetigen Typus hinauszugehen, führt 
zum Begriffe des Fredholmradius einer linearen Transforma- 
tion, der einerseits durch die Eigenschaften der Transforma- 
tion selbst, andrerseits dadurch definiert ist, daß im Innern 
des um den Nullpunkt der komplexen A-Ebene mit dem Fred- 
holmradius beschriebenen Kreises die Funktionalgleichung 
f-ıTf=g die Grundeigenschaften der Fredholm’schen In- 
tegralgleichung besitzt, während dies für größere Radien nicht 
mehr gilt. fee | 


190 


2, Ȇber die Randwertaufgaben beim logarithmi- 
schen Potential.« 


Die bisher weitestgehenden Ergebnisse über die Neu- 
mann-Robin’schen Methoden beim logarithmischen Potential 
rühren von Korn und Zaremba her und besagen, daß die 
betreffenden Methoden auf Bereiche anwendbar sind, deren 
Berandung sich aus einer endlichen Anzahl von Kurvenstücken 
zusammensetzt, auf deren jedem die Krümmung beschränkt 
ist und die ohne Spitzenbildung aneinanderstoßen. Es wird 
der Nachweis geführt, daß die Methode der Integralgleichungen, 
die bei regulärer Berandung am schnellsten zu den gewünschten 
Entwicklungen führt, auf Grund der Arbeiten von F. Riesz 
und des Verfassers sich so ausgestalten läßt, daß sich für 
Bereiche allgemeinerer Natur, als sie bisher. den Neumann- 
Robin’schen Methoden zugänglich waren, die Anwendbarkeit 
dieser Methoden sicherstellen läßt. Grundlegend ist dabei der 
Begriff der »Kurven beschränkter Drehung«, worunter rekti- 
fizierbare Kurven verstanden werden, für welche sich die 
Koordinaten als Funktionen der Bogenlänge s mit Hilfe einer 
Funktion #(s) von beschränkter Schwankung in der Form 


Ss DS: 
rer I cos»a.ds, y=zy+ | sin dds 
0 0 


darstellen lassen. 

Für jeden Bereich, der von einer endlichen Anzahl Jordan- 
scher Kurven beschränkter Drehung ohne Spitzen begrenzt 
ist — dessen Rand noch z. B. unendlich vieie Ecken haben 
kann —, wird die Lösung der Randwertaufgaben mit Hilfe 
der erweiterten Integralgleichungsmethode erbracht: Besonderes 
Gewicht ist hier bei der zweiten Randwertaufgabe auf. die 
bereits von Plemelj hervorgehobene allgemeinere Auffassung 
des Massen- und Strömungsbegriffes zu legen, die ihren 
adäquaten Ausdruck in der Deutung dieser Begriffe als ab- 
solut additiver Mengenfunktionen findet und hier für den vor- 
liegenden Fall in eingehender Weise begründet wird. 


2, 


191 


Selbständige Werke oder neue, der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Bergström, Sverker: Om kKorrelationsmetoden: När är linjär 
sambandsekvation tillräcklig? (Frän Statens Meteorologisk- 
Hydrografiska anstalt, 443). Stockholm, 1919: 8°, 

— Om utjämning vid bekant funktionsform (Frän Statens 
Meteorologisk-Hydrografiska anstalt, 472). Stockholm, 
1919; 8% 


Aus der Staatsdruckerei in Wien, 


S 2 aba ee 
orte 7 ana moi Yyus. 


N‘ 


HESSEN 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr. 15 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 12. Juni 1919 


m 


Erschienen: Almanach, Jahrgang 68, 1918. ,— Monatshefte für Chemie, 
Bd. 40, Heft 2; — Register zu Bd. 38, Jahrgang, 1917. 


Folgende Dankschreiben sind eingelangt: 


1. von Prof. Dr. A. Sommerfeld in München für seine 
Wahl zum auswärtigen korrespondierenden Mitgliede dieser 
Klasse; 

2. von Prof. Dr. Viktor F. Hess in Wien für die Ver- 
leihung des Ignaz L. Lieben-Preises; 

3. von Prof. Dr. Max Bamberger und Prof. Dr. Julius 
Zellner in Wien für die Verleihung je einer Hälfte des 
Haitinger-Preises. 


Das k.M. M. Holl in Graz übersendet folgende Arbeit:. 
»Das Rippenrudiment des siebenten Halswirbels.« 

Es wird gezeigt, wie der siebente Halswirbel aus dem 
Zustande, in welchem er freie Halsrippen besitzt: und somit 
als oberster Brustwirbel erscheint, in einen Cervicalwirbel über- 
führt wird. Die wichtigsten Veränderungen bei dieser Über- 
führung betreffen die freien Halsrippen, welche, nachdem sie eine 
eingehende Reduktion erfahren haben, sowohl mit dem Wirbel- 
körper als auch mit dem einen Brustwirbel homodynamen 


21 


194 


Querfortsatze sich Knöchern verbinden, worauf beide Teile 
zusammen jene seitliche Masse des siebenten Halswirbels 
herstellen, welche als »Querfortsatz« aut. bezeichnet wird. 

An der vorderen Spange des »Querfortsatzes« des siebenten 
Halswirbels lassen sich in den meisten Fällen Merkmale auf- 
finden, welche ihre Herkunft aus einer rudimentären Rippe 
dartun. 

Das »Foramen transversarium«, beziehungsweise »F. costo- 
transversarium« ist kein einfaches »Loch« im »Querfortsatze« 
des Halswirbels, sondern besteht am nicht macerierten Wirbel 
aus zwei Anteilen, einer vorderen Lücke: »Foramen costo- 
vertebrale« und einer hinteren Lücke: »Foramen venosum«. 
Beide Foramina werden durch ein Querbändchen voneinander 
geschieden; durch das Foramen .ostovertebrale zieht die 
Arteria vertebralis, durch- das Foramen venosum eine Vene. 
Gelegentlich tritt an Stelle des fibrösen Bändchens eine 
Knochenbrücke auf und es findet sich dann auch am mace- 
rierten Wirbel das »Foramen transversarium« aut. zweigeteilt. 
Das »Foramen transversarium« aut. ist sohin stets zweigeteilt. 

Schließlich wird ein eigentümlicher Fall von freien Hals- 
rippen am siebenten Wirbel beschrieben und näher erörtert. 


Das k.M. Hofrat Prof. Heinricher legt eine von a. o. Prof. 
Dr. Adolf Sperlich im botanischen Institute der Universität 
Innsbruck ausgeführte Arbeit vor, betitelt: »Über den Ein- 
fluß des Quellungszeitpunktes, von Treibmitteln und 
des Lichtes auf die Samenkeimung von Alectorolophus 
hirsutus All.; Charakterisierung der Samenruhe.« 


Es werden die Versuche und daran anschließend die Er- 
wägungen mitgeteilt, die den Verfasser zur Auffassung geführt 
haben, daß die Sommerruhe der Alectorolophus-Samen in 
der inneren Struktur begründet und erblich ist. Die 
Versuche über den Einfluß des Lichtes auf die Keimung er- 
gaben die Notwendigkeit des Lichtes für die Keimung von 
Samen bestimmter Nodien und bestimmter Individuen. 


195 


Aus deren Aszendenz wurde erkennbar, daß es Exemplare 
geschwächter phyletischer Potenz sind, die durch das Licht 
die Förderung der Keimung erfahren. 


Dr. Rudolf Wagner in Wien übersendet eine Mitteilung: 
»Verzeichnis von Sapindaceengattungen, die acaro- 
phile Arten enthalten.« 


Prof. Dr. J. Anton Gmeiner in Innsbruck übersendet eine 
Abhandlung mit dem Titel: «Über die reduzierten binären 
quadratischen Formen mit positiver nichtquadrati-. 
scher Determinante.« 


Das w. M. Hofrat J. Hann überreicht eine Abhandlung 
von Prof. Dr. Heinz Ficker in Graz: »Untersuchungen 
über die meteorologischen Verhältnisse der Pamir- 
gebiete.« (Ergebnisse einer Reise in Ostbuchara). 

Die vorliegenden Untersuchungen gründen sich auf das 
Material des turkestanischen Beobachtungsnetzes und auf die 
Beobachtungen, die während einer halbjährigen Reise im 
ostbucharischen Hochgebirge ausgeführt wurden. Die Unter- 
suchung, die in 19 Abschnitte gegliedert ist, bezieht sich im 
wesentlichen auf die Gebirge des Pamir-Maisystems, die 
Hochsteppengebiete mitinbegriffen, sowie auf die dem Gebirge 
im Westen vorgelagerte Gebirgsrandzone. Dieses Gebiet, 
dessen schönes Beobachtungsnetz sich bis auf die Hochsteppe 
erstreckt hat und nunmehr für geraume Zeit außer Tätigkeit 
gesetzt sein dürfte, ist einerseits von besonderem meteoro- 
logischen Interesse dadurch, daß hier normales, in Ketten 
gegliedertes Hochgebirge mit ausgedehnten Hochsteppen ver- 
bunden ist, so daß sich die Unterschiede zwischen den 
meteorologischen Verhältnissen des Hochgebirges und jenen 
der Hochsteppe besser als in irgendeinem anderen Gebirgs- 
gebiete der Welt klarlegen lassen, wobei von besonderem 


196 


Werte der Umstand ist, daß der Wetterablauf fast nur an 
lokalen Faktoren bestimmt und durch Eingriffe von außen 
her wenig gestört ist. Andrerseits ist das Gebiet von größtem 
Interesse sowohl als Übergangsgebiet von dem europäischen 
zum indischen Beobachtungsnetz wie auch als Grenzgebiet 
von dem subtropisch beeinflußten Westturkestan zu dem aus- 
gesprochen kontinentalen Klimagebiet Ostturkestans. 


Einen breiten Raum nimmt die Besprechung der Tem- 
peraturverhältnisse ein, welche neben der Untersuchung 
bisher nicht geklärter, klimatischer Erscheinungen —: vor allem 
der Temperaturabnahme mit der Höhe und der jährlichen, 
exzessiven Höhenverschiebung der isothermen Fläche von 
0° — die Aufdeckung des Gegensatzes zwischen dem Tem- 
peraturgang auf einer Hochsteppe und jenem im Gebirge 
und der freien Atmosphäre als Hauptaufgabe betrachtet. Es 
ergeben sich Beziehungen, die zur Lösung der Frage, ob das 
Gebirge kälter ist als die freie Atmosphäre und ob das 
Gebirge im allgemeinen eine abkühlende Wirkung auf die 
Luftmassen ausübt, einen wesentlichen Beitrag leisten. In die 
Besprechung der Temperaturverhältnisse ist die Diskussion 
der während der Reise ausgeführten Messungen der Wärme- 
ausstrahlung, der Boden- und Strahlungstemperaturen ein- 
geschaltet. | 


Der jährliche ‘und tägliche Gang des Luftdruckes 
wird eingehend diskutiert, wobei sich, ebenso wie bei Be- 
sprechung der Temperaturverhältnisse ergibt, daß den Reise- 
beobachtungen trotz ihres geringen Umfanges in manchen 
Punkten gegenüber dem Stationsmaterial eine entscheidende 
Bedeutung zukommt. Systematische Unterschiede zwischen 
den barometrisch berechneten und den beobachteten Mittel- 
temperaturen der Luftschichte zwischen Gebirgsrandzone und 
Hochsteppe führen zur Aufdeckung bedeutender, meteorologisch 
bemerkenswerter Luftdruckstörungen im Gebiete der Hoch- 
steppe. Eine Erörterung der Bedingungen, unter welchen die 
Luftdruckbeobachtungen auf der Hochsteppe eine verläßliche, 
barometrischa Höhenbestimmung ermöglichen, schließt 
sich an. 


197 


Bei Untersuchung der Feuchtigkeitsverhältnisse er- 
gibt sich ebenfalls ein bedeutender Einfluß der Hochsteppe, 
gekennzeichnet durch systematische Abweichungen von den 
nach Hanu’s Formel für die Hochsteppe berechneten Werten 
des Dampfdruckes, 

An die Untersuchung der Bewölkungsverhältnisse, 
die Westturkestan im Gegensatz zu Ostturkestan trotz gleicher 
Breite noch als zu den Subtropen gehörig erscheinen lassen, 
knüpfen sich Erörterungen über die den Pamirgebieten eigen- 
tümlichen Staubnebel, deren Stellung im allgemeinen Witte- 
rungsablauf zum erstenmal klargelegt wird. 

Bei Behandlung der Niederschlagsverhältnisse wurde 
besondere Rücksicht auf die bisher nicht bekannten Ver- 
hältnisse in den zentralen Gebirgsteilen genommen. Die Be- 
rechnung der Kondensationshöhen sowohl für die Niede- 
rung wie für ‘die Hochsteppe gibt die Erklärung für den 
regenlosen Sommer der Niederung im Gegensatz zu den 
häufigen Sommerniederschlägen der zentralen Pamirgebiete. 
Die Bedingungen dafür, daß in dem Gebiete trotz exzessiver 
Trockenheit reichlicher Taufall eine häufige Erscheinung ist, 
werden einer orientierenden, quantitativen Betrachtung unter- 
zogen. Die Schilderung der auch in theoretischer Beziehung 
bemerkenswerten Miniaturgewitter des Gebirges und eines 
großartigen, durch einen Sandsturm sichtbar gemachten 
Böeneinbruches sind in diesen Abschnitt miteinbezogen. 

Die Untersuchung der Windverhältnisse führt zur 
Aufdeckung einer unteren, nur wenige Hektometer hohen 
Schichte mit Nordwind, die in schroffem Gegensatz zu den 
höheren, durch südliche Winde ausgezeichneten Schichten 
steht. Die heftigen Tal- und Bergwinde der Gebirgstäler und 
der Hochsteppe werden in Kürze betrachtet. 

Gewissermaßen als Schlußergebnis aller Ausführungen 
stellt sich die Bestimmung der klimatischen Höhen- 
grenzen im Pamir-Maisystem dar. Es wurden die oberen 
Grenzen der ständigen Siedelungen, der Almen, des Getreide- 
baues, des Obst- und Weinbaues, des Baumwuchses’ fest- 
gestellt, wobei sich ebenso wie bei Feststellung der Firnlinie 
eine rasche Hebung nach Osten hin ergibt, wobei auch die 


198 


Temperaturbedingungen an den verschiedenen Grenzlinien 
festgestellt werden. 

Der letzte Abschnitt behandelt zuerst die rezente Ver- 
gletscherung, die durch umfangreiche, tote Eismassen und 
durch die Häufigkeit von Gletschern ohne:Firnbecken einen 
bedeutenden, äußerlichen Gegensatz zur alpinen Vergletscherung 
bildet. Betrachtungen über die Höhenlage der Firnlinie 
in der Eiszeit führen zur Annahme eines mächtigen Inland- 
eises im heutigen Hochsteppengebiet, dessen äußerst lang- 
same Abschmelzung wahrscheinlich die Niederung sehr lange 
Zeit hindurch reichlich mit Wasser versehen hat, bis sich 
dafür nach völligem Abschmelzen des Inlandeises die Aus- 
trocknung der Niederung in rapider und wirtschaftlich 
katastrophaler Weise vollzogen hat, trotz Konstanz der 
Niederschläge, die trotz der Austrocknung seit dem Ende 
der Eiszeit bis heute nicht unbedingt eine wesentliche Ver- 
ringerung erfahren haben müssen. 

Der Abhandlung, in der auch Beobachtungen während 
der Kriegsgefangenschaft des Verfassers in Turkestan ver- 
wertet wurden, sind eine Kartenskizze, viele Tabellen und 
Diagramme beigegeben. 


Prof. W. Michaelsen in Hamburg übersendet eine Ab- 
handlung mit dem Titel: »Expedition S.M. Schiff „Pola“ 
in das Rote Meer 1895/6—1897/8. Zoologische Ergeb- 
nisse. Ascidia Krikobranchia des Roten Meeres: Ülaveli- 
nidae und Synoicidae.« 


Herr Karl Reichel in Wiener-Neustadt übersendet ein 
versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schrift: »Graphische Tafel mittelst Rhombus.« 


Frau Julie Salzer in Wien übersendet ein versiegeltes 
Schreiben zur Wahrung der Priorität mit der Aufschrift: 
»Electrominor 19.« 


199 


Das w. M.. Prof.: C. Diener legt eine Abhandlung für 
die Denkschriften vor, betitelt: »Neue Ammonoidea leiostraca 
aus den Hallstätter Kalken des Salzkammergutes.« 

Die Abhandlung schließt sich unmittelbar an jene über 
die neuen Hallstätter Mautiloidea aus den Sammlungen Kittl 
und Heinrich an. Sie enthält die Beschreibungen der neuen 
Ammonoidea: leiostraca aus den Familien der Arcestidae, 
Cladiscitidae, Lobitidae, „‚Phylloceratidae und Pinacoceratidae. 
Am artenreichsten hat ,sich, das Genus Arcestes Suess er- 
wiesen, das durch 16..neue ‚Spezies repräsentiert wird, ‚von 
denen zwölf auf Arcnstes s. s., drei auf Pararcestes Mojs. 
und eine auf. Piycharcestes Mojs. entfallen. Die. Gattung 
Cladiscites hat zwei neue Arten geliefert. Drei neue Arten 
der Genera Coroceras Hyatt, Pinacoceras Mojs. und Rhaco- 
phyllites Zitt. mußten ihrer fragmentarischen Erhaltung wegen 
unbenannt bleiben. 


Das w. M. Hofrat Franz Exner legt folgende Abhand- 
lungen vor: 


Iy»sBeiträse, zur. Kenntnis „der „atmosphärischen 
Elektrizität. Nr. 58. Das atmosphärische Potential- 
gefälle in Triest nach den Beobachtungen von 
Juni 1905 bis Juni 1907«, von Hugo Scheuble. 


Die Bearbeitung dieser Beobachtungsreihe schließt an die 
vorangegangene der Jahre 1902 bis 1905 an; sie liefert für 
die jährliche Periode ein Maximum im Jänner und das Mini- 
mum im Mai. Die tägliche Periode zeigt wieder für Triest, 
abweichend von den Landstationen, eine einfache Welle, deren 
Amplitude und Phasenwinkel sehr genau mit jenen der voran- 
gegangenen Periode übereinstimmen. Dagegen scheint der 
doppelten täglichen Welle keine reale Bedeutung zuzukommen. 


2, »Mitteilungen aus dem Institut für Radium- 
forschung. Nr. 122. Über die Konstanz des Ver- 
hältnisses von Actinium zu Uran in natürlichen 
Erzen«, von Stefan Meyer und Viktor F. Hess. 


200 


Es wurde der relative Gehalt von Actinium in Uranerzen 
bestimmt und unter diesen eine Auswahl getroffen, die Proben 
verschiedenster Herkunft betrafen: amorphe Pechblende aus 
St. Joachimsthal in Böhmen, krystallisierte Pechblende aus 
Morogoro in Ostafrika, Bröggerit aus Norwegen und zwei 
Thorianite aus Ceylon, wobei auch die Zusammensetzung 
sich von thorärmsten zu thorreichen Mineralien bewegte. Die 
Messung erfolgte, indem aus den Erzlösungen die Actinium- 
emanation ausgequirlt und der aktive Niederschlag aus dem 
emanationsführenden Luftstrom gesammelt und elektrometrisch 
beobachtet wurde. 7 

Es ergab sich, daß tatsächlich das Verhältnis Actinium 
zu Uran in sämtlichen Erzen trotz der großen Verschieden- 
heit ihrer geographisch weit auseinanderliegenden Fundstätten, 
der Verschiedenheit ihres Entstehens (amorph und krystallinisch) 
und ihres geologischen Alters und der großen Unterschiede 
ihres Thorgehaltes (Th/U zwischen 6.10? und 9 ein kon- 
stantes ist. 

Damit erhält die Annahme, daß die Protactinium-Actinium- 
familie genetisch vom Uran herzuleiten ist, eine gesicherte 
Stütze. 


3. »Mitteilungen aus dem Institut für Radium- 
forschung. Nr. 123. Über die Verzweigungs- 
verhältnisse bei :Ra 6, Act, Th EC, un dadiez ze 
fallskonstanten der C”-Produkte«, von Eleonore 
Albrecht. 


1. Es wurde die Halbwertszeit der thalliumisotopen (”- 
Produkte der drei radioaktiven Reihen gemessen und dafür 
gefunden: 


AcC” T= 4:76 Minuten,: X = 2.43.107° sec}, 
Inc" T=B:20.Mnureneie 3 61.107780 
Rare!" T MS Minen 9 874.10, era 


2. Unter der Annahme, daß das für ThC von E. Marsden, 
C. Darwin und T. Barratt bestimmte Verzweigungsverhältnis 


201 


Th ec! 
ThcC 
nisse für AcC und Ra C unter der Voraussetzung angenähert 
gleicher lonisierungswirkungen der ß-Strahlen berechnet und 

für Actinium 


— 0:35 richtig ist, wurden die Verzweigungsverhält- 


„ 
=. = 99:84, 
für Radium 
„ 
a — 0°0004 
( 


gefunden. 

3. Bei den Versuchen mit den C”’-Produkten, in besonders 
auffälliger Weise bei RaC”, wurde das Phänomen des Aggregat- 
rückstosses beobachtet und die darüber von R. W. Lawson 
und S. Ratner aufgestellten Ansichten bestätigt. 

Die C”-Produkte waren durch Rückstoß aus den C-Pro- 
dukten erhalten worden; die Messungen wurden elektrometrisch 
durchgeführt. 


Das w. M. Hofrat H. Molisch überreicht eine vorläufige 
Mitteilung des Univ.-Prof. Dr. Oswald Richter (Wien) über: 
»Anwendung selektiver Nährböden bei der Reinzucht 
von Algen«. 

Dem Verfasser, der sich bereits seinerzeit eingehend mit der 
Reinkultur von Algen, insbesondere von Diatomeen, beschäftigt 
hat, gelang es, durch methodischen Ausbau des Prinzips der 
Anwendung selektiver Nährböden eine Chlorella, die spontan 
in den Magnesiumsulfatfläschchen chemischer Labora- ' 
torien auftritt und eine noch nicht näher bestimmte, Schwärmer 
bildende Chlorophycee, die in Aquarien mit Triester 
Meerwasser aufgekommen war, in überraschend kurzer Zeit, 
bereits bei der zweiten Abimpfung, in bakterienfreier Reinkultur 
zu ziehen und damit das Studium der Ernährungsphysiologie 
beider Organismen zu ermöglichen, von denen sich der erste 
durch seine Entwicklung in den vielfach sehr konzentrierten 
MgSO,-Lösungen in destilliertem Wasser der Reagenzgläschen 


202 


als Ernährungsspezialist verrät, der zweite aber die erste 
Meereschlorophycee darstellt, die in bakterienfreier Reinkultur 
gewonnen werden Konnte. 

Schon während seines Aufenthaltes in Prag in den Jahren 
1898 bis 1910 machte der Verfasser die »Erfahrung, daß 
Stichococcus in Reagenzfläschchen ‚mit 20%, MgSO, im 
Deutschen pflanzenphysiologischen Institute in Prag aufkam 
und üppig wuchs«. (Richter OÖ. Die Ernährung der Algen«, 
Leipzig, «1911, pP. 103). 

Es lag nun nahe, Algen, die unter analogen Verhältnissen 
vorkommen, in der Weise von vielleicht mit ihnen vorkom- 
menden Bakterien und Pilzen zu trennen, daß man sie in 
eine möglichst nährstoffarme, womöglich saure, MgSO,-reiche 
Gelatine impfte. In Verwendung kam eine 10°/, Gelatine in 
destillierttem Wasser, der 10°), MgSO, ee zugesetzt 
worden waren.! 

Mit diesem ae erhält man bereits in den 
ersten Plattenkulturen unter zahlreichen Kolonien. einer sehr 
charakteristisch wachsenden Bakterie, die auch rein gewonnen 
wurde, derartig frei liegende völlig reine Kolonien der Grün- 
alge, die sich als Chlorella bestimmen ließ, daß man von 
ihnen direkt in Strichen in Eprouvetten auf feste Gelatine 
gleicher Zusammensetzung überimpfen kann und so sofort 
zur bakterienfreien Reinkultur gelangt. 

In ähnlicher Weise ließ sich eine Gelatine der folgenden 
Zusammensetzung verwenden: 


1000 Teile destilliertes Wasser, 
100 8 Gelatine (10°%,), 
10 g Traubenzucker (1°/,), 

28 Ca(NO,),, Reaktion sauer. 
0:05g MgSO,, 
Spuräbe 50,, 

D’28 RIED, 


1 Eine eigene Klärung mit Eiweiß, Hausenblase od. dgl. ist nicht nötig, 
da das MgSO, selbst alles Eiweiß ausflockt und man sofort eine klare 
Flüssigkeit erhält. Eine Abstumpfung der Säure oder ein Alkalischmachen 
unterblieb. 


203 


Bei der Reingewinnung der Meereschlorophycee wurde 
zunächst so vorgegangen, daß von dem Organismengemisch 
der Rohkultur in Strichen auf Agar mit 0, 0:5, 1:5, 2, 2°5 
und 3°/, ClNa-Zusatz abgeimpft wurde, worauf von den in 
2°/, ClNa-Agar am üppigsten zur Entwicklung gelangten 
Algen sofort Striche auf die 10°%/, MgSO,-Gelatine aufgetragen 
wurden, die sich bereits als bakterienfrei erwiesen. Beide 
derart rein gezogene Organismen verflüssigten bis zum Tage 
der Beendigung des Manuskripts trotz monatelanger Kultur 
die Gelatine nicht, was ihre Reinkultur wesentlich erleichterte. 

Mit diesen methodischen Befunden fügt der Verfasser 
an die noch relativ seltenen Fälle der Anwendung selektiver 
Nährböden in der Algenkunde (Beijernick’s 10 bis 20°), 
Grabenwasser- beziehungsweise Bierwürzgelatine zur Zucht 
Scenedesmus acutus, Chlorella vulgaris beziehungsweise Chl. 
variegata, Küster’s 10°/, Fucusextraktgelatine zur Zucht 
von Gymnodinium fucorum und des Verfassers Triester Meer- 
wasser-Agar zur Reinkultur der Nitzschia putrida Benecke) 
zunächst für die Reingewinnung von Grünalgen zwei hervor- 
ragend brauchbare Nährsubstrate an. 

Das Studium der Physiologie der aus den MgSO,- 
Fläschchen bakterienfrei gezogenen Chlorella hat vorläufig 
gezeigt, daß die Alge auf einer Gelatine, der 20°), MgSO, 
zugesetzt wurden, nahezu ebensogut fortkommt wie 
auf einer mit 10%, MgSO, + 7H,O. Ebenso entwickelt sie 
sich gut (+), sehr gut (++), ja vorzüglich (+++) auf 
Gelatinen mit Zusätzen von 6%, Mg(NO,), (++), 8'2 %,, 
MsCl, (++), 3:42 %, MgCO, (++), 87%, MgC,H,O- (Mg- 
Zitronat: +++), 3°5%,NaNO, (++) und 41°), KNO, (+), 
also mit  Salzzusätzen, die mit 10%, MgSO, + 7H,O is-- 
osmotisch sind. Sie reiht sich hiermit würdig einer Anzahl 
anderer niederer, insbesondere verwandter Algen an, von denen 
eine ähnliche Widerstands- und Anpassungsfähigkeit an höhere 
Prozentgehalte von Bittersalz mitgeteilt wurde. So vertragen 
Chlorella protothecoides und Chlorothecium saccharophilum 
nach Krüger 10°/,, nach Artari Chlorella communis noch 
27 %/, Stichococcus bacillaris 15 °/, und Chlamydomonas 
Ehrenbergii Gorosch. 21 %/, MgSO, + 7H,O im Nährsubstrate. 


204 


Da 20°, MgSO, + 7H,O einen osmotischen Druck von 
98'294 Atmosphären auszuüben vermag, sind die erwähnten 
Kulturerfolge auch von diesem Gesichtspunkte aus beachtens- 
wert und geben sonach sehr instruktive Parallele ab zu Artaris 
Zuchterfolgen mit Chlamydomonas Ehrenbergiü auf 15°), 
Na,SO, + 10H,0 und zu Kufferath’s Ergebnissen mit 
Chlorella Iuteoviridis, die er in 10%, KNO, (entsprechend 
36'988 Atmosphären) beziehungsweise in 5°, NaCl (ent- 
sprechend 37'532 Atmosphären) und in einer Nährlösung mit 
4°/, KNO, und 4°, NaCl (zusammen entsprechend 46'234 
Atmosphären) sich entwickeln sah. 

Die Alge erweist sich gegen eine relativ stark saure 
beziehungsweise relativ stark alkalische Reaktion im 
Nährsubstrate in gleicher Weise höchst widerstands- 
fähig und gedeiht auf beiderlei Substraten in gleicher Üppig- 
keit. Als sprechende Belege seien einerseits die Zucht‘ auf 
10°/, Gelatine mit einem Zusatz von 5'64°/, NaH,PO, + 12H,0 
und die bereits erwähnte Kultur auf 10°/, Gelatine mit einem 
Zusatz von 3'42°/, MgCO, hervorgehoben. 

In Vergleichskulturen mit und ohne KH,PO, beziehungs- 
weise K,HPO,-Zusätzen erscheint die Alge auf schwach 
alkalischer Gelatine zunächst gefördert, doch holen die Algen 
auf der sauer gelassenen oder außerdem mit KH,PO, ver- 
sehenen 10°/, MgSO,-Gelatine die Kontrollpflanzen nach etwa 
8 Tagen im Wachstum ein, so daß in 2—3 Wochen zwischen 
Strichkulturen auf schwach alkalischer und schwach saurer 
Gelatine kein Unterschied mehr zu erkennen ist. Auf mit 
Na(NH,)PO, +4H,O gesättigter Gelatine, die ausnehmend 
stark alkalisch reagiert, konnte bloß eine minimale Entwicklung 
festgestellt werden. Die vom Verfasser bakterienfrei gezogene 
Chlorella erinnert sonach in ihrem Verhalten gegenüber der 
Reaktion des Nährbodens und in ihrer Säurefestigkeit, die 
ja auch ihre bakterienfreie Reinzucht mit ermöglichte, an 
Artari's Chlamydomonas Ehrenbergi und Kufferath's 
Chlorella luteo-viridis. 

Was die auto-, mixotrophe und saprophytische 
Lebensweise der Alge anlangt, so ist zu bemerken, daß sie 
sich sowohl in rein mineralischen wie in solchen Nähr- 


oo 


205 


flüssigkeiten, die Zutaten in Form organischer Substanzen 
enthalten, im Lichte vorzüglich entwickelt und hierbei die 
mixotrophe Lebensweise der autotrophen vorzieht, 
denn sie zieht Pepton und Dextrin, Pepton allein, Asparagin, 
Trauben- beziehungsweise Rohrzucker als Zutat enthaltende 
Nährlösungen allen anderen ihr bisher dargebotenen Kultur- 
flüssigkeiten vor. Ebenso ist offenbar die auf der 8:7 °/, Mg- 
Zitronat enthaltenden Gelatine beobachtete überaus üppige 
Entwicklung der Alge im Lichte der im genannten Salze 
gebotenen Zitronensäure zuzuschreiben. 

Hierbei fördert insbesondere das Mg-Zitronat und der 
Traubenzucker in überraschender Weise die Chlorophyll- 
bildung, so daß Kulturen mit diesen Substanzen durch ihre 
sattgrüne Farbe aus allen Parallelkulturen hervorleuchten. 

Zutat, von 1/,%/, Dextrin oder 0'25°/, Glyzerin ohne 
Pepton neben 0°89°/, Ca(NO,), als N-Quelle zur Nährflüssig- 
keit läßt die Algen im Lichte farblos oder fast farblos, 
aber üppig wachsen. 

Von ganz besonderem Interesse ist nun die Tatsache, 
daß auch in rein mineralischen Nährlösungen im Lichte 
dasselbe üppige Wachstum scheinbar farbloser oder fast 
farbloser Zellen zu beobachten ist, vorausgesetzt, daß die 
Nährlösung 1%/, MgSO, + 7 H,O und 0'89°/, Ca(NO,), gleich- 
zeitig enthält. Wählt man jedoch den Zusatz der genannten 
Salze mit je 0:02 g auf 100 cm?, so tritt keine Hemmung in 
der Chlorophylibildung ein, die Algen wachsen vielmehr im 
Lichte üppig mit schön grüner Farbe. Durch dieses Verhalten 
ist die neu rein gezüchtete Chlorella auch allen anderen 
bereits von anderer Seite bakterienfrei kultivierten Chlorellen 
gegenüber scharf charakterisiert und unterschieden. 

Im allgemeinen auf das Licht für ihre Entwicklung 
angewiesen (Schablonenversuche mit 10°/, Mg SO,-Gelatine 
in saurer und alkalischer Reaktion), vermag sie dennoch auf 
geeigneten Nährsubstanzen, z.B. einer schwach alkalischen 
Gelatine mit 1°/, beziehungsweise 2°/, Asparagin im Dunkeln 
zu schwacher Entwicklung zu gelangen (Eprouvettenversuche). 
Auf 1%, Traubenzuckergelatine konnte bisher das beste 
Wachstum im Dunkeln festgestellt werden, und zwar 


206 


wächst die Alge unter diesen: Verhältnissen mit intensiv 
grüner Farbe. | 

Ähnlich wie bei den Diatomeen konnte bei der bakterien- 
frei gezogenen Chlorella in Gelatine-Schüttelkulturen mit den 
oben angegebenen Magnesiumsalzzusätzen eine Koloniebildung 
nur in der Nähe des Gelatinemeniskus beobachtet werden, 
was die deutliche Abhängigkeit des Algenwachstums 
vom Gehalte des Substrates an freiem Ö zeigt. 

Besonders beweisend erscheint diesbezüglich der Versuch 
mit Mg-Zitronat, da hierbei der Einwand, es sei nicht so sehr 
Mangel an freiem O als an CO,, was die Kolonieentwicklung 
am Grunde und in den tiefer gelegenen Zonen der Gelatine 
unmöglich mache, durch die Darbietung einer mixotroph leicht 
verwert- und assimilierbaren Säure entkräftet wird. Die Alge 
gehört sonach ebenso wie die Nitzschia  Palea, Navicula 
minuscula und Nitzschia putrida oder wie Chlamydomonas 
Ehrenbergii zu den A&roben. 

Gegen niedere Temperaturen endlich erscheint die 
vom Verfasser bakterienfrei gezogene Chlorella sehr wider- 
standsfähig, da sie auch bei der im Winter im Arbeits- 
raume herrschenden Temperatur von 2—8°C. vorzüglich 
gedieh. Daß ihr die Durchschnittstemperatur des März, April 
und Mai von 12—15°C. augenfällig besser zusagte, braucht 
kaum erwähnt zu werden. Die Alge erinnert sonach in dieser 
Beziehung an Stichococcus minor Braun, der nach Adjaroff 
bei 10—14°C., an die Chlorella Iuteo-viridis, die nach 
Kufferath bei 13—23° C. vorzüglich, und an Chlamydomonas 
Ehrenbergii, der nach Artari bei 15—18° C. »ziemlich gut« 
gedieh. 


Das Studium der Physiologie der stets in Begleitung 
der Chlorella in den MgSO,-Fläschchen der chemischen 
Laboratorien vorkommenden Bakterie ergab bisher, daß sie 
auf allen Gelatinenährböden mit den gleich hohen Mg-Salz- 
Gehalten, wie sie für die Algenzucht benutzt wurden, natürlich 
besonders üppig auf 8:7%, Mg-Zitronatgelatine gedeiht und 
eine Ähnliche Säurefestigkeit aufweist wie die Alge. Auf 
der Zitronatgelatine erzeugt sie in Strichen einen orange- 


207 


gelben Farbstoff. In Plattenkulturen zeigt sie an den Ober- 
flächenkolonien sehr auffallende, Seitenwurzeln im Aussehen 
vergleichbare Fortsätze (Fangarme der Kolonien?). Sie ver- 
flüssigt die Gelatine nicht. 


Das Verhalten beider Organismen den gebotenen großen 
Mengen von Ms-Salzen im Substrate gegenüber sowie das 
von anderer Seite beobachtete Verhalten von Chlorella proto- 
thecoides, Chlorothecinm saccharophilum, Chlorella communis, 
Stichococcus bacillaris und Chlamydomonas Ehrenbergii (vgl. 
oben) gegenüber hohen Konzentrationen von Bittersalz ge- 
statten mit einer gewissen Berechtigung den Schluß, daß 
ebenso, wie es Kalk-, Kali-, Salpeter- u. a. ernährungsphysio- 
logisch ganz besonders charakterisierte Pflanzen gibt, auch 
unter den Algen, Pilzen und Bakterien Vertreter jeder Gruppe 
vorkommen dürften, die man als Mg-Pflanzen bezeichnen 
könnte. Es würden in diese Pflanzenkategorie zweifellos die 
aus MgSO,-Lösungen bakterienfrei gezogene Chlorella und 
ihre Begleitbakterie, etliche vom Verfasser wiederholt ge- 
wonnene Pilze, die oben erwähnte bakterienfrei gezogene, 
Schwärmer bildende Meereschlorophycee, dann wohl auch 
Krüger’s und Artari’s eben aufgezählte Versuchsobjekte, 
weiter Högbom’s Lithothamnium-Arten von Java und 
Berundas, von denen das erste 3°8°%/,, das zweite 124°), 
MgCO, enthielt, zu rechnen sein. 


Jedenfalls haben vorläuig Rohkulturen in Nähr- 
lösungen mit 1%,, 5°%/,, 10%, und 20%, MgSO,-Zusatz, 
die mit Algen beschickt wurden, gezeigt, daß sich eine ganze 
Anzahl hiervon (wie Ulothrix, Chlorellen, Stichococcus, Flagel- 
laten) in 5, 10 und 20°, MgSO,-Nährlösungen in üppigster . 
Weise entwickeln und daß gewisse größere Navicula- und 
Nitzschia-Formen in 5°/,MgSO, und die von Molisch seinerzeit 
(1909) zuerst beschriebene Eisenbakterie Syderocapsa Treubiti 
in der gleichen Lösung mit 5°/, MgSO, sehr gut fortkommen 
Der Verfasser beabsichtigt daher, mit Hilfe solcher selektiv wir- 
kender MgSO,-Zusätze zunächst das geeignete Versuchs- 
material absolut rein zu gewinnen und dann die Frage nach 
der Existenz von Mg-Pflanzen unter den Kryptogamen durch 


208 


genaues Studium der Ernährungsphysiologie dieser Organismen 
der Lösung näher zu bringen. 


Der Verfasser erzielte auf dem beschriebenen sauren 
MgSO,-Gelatine-Nährboden auch ein leichtes und von Pilzen 
und Bakterien recht getrenntes Anwachsen von Chloro- 
phyceen aus den Sümpfen der Soos, eines Mineral- 
moores bei Franzensbad in Böhmen, die ihm Herr Prof. 
Dr. P. K. Hofmann in Rohkulturen in liebenswürdigster 
Weise zur Verfügung gestellt hatte. 

Die einschlägigen Experimente dürften ein um so größeres 
Interesse gewinnen, als bereits die Untersuchungen Hofmann’s 
gezeigt haben, daß selbst Diatomeen, wie Nitzschia Palea, die 
normaler Weise nur bei schwach alkalischer Reaktion des 
Nährsubstrates gedeihen, in Sumpfwasser weiter vegetierten, 
das nach Neutralisierung mit 1/,, Norm.-Sodalösung mit 
U/.. Norm.-HCl, beziehungsweise H,SO, angesäuert worden 
war. Die Abimpfungen des Verfassers erfolgten aus Hof- 
mann’s Rohkulturen in 0:0245 und 0'049 °/, H,SO,, be- 
ziehungsweise 0°0182n. 0:0364°/, HCl auf die beschriebene 
Mg SO,-Gelatine und Gelatinen besonderer Zusammensetzung, 
bei deren Herstellung Gintl’s Analyse der Kaiserquelle, der 
auffallendsten Quelle des Mineralmoores, als, Vorlage gedient 
hatte. Die geplanten Untersuchungen dürften ein interessantes 
Gegenstück zu den vor dem Kriege begonnenen, aber noch 
nicht abgeschlossenen Untersuchungen Artari’s »Über einen 
in den Salzseen von Astrachan vorkommenden pflanzlichen 
Organismus«, der an Dumaliella viridis Teodoresco erinnert, 
abgeben, die Küster (1907) nun schon »seit Jahren in einer 
mit ClNa gesättigten Knop’schen Nährlösung« kultiviert, »in 
der bereits seit langem große Kochsalzkrystalle ausgefallen 
sind.« 

% 

Mittels eines zur Diatomeenzucht bestimmten Mineralsalz- 
agars, dem der Verfasser auf Grund seiner Studien über die 
Notwendigkeit von SiO, und Na für Meeresdiatomeen nun 
auch für die Zucht von Süßwasserdiatomeen NaNO, und 
K,Si,O, zugesetzt und es so zu einem selektiven Nähr- 


209 


substrat umgewandelt hatte, gelang es ihm, eine Fragillaria- 
Art mit höchst auffallendem Wuchse auf dem festweichen 
Substrat, eine Gomphonema-, eine Epithemium-Art, eine Navi- 
cnla (vermutlich ambigua), eine kleinere Pinnularia-Form und 
nach Zusatz von 2°/, CINa zum Substrat eine kleine Meeres- 
navicula in Speziesreinkultur zu ziehen und speziell mit der 
Pinnnlaria Versuche über die Teilungsgeschwindigkeit und 
ihren Vermehrungsfuß auf dem festweichen, ihr sehr zu- 
sagenden Substrat zu machen, was um so beachtenswerter 
erscheint, als bisher Pinnularien auf dem gebräuchlichen 
Mineralsalzagar überhaupt nicht zur Teilung zu bringen waren 

Solange die Bakterien die speziesrein gezogene Form 
nicht schädigten, teilte sich die betreffende Pinnularia in 
3 Tagen. 


Dr. Heinrich Handel-Mazzetti übersendet einen ab- 
schließenden (17.) Bericht über seine botanischen For- 
schungsreisen in Südwestchina und fügt demselben zwei 
»Nachträgliche Berichte« (14a und 15a) an, welche seiner- 
zeit nicht eingetroffen waren: ! 


1 Bei dieser Gelegenheit seien einige sinnstörende Druckfehler 
in den früheren Berichten berichtigt: 


3. Bericht: Z. 30 und 40 für Tschian-kio zu setzen: Tschiau-kio (richtiger 
Tjiautjio). Z. 4 v. rückw. für Talung: Yalung. 

4. Bericht: Für Linku: Liuku. Der erstiegene Gipfel des Liukuliangdse heißt 
Heloscha. 

5a (als 7. eingelangt): Z. 1: Für Mulukö: Ngulukö. Z. 17: Für Sian-Weisi: 
Siau-Weisi, richtiger Hsiau-Weihsi, ebenso Hsiau-Tschungtien, richtiger 
Dschungdien. Für Rheum Ribes: Rheum palmatum. 

6, 2. Abs., Z. 28: Zu streichen: darüber. Z. 15 v. rückw.: Für Hösi: Hosi. 

6, Z. 13: Für Vegetationsformen: Vegetationsformationen; viertletzte Z.: Jang- 
tsekiang. 

9, Z. 7: Für Tajanhsien: Tajauhsien. Z. 16: Für Tanhoa-schan: Tauhoa- 
schan. Z. 25: Für Schi-schan: Tji-schan. 

10, Z. 20 v. rückw.: Für'Saus: SW. Z.4 v. rückw.: Für Sian-Weisi: Siau-—. 

11, 2.6: Für Nintschang: Niutschang. Z. 7: Siau-Weihsi. Z. 38: Für Zeder: 
Pseudotsuga Sinensis. Fußnote 1: Für Taxus: Torreya. 

1212:.28: Für Simensis: Sinensis. 3. Abs., Z. 17: Zu streichen g in Jün- 
nangfu. Z. 6 v. rückw.: Für Stände: Stämme. 


Anzeiger Nr. 15. 22 


210 


Nachträglicher Reisebericht 14a: 


Am 21. Oktober brach ich von Likiang auf, um auf einem 
noch nicht untersuchten Wege nach Yünnanfu zurückzukehren. 
Ich erstieg zunächst den Schidsi-schan (3400 m) östlich von 
Likiang, gelangte dann auf dem schon 1914 genommenen 
Wege nach Yungpei, von dort über Hwaping (Tjiuyaping) an 
den Yangtsekiang bei Matschang ober Lungkai. In der Um- 
gebung von Yungpei war eine häufige und reichlich Blüten 
und Früchte tragende Chamaerops auffallend, die ich schon 
einmal einzeln bei Schedse an der großen Yünnanfu-Tali- 
Straße gefunden, aber für eine verkümmerte verwilderte Trachy- 
carpus gehalten hatte, in der heißen Zone unter Matschang ein 
strauchiges, ziemlich kleinblütiges Gossypinm, sonst einige 
Utricularien in winzigen, von Rinnsalen über Felsplatten ge- 
bildeten Tümpeln. Über Tsotjio erreichte ich bei Makai die 
große. Yüannan-Setschwan-Straße und auf dieser am 6. No- 
vember Yünnanfu, indem ich meine ganzen Sammlungen von 
2180 Nummern unbeschädigt mitbrachte. 

Über den Winter ordnete ich das ganze Material der dee 
Jahre und teilte es in zwei gleiche Kollektionen, um seiner- 
zeit bei der Heimsendung durch Schiffsunfall oder dergleichen 
nicht das ganze zu verlieren. Leider erwies sich der Inhalt 
einer Kiste von 1914, ın die Wasser eingedrungen war, als 
vollkommen verfault, doch waren es größtenteils Pflanzen von 
Likiang, also für mich nicht der wichtigste Teil. Ich aß als 
Gast des deutschen Konsuls Fritz Weiss und bewohnte nach 
dessen Ausweisung das schöne Konsulatsgebäude und bin 
ihm dafür und für seine stets bereitwilligst geleistete Unter- 
stützung meiner Arbeit zu großem Danke verpflichtet. 


13, Z. 14: Für östlich: östlichen.. 

14: Datiert von Ngulukö (statt Nlukö). Z. 6: Für Ki-kiang: Kiu-kiang. 2. Abs., 
2. 2: Für Lantschanpa: Lantschoupa. Z. 5: Für Siantien: Siautien; die 
Richtigkeit dieser Angabe ist nach der späteren Konstruktion meiner 
Aufnahme sehr unwahrscheinlich. Z. 7: Neoltia statt Neoltia. 

15, Z. 12: Für Huangtsanba: Huangtsauba. 

16: Datiert von Tschangscha, Z. 7: Für Luti: Louti. Z. 8 u, 26: Für Sik- 
wangehan: Sikwangschan. Z. 13: Yün-schan. Z. 4 v. rückw.: Statt 
Iweitschou: Kweitschou, ; 


211 


Nachträglicher Reisebericht 15a: 


„Nach sechstägigem Aufenthalt verließ ‚ich Liping und 
erreichte am 3. August Dsingdschou in Hunan. Von dort 
ging es — nicht ohne Schwierigkeiten, da der Weg durch 
Hochwasser abgerissen war — einem Fluß entlang stellen- 
weise durch schönen subtropischen Wald, dann über zer- 
gliedertes, mit Kiefern und Eichen, aber auch mit hoch- 
stämmigen Bambuskulturen bestandenes, bis 700 m hohes 
Hügelland über Hsüning nach Wukang. Im breiten Tale von 
Wukang tritt wieder Kalk auf, während bisher alles Urgestein, 
meist Chloritschiefer, war. Die Ausbeute war durchwegs 
interessant, wenn auch nicht übermäßig groß. In Wukang 
machte ich halt, denn ich hatte gehört, daß auf dem Yün- 
schan dort die deutschen Missionare ein Sommerhäuschen 
haben, und eine bessere Gelegenheit, die dortige Bergflora 
gründlicher kennen zu lernen, konnte ich mir nicht wünschen. 
So verbrachte ich vom 9. bis 11. August als Gast des Herrn 
L. Jensen! auf dem Berge. Die Pflanzen des dort erhalten 
gebliebenen Tempelwaldes waren für mich zum größten Teile 
neu und daher, wenngleich nur mehr wenige blühend, sehr 
erwünscht. Am bebuschten Hang unter dem Walde fand sich 
als besonders bemerkenswert eine wilde Cucurbita? mit eigen- 
tümlich ausgebildeten Nektarien und Filamenten. Auf die 
Gliederung der Vegetation in diesem nachträglichen Berichte 
einzugehen, erübrigt sich, da dieselbe in einer gleichzeitig in 
Druck gehenden »Vorläufigen Übersicht über die Vegetations- 
verhältnisse von Kweitschou und Hunan« ausgearbeitet ist. 
Der Berg besteht aus bis zu senkrechter Lage aufgerichtetem, 
SW-NE (sinisch) streichendem Tonschiefer und erreicht 


1 Herr Jensen war es auch, der mir den Aufenthalt im Sommer 1918 
dort ermöglichte, was ich in meinem Bericht darüber (16.) nicht erwähnen 
konnte, da es sich um eine gegen die Regulationen für feindliche Staats- 
angehörige und ohne Wissen der Behörden unternommene Reise handelte 
und: der Bericht bei der Zensur die Aufmerksamkeit der Zentralbehörden 
hätte erregen können. Ich bin ihm zu bestem Danke verpflichtet, ebenso 
Herrn R. Paul, Dr. E. Witt und Schwester E. Gramenz. Desgleichen muß 
ich nachträglich die Herren A. Brauer und K. Folkmitt in Hsikwangschan 
dankend erwähnen, die mir sehr behilflich waren. 


218 


1420 m Höhe. Von Wukang wandte ich mich nach Sinning, 
weiter über Tungan nach Yungtschou im südlichen Hunan, 
das ich am 20. August erreichte. Es wurde ausnehmend heiß 
und ich holte mir eine Malaria, die hier mit einem heftigen 
Anfall ausbrach, später aber mich nur sehr selten mehr be- 
lästigte. Die botanische Ausbeute auch in dieser niedrigen 
Stufe war reich, besonders die prächtige Wasserflora war 
jetzt in voller Blüte. Ich wollte von Yungtschou die bisherigen 
Sammlungen, die meine Karawane zu sehr zu belasten an- 
fingen, nach Tschangscha oder Hankau abschieben, da erfuhr 
ich aber von der am 14. erfolgten Kriegserklärung Chinas 
an Deutschland und Österreich und erhielt den Auftrag, 
schleunigst nach Tschangscha zu kommen. Dagegen war 
unter diesen Umständen nichts zu machen und ich reiste 
unter möglichstem Zögern nach Höngtschou, wo mir Missionar 
Breton behilflich war und ich meine Karawane auflöste, um 
mittels Dampfboot nach Tschangscha zu fahren, wo ich 
am 5. September eintraf. 

Ich wohnte zunächst als Gast bei Familie Wollheim, 
dann auf Einladung des Konsulatsbeamten Herrn R. Janssen 
im deutschen Konsulatsgebäude. Da man in Tschangscha 
Etiketten drucken konnte, etikettierte ich die mitgebrachten 
Sammlungen (gegen 1300 Nummern). Auch entwickelte ich 
die Photographien, die eine vollständige Übersicht über die 
Vegetationstypen geben und Konnte durch den ganzen Winter 
und insbesondere im Frühjahr ungestört in der Umgebung sam- 
meln, sowohl in den Steppen und Pinus Massoniana- Cunning- 
hamia lanceolata-Aufforstungen und den Hecken als besonders 
in dem natürlichen Pinus- und Hartlaubwald auf dem Yolu- 
schan, der auch an Kryptogamen sehr reich ist. Herrn Super- 
intendenten H. Witt bin ich sehr verbunden für die Richtig- 
stellung der chinesischen Nomenklatur für die Etiketten und 
andere Hilfe, Herrn R. Schnabel für die prompte und mit- 
unter schon voreilende Auszahlung meiner Geldüberweisungen. 

In Tschangscha bin ich Herrn L. Alff für die Vermittlung 
einer kostenlosen Wohnung und die gemeinsame Messe mit 
ihm Dank schuldig. Herr A. Brammer hatte mir über Sommer 
einige Pflanzen auf dem Yolu-schan gesammelt. Über Winter 


213 


etikettierte ich meine Sammlungen, das Wetter war leider 
ausnehmend schlecht, so daß ich nicht mehr viele Exkursionen 
in die für mich schon erschöpfte Gegend machen konnte, zu 
einigen llex im Yolu-schan-Wald wurden die selbst unter 
Rauhreif und Schnee wohlentwickelten Blüten gesammelt. Aus 
der beabsichtigten Fischkollektion wurde leider nichts. Die 
kartographische Aufnahme meiner Reise des Sommers arbeitete 
ich aus. 

Im Jänner wurde die »Repatriierung« der Deutschen in 
China von den Engländern und Belgiern durchgesetzt. Ich 
hatte keinen Grund, um Ausnehmung einzukommen, ausgiebige 
Arbeit in China konnte ich doch nicht mehr leisten, sondern 
nur Geld verbrauchen und kostenlose Heimreise zu baldmög- 
lichster Übernahme meiner Arbeit in der Heimat schien mir 
sehr erwünscht. Meine Sammlungen in Tschangscha gab ich 
dem Missionar P. Prandi in Verwahrung, der sich als Haus- 
herr mehrerer Landsleute als verläßlich erwiesen hatte, für 
die Sicherheit jener in Yünnanfu trug ich im Wege des nieder- 
ländischen Generalkonsuls in Schanghai, Herrn De Reus 
Sorge, der mir, wi’e der Gesandte, Exzellenz Belaerts van 
Blookland, auch bei der Überweisung von Geld u. a. bestens 
behilflich gewesen war. Mein Faktotum Wang sandte ich 
nochmals nach Wukang, um mir unter Kontrolle der von der 
Repatriierung ausgenommenen deutschen Missionare während 
des April und halben Mai die Frühjahrsflora des Yün-schan 
zu sammeln. Am 25. März erfolgte meine Abreise mit Bahn 
von Tschangscha, am 29. mittels Flußdampfer von Hankau 
undam 3. April mit dem englischen Frachtdampfer » Antilochus« 
von Schanghai. Über Singapur, Port Said, Gibraltar erreichte 
er am 15. Mai Rotterdam. Ich hatte die Absicht, unterwegs ' 
fleißig Plankton zu fischen und auch die Erlaubnis dazu 
erhalten, aber beim ersten Zuge schon bekam das durch fünf- 
jähriges Liegen offenbar schon vermorschte Netz Löcher und 
mußte ich es aufgeben. Ich begab mich zunächst von München 
zum Besuche meiner Mutter nach Tirol und traf am 9. Juni 
in Wien ein. 

Zu den Namen jener Herren, welche mir in Yunnan 
besonders behilflich waren, habe ich H. A. Stiebritz und 


214 


H. F. Pawelka nachzutragen, dann die damals aus politischen 
Gründen nicht erwähnten französischen Missionäre P. Valentin 
in Tsedjrong, P. Ouvrard in Pehalo und P. Genestier in 
Kionatong. 

Wien, 11. Juni 1919. 


Preisaufgabe 


für den von A. Freiherrn v. Baumgartner gestifteten 
Preis 


(Ausgeschrieben am 28. Mai 1919) 


Die mathematisch-naturwissenschaftliche Klasse der Aka- 
demie der Wissenschaften in Wien hat in ihrer außerordent- 
lichen Sitzung vom 27. Mai 1919 beschlossen, ame Preis- 
aufgabe erneuert auszuschreiben: 


»Es werden Versuche gewünscht, wielche;.die, Dis. 
krepanz zwischen den verschiedenen experimen- 
tellen Bestimmungen des elektrischen Elementar- 
quantums erklären.« 


Der Einsendungstermin der Konkurrenzschriften ist der 
31. Dezember 1919; die Zuerkennung des Preises findet 
eventuell in der Feierlichen Sitzung des Jahres 1920 statt. 

Zur Verständigung der Preisbewerber folgen hier die auf 
Preisschriften sich beziehenden Paragraphen der Geschäftsord- 
nung der Akademie der Wissenschaften: 

»8 57. Die um einen Preis werbenden Abhandlungen dürfen- 
den Namen des Verfassers nicht enthalten und sind, wie allge- 
mein üblich, mit einem Motto zu versehen. Jeder Abhandlung hat 
ein versiegelter, mit demselben Motto versehener Zettel beizu-. 
liegen, der den Namen des Verfassers enthält. Die Abhandlungen 
dürfen nicht von der Handıdes Verfassers geschrieben sein.« 

»In der Feierlichen Sitzung eröffnet der Präsident den ver- 
siegelten Zettel jener Abhandlung, welcher der Preis zuerkannt 
wurde, und verkündet den Namen des Verfassers. Die übrigen 


215 


Zettel werden uneröffnet verbrannt, die Abhandlungen aber auf- 
bewahrt, bis sie mit Berufung auf das Motto zurückverlangt 
werden.« 

»8 59. Jede gekrönte Preisschrift bleibt Eigentum ihres 
Verfassers. Wünscht es derselbe, so wird die Schrift durch die 
Akademie als selbständiges Werk veröffentlicht und geht in das 
Eigentum derselben über. Ein Honorar für dasselbe kann 
aber dann nicht beansprucht werden.« 

»8 60. Die wirklichen Mitglieder der Akademie dürfen an 
der Bewerbung um diese Preise nicht teilnehmen.« 

»861. Abhandlungen, welche denPreis nicht erhalten haben, 
der Veröffentlichung aber würdig sind, können auf den Wunsch 
des Verfassers von der Akademie veröffentlicht werden.« 


Selbständige Werke oder neue, der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Müller, Emil, Dr.: Geschichte der darstellenden Geometrie, 
ihre Lehre und Bedeutung an den technischen Hoch- 
schulen Österreichs (Sonderabdruck aus der » Zeitschrift 
des Österr. Ingenieur- und Architekten-Vereines«, 1919, 
Heft 10, 13 und 17). Berlin und Wien, 1919; 8°. 

Reininghaus, Fritz: Neue Theorie der Biegungsspannungen. 
Zürich, 1919: 82 


Aus der Staatsdruckerei in Wien. 


4 u. 
j FL a 
| i By 
r B 
i 
T MAR 
I 55 
fe 
be Zn 1cl > 
ver r aEnN\ 
ah = H 
7 m 
k r Kal 3 
, 1071 Ir1 5 OIA8 ss 9HD9| h 
ah Ju14S 
h N ? Tanne) - 
F- ; 1218) / , 1 opiete]: 1. fi 
5 « il J } £ v h 
j ’ v #r . 
> 1} £ $ 
Ian A } | _ + H BERF-AR DT; 133 Ali 
- 4 4 - _ _ = 
If ” 
r I ri { ER | d ref 
| +3. eronoH m.t „db „asdiezısb-auinsae 
x u % 1 ı & j 


sim fang Br 


R a m a4 3 J a « 1 A 4 Ei Rn hi ey 
Lr. “a . E % e \ N a. y- Ft F 2 u 
a aM RIED Un BE -hitl 6 
3 k zZ ı+ “n s u zZ T be 5 - 
Is DEE D rn 222 a j j N, 
Je 4 f ‘ . M 4 ur Ur Er 
Eu we N Yr ! But (ar Ki EU RDAT Feiry 
\ ML MITTE WI E33 ri m... A z | ii 
r . Ri N. m DO tal. 
ER, } Hard Gr fire u 2 6 LEE ET I Ze ‚ u 


m 
a > Ir 


f P f ' pn 

a hl ATS 

a wunss uk, “a WISTORRE: a Te 
j or 17, 3 


er 


u Li In i) ER N 
V A a 
T 8 a 


’Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr. 16 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 20. Juni 1919 


_—  — 


Erschienen: Mitteilungen der Erdbebenkommission, Neue »Folge, 
Nr. 53. 


Der Vorsitzende, Hofrat R. Wettstein-Westersheim, 
macht Mitteilung von dem Verluste, welchen diese Klasse 
durch das am 27. Maäi 1. J. erfolgte Ableben ihres auswärtigen 
korrespondierenden Mitgliedes, Geheimen Regierungsrates Prof. 
Dr. Simon Schwendener in Berlin, erlitten hat. 

Die anwesenden Mitglieder geben ihrem Beileide durch 
Erheben von den Sitzen Ausdruck. 


Das k. M. Hofrat A. Tschermak-Seysenegg in Prag 
dankt für die Bewilligung einer Subvention zu elektro- und 
thermogastrographischen Studien. 


Die in der Sitzung vom 12. Juni 1919 (siehe Anzeiger 
Nr. 15, Jahrgang 1919, p. 195) vorgelegte Mitteilung von 
Dr. Rudolf Wagner: »Verzeichnis von Sapindaceen- 
gattungen, die acarophile Arten enthalten«, hat folgen- 
den Inhalt: 


Die Acarophilie galt bisher als eine bei den Sapindaceen 
sehr seltene Erscheinung, erwähnen doch Penzig und Chia- 
brera im Jahre 1903 nur zwei Vorkommnisse, und zwar bei 


23 


218 


nicht näher bestimmten Allophylus-Arten, die im botanischen 
Garten zu Buitenzorg unter Gartennamen als Schmidelien 
kultiviert werden. 

Bei den unten aufgeführten Gattungen ist die Zabl deı 
als mutmaßlich acarophil festgestellten Arten beigefügt, die 
vierstellige vorangesetzte Zahl bezieht sich auf den Index 
von Dalla Torre und Harms und dient dazu, die Lücken 
hervortreten zu lassen. 


l. Ensapindaceae. 


1E 


w 


6. 


(7. 


Panullinieae. 


a) Eupaullinieae. 4723. Serjania Schum,, 19 Arten 
aus Brasilien, Venezuela, Peru, Puertorico, Cuba, 
Sto. Thomas, Jamaica, Martinique, Costa Rica 
und vom Senegal. 

4724. Panullinia L., 30 Arten aus Brasilien, 
Uruguay, Venezuela, Peru, Guiana, Columbien, 
Mexico, Costa Rica, Martinique. 

4725. Urvillea H. B. K., 3 brasilianische 
Arten. 


b) Thinonieae. 4728. Thinonia Tr. et Pl, 3 Arten 
aus Brasilien und Bolivia. : 


Thouinieae. 4730. Bridgesia incisaefolia Bert. aus 
Chile. 

4733. Thoninia Poit., 4 Arten aus Mexico, Cuba, 
Puertorico uud QGuiana. 
Sapindeae. 4734. Allophylus L., 45 Arten aus dem 
Tropengürtel exklusive Australien. 


. Aphanieae: keine Beobachtungen). 


Lepisantheae. 4756. Melanodiscus oblongus Radlk. 
aus Deutsch-Östafrika. 
Melicocceae. 4765. Tristiropsis dentata Radlk. von 
der Insel Bougainville. 

4766. Tristira triplera Radlk. von den Philip- 
pinen. 
Schleichereae: keine Beobachtungen). 


219 


8. Nephelieae. 4779. Nephelium L. 12 Arten von Ceylon, 
der malayischen Halbinsel, Java, Borneo, den Philip- 
pinen und Australien. 

9. Cnpanieae. 

a) Cupanieae lomaltorrhizae. 4786. Cupania L. 
18 Arten aus Brasilien, Guiana, Mexico, Cuba, 
Chittagong, Australien und von den Mascarenen. 

4787. Vonarana guianensis Aubl. vom 
nordbrasilianischen Rio Negro. 

4791. Matayba Aubl. 6 Arten aus Brasilien, 
Paraguay, Peru und Guiana. 

4791a. Ratonia DC. (von Radikofer zu 
Matayba gezogen). 3 Arten aus Australien und 
von den Philippinen. 

b) Cupanieae notorrhizae. 4795. Molinaea arborea 
Gmel. von der Insei Bourbon. 

4820. Mischocarpus sumatranus Bl. und 
M. sundaicus BI. 


I. Dyssapindaceae. 


a) Dyssapindaceae nomophyllae. 

(10. Koelreuterieae: keine Beobachtungen). 

(11. Cossignieae: keine Beobachtungen). 

(12. Dodonaeae: keine Beobachtungen). 
b) Dyssapindaceae unomophyllae. 

(13. Doratoxyleae: keine Beobachtungen). 
14. Harpnllieae. 4316. Ungnadia texana Endl. und 
U. sinensis n. sp., eine Art mit auffallend schmalen 
Petalen und großen, an Koelreuteria paniculata 
Laxm. erinnernden Rispen, soll an anderer Stelle 
ausführlicher beschrieben werden. Pflanzengeo- 


N 


+ graphisch ein Pendant zu der Magnoliaceen- 
gattung Liriodendron L. in ihrer heutigen Ver- 
breitung. 


Gewiß werden sich in der langen Reihe von hier nicht 
erwähnten Gattungen noch acarophile Arten finden, es scheinen 
indessen Gruppen zu existieren, denen diese Erscheinung 


220 


fremd ist, so habe ich bei den zahlreichen Dodonaea-Arten 
auch nicht einen einzigen Fall gefunden. 

Zum mindesten zeigt vorstehende Liste, wie überaus 
dürftig unsere Kenntnisse über die Verbreitung der Acarophilie 
sind, gar nicht zu sprechen von der zoologisch-systematischen 
Seite, da doch anzunehmen ist, daß ein sehr hoher Prozent- 
satz der in Frage kommenden Arten ihre eigenen Milbenarten 
beherbergt, die schon der umständlichen Sammelmethode! 
wegen der Forschung bisher entgangen sind. 


1 Die Blätter sind nach Penther's freundlicher Mitteilung frisch mit 
heißer Pikrinsäure zu übergießen, die Domatien zu zerschneiden und in Alkohol 
aufzubewahren. _ 


Die "Akademie "der Wissensehaften?t halvın Ahrer 
Sitzung vom 28. Mai 1. J. folgende Subventionen bewilligt: . 


t. Aus dem er atesMedii: 
dem k. M. Hofrat Prof. Dr. A. Tschermak-Seysenegg 
in Prag für elektro- und thermogastrographische Studien K 3000; 
2. aus Klassenmitteln: 


der Expedi1onauf-denPievon Teneriffa für die 
auf Teneriffa internierten deutschen Gelehrten Prof. Dember 
und Uibe einen neuerlichen Unterstützungsbeitrag von K 1100. 


1919 Nr’s 


Monatliche Mitteilungen 


der 


“ Zentralanstalt für Meteorologie und Geodynamik 


wien: Hohe Warte 


48%.14 9 N-Br., 16°21°7" E v. Gr., Sechöhe 202-5 m 


Zeitangaben, wo nicht anders angemerkt, in mittlerer Ortszeit; Stundenzählung bis 24, 
beginnend von Mitternacht = Oh 


1 


Mai 1919 


Beobachtungen an der Zentralanstalt für Meteorologie 


48° 14°9' N-Breite. im Monate 
EEE RT a IT TH Re u Er TEE TE RETTET TEEN TINUE N  En  EEEEETETRESTEENTEET EEE I EUEER 
; t 
| Luftdruck in Millimetern Temperatur in Celsiusgraden 
Tag. ” Abwei-| Man» Abwei- 
Tages-|chung v. Tages- |chungv. 
| 77h ! 9jh g 8 h h h 8 5 
FAR 1 pi mittel |Normal- - z ee mittel! |Normal- 
/ | stand | stand 
1 735.4 734.1. 735:2 | 84.9 | = 7.9 3.9 11.2 5.7 6.9 |-- 5.6 
2. 1783.22. 4181.77 23274 13247777955 9.83 12.4 10.6 9.4 |— 3.3 
3.,r| -B&u rl 34.95 538: Dan SD 92 6.8 Sl, 8.2 1— 4.7 
4 | 42.3 42.9 A42.7.| 42.6 |-+ 0.6 7.8 17.43 989 9.6 I— 3.5 
5 | 42.3 41.5 40.9 | 41.6 | — 0.4 70 8.9 Sl 7.9 |— 5.4 
6. 1.41 2,..42,3. A990 1125. ee Be 8.7.10 
7 A A AST AT 9.6 8.1 S.1 7.3 \— 6,4 
8 149.4 49.5 49.5| 49.51 -+ 7.5 8.3 12.6 8.8 9.9 1— 3.9% 
9::1.49.0 ..48.0 114752.| 48.2.1--76.0|.1637 „14,547 .11.0.| 710,7 | 6 
10.| 46.0 : 45.0..45.0 | 45.8 |+ 3.2 9,6 17.43 1.84 13.5 |— 0.6 
11.45.72. 45.1: 46.0, 45.6:|+83.5| 10.5 19,4. 14.2. nasser 
12 | 47.2 46.1 47.3 | 46.9 | + 4.8 14.8 20.9 14.4 16.7 + 2.3 
13 | 48.1 47.1 46.0 | 47.1 | 4.9 1327 18.1 13.8 15.2 |+ 0.7 
14 | 44.7 44.8 46.3 | 45.3 | 3.1 12.5 14.9 8.4 11.927 
19.-| 45.8. -44.6.744:95245.1 | 2.9 5.2 11.4 7.4 | 8.0 I— 6.8 
| 
16 44.9 24.5 44,3 446 24 4.7 10.8 OR 8.11 u 
7 43.4. 40.470889 1749,81 0 41.3 6.83 128 Es) 9.7. |— 5.83 
18 37.4. 39.97 41.8.| 39.7 | — 2,6 5.2 10.0 6.9 7.2 |—- 8.0 
197144.0 45,1. 46.111720. 1 50208 7.4 10.7 9.11 9.1 |— 6.2 
20 | 47.4 47.2 48.3 | 47.6 |+ 5:2 8.4 11.4 9.6 9.8 |— 5.7 
Pa! 48.8 48.5 49.6 | 49.0 |—+ 6.6 9.0 2D 10.6 19.7 |— 5.0 
22 1.50.3.50.3..48.1 | 49.6 |+4-.7.2 10.0 14.6 13.83] - 12.600 ae 
23 46.5 45.9 47.3 | 46.6 | + 4.2 13.0 16.8 OR 13.9 7 229 
24 | 47.8 47.5 48.8 | 48.0 | + 5.98 9.8 14.6 1kalags‘ | 11.9 |— 4.2 
25 49.7. 48.4 48.0, 48.7 | + 6.2 10.2 16.6 14,4 13.7 |= 2.5 
26 47.2 .46.3 46.0 | 46.5 | + 4.0 al 16.5 13.2 14.3 |— 2.1 
27 43.9 42.5 43.1 | 43.21 + 0.6 2 12.8 12.5 12.5 |— 4.0f 
28 43.6 43.4 44.2 43.7 | + 1.1 I) 15.8 13.27] 3.6 |— 3.0 
29 44.4. 43,0. 41.8.7481 [60:5 13.4 1887 15.3 15.8 |— 0.9 
80 | 41.3 41.8 43.3 | 42.1 | -—- 0.6 14.5 18.3 14.2 15.7 |— 1.2 
31 43.5 42.1 41.6 | 42.4 | — 0.83 11.9 19.4 15.7 15.7 |— 1.4 
Mittel 744.25 743.91 744.39 744.18 —+ 1.92 9.8 13.9 10.9 11.4 |— 3.5 
« 


Höchster Luftdruck : 750.3 mm am 22. 
Tiefster Luftdruck: 731.7 mm am 2. 
Höchste Temperatur: 21.1° C am 12. 
Niederste Temperatur: 2° C am 1. 
Temperaturmittel2: 11.3°C, 


11/,(7,:14, 21). 
229/,4(7,,14,, 21, 21): 


und Geodynamik, Wien, XIX., Hohe Warte (202:5 Meter), 
Mai 1919. 16°21-7' E-Länge v. Gr. 


| Temperatur in Seeniertaden | Dampfdruck in- mm | Feuchtigkeit in Prozenten 
Schwarz Dlank- Be: i& 
' Max. Min. | kugel! Kugel! strah- || 7h 14h oyh Tages- zh {14h  2h Tages- 
lung ? mittel mittel 
Max Max. | yim, 
| | 
141-6, 2.0| 41. 24 |—-.3| 4.6 4.0 4.4 4,3 76.1408 708 60 
12,27 a a N 4.3 6.5 Sa ar A0n: 58 60 
10.6 Bearasa 19 273,8 6.9 5.1 6.8 onrm os "67 83 
11:9 6.81.39-..23 2| 4.6 3. 4.2 RE 58 837 46 47 
9.1 7.96.19 "82 4 5.2 6.2 6.6 6.0 TO. (DEMFS2 76 
12.4 6.4| 42 24 4\ 6.9 1:8 7.4 TR 93 a 86 
8.6 DEAN BD. 22 al 6.1 6.9 1.6 6.9 90 86 94 90 
12.83 Bra 242, 2A Mi A6 Me. Yo 6.5 79 7090 84 78 
13.2 Be RAS 225 Suse (Sa 6.9 6.7 Sors SH 7183 
17.9 DEAL BASS. 728 IN AU 6.6 6.5 6,7 7 a 60 
E 20.1 Tele DL 136 Der 6.9 s.1 6) TS. Sa 66 62 
221.1 12.71 49 34 9 8.8 8.9 S.1 8.6 7 48: .66 6l 
218.8 12.9| 45 30 6I| 9,2 9.5 9.6 9.4 78 61 81 73 
E16.1 Daran 29 10) 9.3 6.6 4.5 0.8 |. 80° (52.1198 64 
512.4 Sir 251 Fi, 017.0: ST) Al 60: 40 yr75ß 52 
F12.0 Bf | AAIEDBE er 4.0 4.3 4.0 56° Al Hi 49 
14.0 ae As 27 ON 4,9 SZ HT Se EEE) 63 
Bee, 45 TAlrE 25 1 5.6 4.2 4,8 4.9 SAH AGEr 5 66 
ii.1 GAR 86.22 3 De 4.9 5 5.1 69 51 58 59 
12.5 HESS 28 Pie, DE2 5.4 a) 5) 63 Did 59 
13.0 65811,.47- 27 3 6.5 6.7 6.8 6.6 76 020 68 69 
516.7 950, A427 121084 Be7 6.5 6.5 TO Se 5 60 
212.2 I0SD AZ. 32 7I 6.4 022 6.2 6.3 ee! 55 
ia.1 Sal l50, Zal 2 : 6.8 6.3 TA (öleie We! 74 65 
=17.6 7.87 31 4| 6.7 Bea | 7a) Az.) 51 57 
‚18.1 10.4| 44 830 6| 7.8 849 8.3 8.0 63.100, 78 66 
15; 1 il. 5|: 442.28 91° 8.3 9.1 Ei 8.8 78 83 84 82 
16.6 m nn rAAL 28 SS 9:9 8.7 9.0 81 Aa Da Th 
‚19.3 era Ar. 8l S| 8.0 852 Se 8.1 OF! 63 61 
19.3 1023. A331 917728 6.3 6.5 6.9 BASE AU 7A: 53 
20.4 Se2 ART BL 98.2 70 9,8 8.3 79 43 74 65 
14.8 74.42, 2028.6) 3.4 0.0 6.5 6.7 6.6 Tas 508 68 65 


“u 

I “ Höchster Stand des Schwarzkugelthermometers: 52° C am 11. 

Größter Unterschied zwischen Schwarz- und Blankkugelthermometer (stärkste 
Ahlung): 20° C am 20. u. 21. 

Tiefster, Stand des Ausstrablungsthermometers: —4°C am 8. 

Höchster Dampfdruck: 9.9 mm am 28. 

Geringster Dampfdruck: 3.6 mm am 16. 

* Geringste relative Feuchtigkeit: 370/, am 4. 


! In luftleerer Glashülle. 
:Blankes Alkoholthermometer mit gegabeltem Gefäß, 0:06 ın über einer freien Rasenfläche. 


994 


| Windrichtung und Stärke || Windgeschwindigkeit 
in Met. in d. Sekunde 


Beobachtungen an der Zentralanstalt für Meteorologie 


48° 14°9' N-Breite. 
re Be ra T I ENDET MET TEE TEN NR EEE TS EEENTEEET EEE TE ERIC TREE 


n. d. 12-stufigen Skala 


Niederschlag 
inmm gemessen 


im Monate 


a 


Tag 2 
[u 7 14h 21h Mittel| Maximum 1 zh 14h 21h 
| IE | 
1 WNW2 WNW3 WNWA4| 4.4 VO | _ 0.28 | — | 
2 WNW3. 'NW-5/ NW 5,91 NW 25.3 En = 0.08 | — 
3 WNW4NNW4 N ti 6.4 NNW 17.8 8.9e 12.02 17.80 | — 
4 N 3,0NNW4. WW 1| 6.3 NWS20.2 _ — — 
b) N 3. NW. 2 NNW 2| 4.4 Nosıılnd 0.00 0.08 0.80 | — 
6 ENE 1: E 3 NNE 1l 3.4 NB*18.2 0.70 5,38 7.30A| — 
7 NNE' 2. ENE. 27 „N“ .1| . 258 NNE 9.4 6.8e 3.9e 0.98 | — 
8 E :1# SE; 2) 185. 11,245 SEI 1.8 —— _ _ 
9 \W "Ir. SEA37 SSB. 1% 228 SSE 13.6 —_ _ 
10 SE '1..SSE 2: .S..11,4.0 Se! —_ u _ 
11 wewd= Ne 1 7W 217188 NER.9.7 —_ 0.,0e | — 
2 WNW4 WNW4 WNW5Il 6.8 VNW 21.9 _ _ _ 
13 WNW3 W 4 WNW3l 5.8 WNW16.1 1.48 0.08 2.le | — 
} NNW2 N 3 NNE3lj 4.2 NNE 12.8 0.38. 0.4e 0.08 | — 
15 NNW1 NNE 2 NNE 2| 3.3 N I = —_ —_ 
16 NNNW BR NEN IR NE ar NNE 10.0 — = _ 
17 ENE TI SN SI BE Ener NNE. 6.7 _. 0.78 | — 
18 NNW4 W.-5 NW 5|l 5.4 NW 17.8 S.2e 1.66A 1.30 | — 
19 NW 5. NNE.30 207 124.8 NW 15.0 0.06 — = 
20 N 2 NNE 3’NNW 2 3.9 NNE- 11.3 = 0.48 0.08 || — 
21 N 27 NW’ 27 N 119352 NW21479 = ‚Ode | — 
22 NNW 2 WNW2 WNW2| -4.4 NW 16.4 _ n — 
23 NNW3 N 3 NNW2| 5.4 NE. 20.0 1.78 0.38A 0.28 | — 
24 N 3 N 3WNW2!I 4.5 NWel2.2 —_ 0.58 0.38 | — 
25 NW 1.NNE 1. NW 1l 2.6 N 1.8 _ _ _ 
26 — 0 NE 3 NW 2|I 2.9. NE 11.9 —_ 0.68 0.38 | — 
2 NW 3 W.4A NW 2|.5.7 WN\14.1 1.08 0.88 4.30 | — 
28 NW 3 WNW3 wnwi 6.3 WNW 15.2 1.0e 10.48 || — 
29 NW 3 NW 2 WNW3j 4.9 NNVS 1247 _ —_ _ 
30 WNW2 NNW3 NNE I| 4.1 N 412,2 _ — _ 
31 — U IBESE:.17 WE. 214146 08 = = = 
Mittel 2:2 28 2.1.4. 13.8 
Ergebnisse der Windaufzeichnungen: 
N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NN\ 
Häufigkeit (Stunden) 
18183 22. © le 6,5. 10572972028 9 210°,.17°% 72012 See 
Gesamtweg in Kilometern | 
1783 994 189 95 137 51 101 328 310 52 55 52 227. 2886 3068 1113 
Mittlere Geschwindigkeit, Meter in der Sekunde 
3:8, 93,9 2.27 2,2 2,5 ..2,4 0.3 4.018.:8: 2:9 1.51. ,0,.97282207 6.0. a 
Maximum der Geschwindigkeit, Meter in der. Sekunde 
8.9 7.2 4.7 3.6 4.7 3:6:6.1 6,9 7.5 452 82.2 1 Meran. ee 


! Den Angaben des Dines’schen Druckrohr-Anemometers entnommen. 


Anzahl der Windstillen (Stunden): 
38.7 mm am 3. 


Größter Niederschlag binnen 24 Stunden: 
Niederschlagshöhe: 104.4 mm. 


2. 


225 
‚und Geodynamik, Wien, XIX., Hohe Warte (2025 Meter), 
Mai 1919. 16° 21'7' E-Länge v. Gr. 


n | gr. Bewölkung in Zehnteln des 

Es | sichtbaren Himmelsgewölbes 1 
FE Bemerkungen Sa mer I. y E 
Ka Zu ga 2 In2|n8 
> ® | > & Falle 
Elm E 
cdcha | e0 1630; a! mgns., N! inE 1630. 20T, 61 0 3.0| 2. 
ngegg-ie0 21, 2320— +01 -. -- 91--_-10180.1.9,71-9, 
gggme| el 110— 1050, e172 1145 —17;=116—17. | 10181 10lei 6071| 8,7| 8. 
benef u 10 za ’ONE.3r 6. 
gggff | e0 645, 1330 — 1630, @Tr. 20. [e2 AP 1735, 60711815 100-1 [Ole 8074| 9.319, 
ggegg | 0 1350— 1045, &0 1 1— 12 zeitw.; RI? 162°— 1740, | 10180 90-1 1018071] 9,7| 9. 
ggegg | el — 1245, 60 1315 — 1690, 1S— 21 zeitw. 101601 10160 101 [10.0] 9. 
femaa | .o.0 abends. KanosiN 78 0 5.0] 4. 
bdbaa | a1l”2 mgns. u. abds. | 10 21 0 1.070. 
abbaa | at mgns. 0 11 0 0.3) 0. 
ndded | 8071 2040°— 2110, Rin S 142. | 70-1 8172 gie0| 8.0| 7. 
cdnee | el 2125750, 60-1 2250— 23; Rin N 21. I 6071, 5172 . 8071| 6.31. 6.3 
emfgg | e0 705730, e0-1 1525-1615, 00 1915740, 23,92 13-14.| 80-1 106-1 10071| 9.3] 8. 
ggmba| e0 1—2, 510—645, 6071 930—.11, eTr. 1430, | 101 sı 0 6.0] 5. 
abbbe | a0"l mgns. 0 10 0 0.3] 0. 
cdnfe _ j || 71 2 | 101, | 8.318. 
dengg| 60 1740 — 1830 zeitw., e071 1940 zeitw. — 40-1. 21 10180 | 5.3] 4. 
gdkgm) 801 — 712, Al”? el Böen 11— 15, 0 15—18. | 10lel 8180 101 1.9.3] 9. 
dfefd | ed 1—2. i 81 91 101 9,0] 8. 
eneee | 00 13—14, e0 18; MI! 18%. WdE a a 
efege | ei 1435 — 1510, @e172 1540750, &0 17. 6071. 10071 101 8.78. 
eddmd| el 2245 — 23145, dann e® bis 24. [Rin NE 15. || 81 gl 11 3.758. 
bnece | eTr. 11—12, el 1230740, Alel Böe 14, e® 16?0; 11 81728  A0ZLN 4,3| 4% 
eemch| e01 11— 12, 18, el 1815730, I 91 7172 40-1) 6.7| 6. 
bbbbb| .a! mens. | 207. V91 10 2.073. 
nfggg | 001 122540, 1730— 23 zeitw. [-16, 6071 16— | 80 101 10180 | 9.31 9, 
fefgg | el 50040, e0"IR in N 1150, 1320, e2 1415730, 1540- | 9071 10lel 1018071] 9.7| 9. 
fedgf | e0"1—530, 80 620-810, 6172 1530-1725; Rin NE13. | 10160 8071 100-1| 9.3] 9, 
mddef — | 2071 .%80-1 100 5.7) 4. 
gemba — | 1090-7 6071 10 9.7100. 
aaaaa == | 0 0 0 0.01 0. 
Mittel 5. 1#0.8 6.1 | 6.3] 6. 

e7 


Schlüssel für die Witterungsbemerkungen: 


‚a = klar. f = fast ganz bedeckt. k = böig. 

"b = heiter. g = ganz bedeckt. l = gewitterig. 
c = meist heiter. h = Wolkentreiben. m = abnehmende Bewölkung. 
d = wechselnd bewölkt. i = regnerisch. - n = zunehmende » 


e = größtenteils bewölkt. 
Der erste Buchstabe gilt für morgens, der zweite für vormittags, der dritte für nachmittag s 
Ar der vierte für abends, der fünfte für nachts. 


Zeichenerklärung: 
Sonnenschein ©, Regen e, Schnee x, Hagel a, Graupeln A, Nebel =, Nebelreißen =‘, 
Tau a, Reif —, Rauhreif V, Glatteis ro, Sturm 9, Gewitter R, Wetterleuchten $, Schnee- 
gestöber $, Dunst co, Halo um Sonne ®, Kranz um Sonne ®&, Halo um Mond []J, Kranz 
um: Mond W, Regenbogen }: 


-15 


9 eTr. — Regentropfen, #Fl. = Schneeflocken, Schneeflimmerchen. 


1 Tagesmittel A aus den mit Index versehenen Beobachtungen; Tagesmittel B aus solchen 
ohne Index. 


Anzeiger Nr. 16. 24 


226 


Beobachtungen an der Zentralanstalt für Meteorologie Be 
Genaynaraık, Wien, XIX., Hohe Warte (202°5 Meter), 


im Monate Mai 1919. 


Ver- | Dauer |5 , B = Bodentemperatur in der Tiefe von 
dun- Is Ye +5 ES | 0.50m 1.00m 2.00m 3.00m 4.00 m 
Tag stung Een 5 5 | || 
ins schein © De - 
nor | in . |< &$ 2] ne a j4h 14h, 14h 
7 | Stunden |O "Se! a 
1 1.8 14.1 10.7 8.5 8.1 TUN. 78 8.2, 
2 2.3 2.1 10.7 8.9 8.3 7.8 1.8 Sub’ 
3 1.0 0.0 >) 9,0 8.2 7.8 7.28 8.2 
4 IT 12 10.0 8.9 8.3 Ta 728 Sm2 30 
5 1.5 0.0 7.0 9,3 8.3 Zu! 7.9 8.3 
6 | 1,0 10.3 9.1 8.4 749 79 8.3 
7 0.4 0.0 9.3 St 8.5 19 Zuge) 8.8 
8 0.5 6.6 9.3 9.4 8.6 ro) 1.9 8.3 
g 0.9 11.9 4,3 10.1 8.6 8.0 3.0 Be 
10 18 13.6 4.7 3 8.7 2 8.0 8,3 
11 1.9 1 6.0 12.6 9.0 8.1 8.1 8.3: 
12 2.2 10.6 11,8 13.8 9.5 Bad 8.1 8.4. 
13 1.2 5.5 8.7 14.5 10.0 81 8.1 8.4 
14 17 5.8 ee} 14.3 10.4 8.2 8.1 8.4 
15 19 13.3 10.7 13.7 10.6 8.8: 8.1 8.4 
16 1.3 8.0 9.0 13.8 1029 8.4 51 8.4 
17 0.7 9.4 8.3 14.1 11.0 8.5 8.2 8.4 
18 14 4.5 12.7 14.2 11:1 8.6 8.2 8.4 | 
19 1.5 3.1 8.8 12.9 198 8.7 8.2 8.4 
20 1.2 5.8 8.7 12.4 11.3 8.8 8.2 8.4 
21 1.0 4.5 9.7 12.3 1172 ar 19.8 8.3 gras 
22 1.5 6.2 10.3 12.6 1 9.0 8.3 8;4-:, 
23 2.5 11.3 9.3 13.3 Ja 9 8.4 . 8.4 
24 1 7 D 10.7 13.8 112 9.1 8.4 9%) Boa 
25 1.8 14.5 11.0 14.4 11.4 9.2 8.5 9,4 
26 1.4 6.0 der, 151 11.6 9.3 8.5 8:5... 
2 0.8 1.2 er 14.8 18 9.3 8.5 ER 
28. 0.4 4,8 10.3 14.8 12.0 9.4 8.6 8.8,, 
29 et 10.0 14.10 14.9 12.1 9.5 8.6 8.6 
30 2.0 9.2 7.8 15.6 12.3 9.8 8.7 8.6, 
31 1.0 13.4 Di 16.0 12.4 9.6 8.7 8.6 
Mittel 1.3 ei! 9.2 12.5 10.2 8.5 8.2 8.4 
Monats-| 39,8 219.3 


Größte Verdunstung: 2.5 mm am 28. 

. Größte Sonnenscheindauer: 14.5 Stunden am 25. 
Prozente der monatl. Sonnenscheindauer von der möglichen: 460/,, von d. mitslären 9494 
Größter Ozongehalt der Luft: 12.7 am 18. 


Der vorläufige Bericht über Erdbebenmeldungen in Österreich wird wegen des: ‚spät- | 
lichen und unregelmäßigen Einlaufes der Meldungen in den nächsten Monaten zusammen- 


fassend nachgetragen. IR 


T see 


Aus der Staatsdruckerei. 52319. 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 


Nr. 17 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 26. Juni 1919 


—— a. 


Das k.M. Prof. F. Höhnel übersendet eine Abhandlung 
mit dem Titel: »Fragmente zur Mykologie (XXIll. Mit- 
teilung, Nr. 1154 bis 11S3).« ® 


Dr. Josef Hertzka in Salzburg übersendet, ein; ver- 
siegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schrift: »Singuläre Stellen des Weltäthers.« 


Das w. M. Hofrat Franz Exner legt vor: »Mitteilungen 
aus dem Institut für Radiumforschung. Nr. 124. Über 
den lonenwind«, von Victor F. Hess. 

Wenn die Luft zwischen zwei Platten eines Kondensators 
ionisiert wird, so entsteht, sobald man ein elektrisches leld 
anlegt, eine Luftbewegung, die ungeachtet des Vorzeichens‘ 
des Feldes im allgemeinen von den Orten stärkerer lonisation 
zu Orten schwächerer Ionisation gerichtet ist. Diese Erscheinung, 
welche qualitativ bereits von Zeleny bei lonisation durch 
Röntgenstrahlen (1898), von Ratner (1914) bei lonisation 
durch #-Strahlen studiert worden ist, wird durch die Mitreiß- 
wirkung verursacht, welche die bewegten lonen auf die um- 
gebende Luft ausüben. Man kann daher diesen Effekt »lonen- 
wind« nennen. Er ist auch bei vollkommen gleichförmiger 


ZEN 


228 


[onisation noch nachweisbar, da die Mitschleppwirkung der 
positiven lonen etwas größer ist als die entgegengesetzte 
Mitschleppwirkung der negativen lonen. 

fe) 


Zur Messung des Winddruckes des lonenwindes diente 
eine empfindliche Drehwage in Verbindung mit einem Kreis- 
plattenkondensator, auf dessen einer Platte die Strahlenquelle 
(Polonium- oder Radiumpräparate) angebracht wurde, während 
die Gegenplatte in der Mitte eine kreisförmige mit Netz über- 
deckte Öffnung besaß, durch welche die bewegten Luftteilchen 
hindurchfliegen und die mittels Fernrohr und Skala meßbare 
Ablenkung. der Nadel der Drehwage bewirken konnten. Gegen- 
über der von Ratner gebrauchten Anordnung weist der 
Apparat verschiedene Abänderungen auf, die sich im Laufe 
der Untersuchung als zweckmäßig erwiesen ‚haben. 


Zuerst wurde die Abhängigkeit des Windeffektes. von 
den’ Versuchsbedingungen studiert. Der Winddruck hängt in 
sehr komplizierter Weise von der angelegten Spannung ab. 
3ei konstantem Spannungsgefälle wächst er fast linear mit 
der Plattendistanz. 


Es werden die Ansätze zu einer Theorie des Ionenwindes 
entwickelt und eine Formel angegeben, nach welcher der 
beobachtete Winddruck, welcher ja stets ein Differenzeffekt 
zwischen dem Mitreißeffekt der vom Präparat wegfliesenden 
(mit der Präparatplatte gleichnamig geladenen) Ionen und dem 
Mitreißeffekt der entgegengesetzt geladenen Ionen darstellt, als 
Funktion von lonisierungsstärke, Feldstärke und der Differenz 
der mittleren, von den beiden lonenarten unter Feldwirkung 
durchlaufenen Distanzen dargestellt wird. In der Formel: tritt 
auch ein Reibungsglied auf, welches mit steigender Geschwindig- 
keit und Feldstärke anwächst und so qualitativ die experi- 
mentell gefundene Tatsache erklärt, daß bei gegebener Stärke 
der lonisierungsquelle der Winddruck mit steigender Feld- 
stärke einem maximalen Werte (»Sättigungswind«) zustrebt. 

Nebenbei wird eine Methode entwickelt, welche durch 
Messung des Winddruckes bei Oberflächenionisation (Anwen- 
dung nur der letzten Millimeter der Reichweite der a-Strahlen) 
die Bestimmung der lonenbeweglichkeit gestattet. 


229 


Die Abhängigkeit des Winddruckes von der Feldstärke 
wurde bei verschiedenen Distanzen zwischen Präparat und 
Netz und Feldstärken bis zu 6000 Volt /cem untersucht. Die 
bei lonisation durch ß und y-Strahlen erhaltenen Wind-»Sätti- 
gungskurven« steigen im Anfange nicht rascher mit der Feld- 
stärke an, wie bei lonisation durch «a-Strahlen. Der positive 
(d.h. bei positiver Ladung der Präparatplatte erhaltene) Ionen- 
wind ist immer etwas größer als der negative. Letzterer nimmt 
von großen Feldstärken aufwärts wieder ab und schließlich 
überwiegt der Gegenwind der positiven Ionen (negativer Wind- 
druck). Diese Erscheinungen werden eingehend erklärt. 

Bei lonisation durch $- und y-Strahlen eingeschmolzener 
Radiumpräparate werden ebenfalls deutliche Windeffekte er- 
halten, welche zur annähernden Vergleichung von Präparaten 
herangezogen werden können. 

Die Windmethode eignet sich ferner sehr gut zur Auf- 
nahme von Zerfallskurven radioaktiver Substanzen und zur 
Vergleichung +-strahlender Präparate (z. B. Polonium); es 
wurden die Versuchsbedingungen ausfindig gemacht, bei 
welchen genaue Proportionalität der gemessenen Winddrucke 
mit den lonisierungsstärken gewährleistet ist. Änderungen 
des Staubgehaltes der im Apparat befindlichen Luft bringen 
erhebliche Änderungen des Winddruckes hervor. 

Schließlich wurde die Drehwage im absoluten Maße 
geeicht und so der Winddruck des lonenwindes eines Polo- 
- niumpräparats von bekannter Stärke in Dyn/cm’” ermittelt, 
Nach der Eiffel’schen Windformel ließ sich daraus die Ge- 
schwindigkeit des lonenwindes bei den gegebenen Versuchs- 
bedingungen berechnen. Solange der Winddruck der Feldstärke 
proportional ist, beträgt die tatsächliche Geschwindigkeit der 
von den Ionen mitgerissenen Luftteilchen etwa !/,, der Ge- 
schwindigkeit der Ionen selbst. 

Es wurden auch die Energieverhältnisse untersucht und 
in einem speziellen Beispiel berechnet, daß nur ein kleiner 
Bruchteil der vom Feld auf die Fortbewegung der lonen ver- 
wendeten Gesamtarbeit als kinetische Energie der mitgerissenen 
Luft an der Drehwage selbst nachweisbar ist. Der übrige Teil 
wird direkt in Wärme umgesetzt. 


230 


Das k. M. Prof. Rich. Paltauf legt eine Arbeit des Herrn 
Dr. Fritz Silberstein aus dem staatlichen Serotherapeuti- 
schen Institut vor, betitelt: »Gasbrand und malignes Ödem, 
bakteriologische, toxikologische und serologische 
Studien.« bir 

Diese Arbeit enthält die Resultate über die dem Institut 
zwecks Auffindung einer Serotherapie gegen die namentlich 
im Stellungskriege häufig beobachtete, als »Gasbrand«, auch 
als »Gasentzündung« bezeichnete und gefürchtete Wund- 
infektion. Den Chirurgen drängte sich beim schweren Krank- 
heitsbilde, dem manchmal plötzlichen Eintritte des Todes, der 
Erfolglosigkeit selbst radikalster operativer Eingriffe die Über- 
zeugung einer schweren Intoxikation auf, gegen welche 
nur in einer Serotherapie, sei es prophylaktisch (wie bei 
Tetanus) oder auch therapeutisch (wie bei Diphtherie) ein 
Heilmittel zu erhoffen wäre. Hierzu war die Feststellung der 
Ätiologie notwendig. Aus den Friedenszeiten unterschieden 
wir zwei Infektionen durch Anaerobien, die eine wegen der 
starken Gasbildung als »Gasphlegmonie«, die andere wegen 
des fortschreitenden Ödems bei mangelnder oder geringer 
Gasbildung als »malignes Ödem«. bezeichnet. Die Unter- 
suchungen deutscher Bakteriologen ließen bei dem auch dort 
häufigen Gasbrand der Kriegswunden noch andere, besondere 
Erreger annehmen, die dem tierischen Rauschbrand nahestehen 
sollten. An der Isonzofront hatte sich Dr. Busson (vom Sero- 
therapeutischen Institut) mit der Frage beschäftigt, die im Auf- 
trage des Armeekommandos von Prof. Ghon dort eingehend 
fortgesetzt wurde. Gelegentlich eines Besuches der Sanitäts- 
anstalten dieser Armee (Sommer 1916) brachte ich Kulturen 
der daselbst gezüchteten Anaeroben von Gasbrandinfektionen 
mit. Sie entsprechen nach der weiteren Untersuchung dem 
Bazillus der Gasphlegmone von E. Fraenkel und dem Ghon- 
Sachs’schen Ödembazillus; der in den Kulturen auch vor- 
gefundene anaerobe Bac. putrifiens Bienstock, im Eiweiß- 
zersetzer, erwies sich in allen Versuchen als nicht pathogen. 
Keiner der beiden genannten Erreger bildete auf den ver- 
schiedensten Nährböden antigene Gifte; die erzeugten Immun- 
sera hatten nur eine beschränkte antiinfektiöse Wirkung und 


231 


versagten am Krankenbette, wie es nach den Tierversuchen 
zu schließen war. 

Erst im Sommer 1917 gelang es Dr. Zacherl (kom- 
mandiert am Institut) in einem Falle und dann Dr. Silber- 
stein in drei Fällen hier in Wien bisher nicht bekannte 
hochtoxische Stämme von der Art des Ödembazillus zu 
kultivieren, welche ein äußerst wirksames Gift in Bouillon- 
kulturen produzieren, so daß nicht nur 0'001, sondern auch 
0:0003 und 0:0001 cm’ keimfreien Filtrates eine für Kaninchen 
und Meerschweinchen tötliche Dose bei intravenöser Injektion 
bildeten. Nach einer 10- bis 12stündigen Inkubation wurden 
die Tiere unruhig, zeigten zunehmende Dyspnoe und gingen 
entweder plötzlich unter Krämpfen und Atemstillstand oder 
allmählich unter Lungenödem zugrunde. Die sofortige Obduk- 
tion ergab noch rhythmisch schlagendes Herz, hydropische 
Ergüsse in den Pleurahöhlen und im Herzbeutel, eventuell 
Lungenödem, dunkelrote Nebennieren. Die Erscheinungen sind 
bei der intraperitonealen oder subkutanen Injektion dieselben, 
nur entwickelt sich bei letzterer auch ein starkes lokales 
Ödem. 

Die Analyse der Giftwirkungen ergab, daf3 dasselbe keine 
Wirkung auf das Herz hat, daß es aber das Vasomotoren- 
und Atemzentrum lähmt; ‚gleichzeitige Verzeichnung der 
Atmung und des Blutdruckes läßt bei zunehmender Dyspnoe 
die Blutdrucksenkung infolge zentraler Gefäßlähmung er- 
kennen; Aortenkompression oder Adrenalin vermögen den 
Blutdruck vorübergehend zu steigern. Außerdem erhöht das 
Gift die Durchlässigkeit der Gefäße, wie es das lokale 
Ödem und die hydropischen Ergüsse erweisen. Diese Gift- 
wirkung deckt sich, respektive erklärt die von den Klinikern ' 
beschriebenen Erscheinungen, die Unruhe der Kranken, die 
große Atmung, die Blässe des Gesichtes und den hoch- 
frequenten Puls, auch den plötzlichen Eintritt der schweren 
Erscheinungen. 

Dieses Gift ist ein Antigen, wie das Diphtherie- oder 
das Tetanusgift. Pferde, die höchst empfindlich auf die Infek- 
tion, wie die Intoxikation sind, ließen sich, nach dem es ge- 
lungen war, vollkommen sporenfrei Filtrate zu gewinnen, so 


232 
hoch immunisieren, daß 0°0l, die zehnfache Dos. let, des 
Giftes durch Bruchteile eines Milligramms, ja 0'001 und 
0:0003 Milligramm Serum neutralisiert wurde. Dadurch, daß 
wir anfänglich keine brauchbaren Filter erhalten konnten, 
verzögerte sich die Immunisierung der Pferde, welche bei 
Ziegen anstandslos gelang, beträchtlich; aber bei einem mini- 
malen Sporengehalt des Filtrates, z. B. 0'1 eines Filtrates 
durch Kreide, ja selbst 0:05 gingen Pferde an der Infektion 
zugrunde. Das Immunserum konnte noch bis zu 5 bis 
6 Stunden nach der Giftinjektion vor der Vergiftung schützen, 
es gewährt auch einen ausgezeichneten Schutz gegen die 
Infektion mit Kultur- oder infektiöser Ödemflüssigkeit eines 
gefallenen Tieres, selbst noch mehrere Stunden nach der 
Infektion den tötlichen Ausgang verhindern. Bei der Immuni- 
sierung der Pferde war bemerkenswert das enorme Öden, 
welches nach den ersten Giftinfektionen eintrat, am Halse 
vom Kiefer bis zum Bug reichte, bei zunehmender Immunität 
selbst bei großen Giftdosen, aber nicht mehr auftrat; auch 
vertrug das so empfindliche Pferd bei der hochgetriebenen 
Immunität die Infektion sporenhaltiger, nur durch Papier 
filtrierter Giftlösungen, dies ist im Gegensatz zum Rausch- 
brand noch besonders. hervorzuheben, bei dem nach den 
Untersuchungen von Schattenfroh und Gräßburger das 
antitoxische Serum gegen die Infektion nicht schützt und 
gegen das Gift immunisierte Tiere für die Infektion emp- 
fänglich bleiben sollen. 

Leider konnte das Serum bei der Piaveoffensive noch 
nicht zur Verwendung kommen und so kamen dem Institute 
nur einzelne Beobachtungen zur Kenntnis; das Serum ist 
spezifisch; es hat auf die Infektion mit dem E. Fränkel- 
schen Bazillus gar keinen Einfluß, wohl aber. auf die durch 
den Bac. Ghon-Sachs, welche mehr beeinflußt wird als 
durch das homologe Serum. 

Die Arbeit enthält weiter Untersuchungen - über die 
Agglutination und die Komplementbindungsreaktion 
bei den vier aus Gasbrand infizierten Anaerobiern; diese. 
Reaktionen sind leider zur Differenzierung nicht zu ver- 
wenden, da sie, wenn auch ab und zu eine gewisse Gruppen- 


233 


werd 


zusammengehörigkeit erkennbar ist, doch immer nur beim 
homologen Stamme auftreten, nicht artspezifisch sind. 


Drucktehlerberichtigung. 


In der Abhandlung von Prof. Dr. Heinz Ficker: »Untersuchungen 
über die meteorologischen Verhältnisse der Pamirgebiete« (An- 
zeiser Nr. 15 vom _12. Juni 1919) ist auf ‘Seite 195, Zeile 12 v. u. und 
auf Seite 197, Zeile 5 v. u. Pamir-Alaisystem statt Pamir-Maisystem, 
ferner Seite 197, Zeile 4v.o. Hann’s Formel statt Hanu’s Formel zu 
lesen, 


Aus der Staatsdruckerei in Wien. 52419 


{ HEN 
co nn seen Job ed: BNIRCH 27ER? 
ige Art team esta 
\ : 
EN Le 1974 
; a za 1. Ina eu Fl x } T oft vo; a 
Eluralsietz luidı 
Fi F. se, Tai IH 
ee Ne are 
! (sil@t: Zugalt er Waahsicermienih EHSIHR u am 
£ P% n 5 ß I. = BrT- ra N 


hessen.” 
MA DETRRSIT 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr. 18 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 10. Juli 1919 


— 


Erschienen: Sitzungsberichte, Bd. 127, Abt. IIa, Heft 88 — Monats- 
hefte für Chemie, Bd. 40, Heft 3. 


Reg.-Rat J. Szombathy in Wien dankt für die Bewilli- 
gung einer Subvention zu prähistorischen Ausgrabungen beim 
Orte Gemeinlebarn in Niederösterreich. 


Das w. M. Hofrat G. Tschermak überreicht eine Abhand- 
lung mit dem Titel: »Der Vesuvian in chemischer Be- 
ziehung.« 


Das k.M. Hofrat Ph. Forchheimer in Wien übersendet 
eine Abhandlung mit dem Titel: »Zur Theorie der Grund- 
wasserströmungen.« 


Derselbe übersendet ferner eine Abhandlung von Dr. 
Nielsen, betitelt: »Der Ausfluß aus einem ursprünglich 
nicht vollen Rohre.« 


236 


Das k. M. Hofrat A. Wassmuth in Graz übersendet eine 
Abhandlung, betitelt: »Über das Phasenvolumen.« 

Nennt man p,2,p, die Koordinaten, g,9,9g, die Impulse 
eines dynamischen Systems von drei Freiheitsgraden — die 
Verallgemeinerung ist leicht —, so hat Wassmuth in seinen 
Vorlesungen im Herbst 1916 und in einer vorläufigen Mit- 
teilung an die Akademie vom 26. April 1917 gezeigt, daß sich 
das Phasenvolumen 


dA = dp, dp, dp, dg, dg, dg; 
auch in der Form 
dr = dHldAHyaHi\aK GESER, 
schreiben lasse. Diese längst bekannten Funktionen A,...A, 
enthalten nur die Phasen p,...g,, also keine der sonst auf- 


tretenden Konstanten 2,...B;. 
Es ist seit Jacobi bekannt, daß 


%(H,R,H,K,R,K,) 
(PL P3P3 9; 93 95) 


ist, woraus Wassmuth folgerte, daß gleichfalls die Funktional- 
determinante 


=, 


‚IMPRBRhRH) _; 
2 (H,H, H,K,K,K,) 
sein müsse, so daß 
dX = dH, dH, dH, dK, dK,dK, 
wird. 


Wegen 
ddl 


folgt die Proportionalität mit der Schwingungsdauer 27, 
falls bedingte Periodizität vorhanden ist. Die Bedingungen 
hierfür — bei orthogonaler Form der Energie — werden 
nach Staude, Stäckel und Charlier kurz entwickelt. Es 
wird schließlich an zwei von Planck (Verhdl, der Deutschen 
phys. Ges., 17, p. 415) in anderer Art behandelten Beispielen 
gezeigt, wie sich außer 27 auch die übrigen Grenzen für 
(7, H,H, K, und K,) finden lassen. 


237 


Das k. M. Hofrat Prof. F. Höhnel in Wien übersendet 
eine Abhandlung, betitelt: »Beiträge zur Kenntnis der 
Hypocreaceen (II. Mitteilung)«, von Prof. Josef Weese. 


Prof.:Dr. F. Groer und Dr. A, E, Hecht in Wien: über- 
senden ein versiegeltes Schreiben zur Wahrung der Priorität 
mit der Aufschrift: »Klinisch-pharmakologische Unter- 
suchungen an der menschlichen Haut.« 


Frau Julie Salzer in Wien übersendet ein versiegeltes 
Schreiben zur Wahrung der Priorität mit der Aufschrift: 
»Electrominor 19 (Nachtrag).« 


Das w. M. F. Becke legt eine im Mineralogisch-petro- 
graphischen Institut der Universität Wien von Dr. Artur 
Marchet ausgeführte Arbeit über »Zwillings- und Lage- 
verzerrung beim Staurolith« vor. 

Die vorgelegte Arbeit behandeit die Krystalltracht von 
einfachen Krystallen und Zwillingen des Stauroliths. Unter- 
sucht wurden einfache Krystalle, Zwillinge nach (232) und 
nach (032) von den Fundorten: Trausnitzberg bei Zöptau in 
Mähren, Monte Campione im Kanton Tessin, Bretagne, Fannin 
County in Georgia, U. St. A. 

An der Hand der Zentraldistanzen wird nachgewiesen, 
daß beide Zwillingsbildungen gesetzmäßige Verzerrungen im 
Vergleich mit den einfachen Krystallen verursachen. Bei den 
Zwillingen nach (232) ändern sich diese durch Abplattung 
nach (010), Verkürzung der relativen Zentraldistanzen von 
(001), Vorschieben der Fläche (101), während (101) zurück- 
bleibt, und besonders durch die starke Zunahme der Zentral- 
distanzen jener Flächen des aufrechten Prismas (110), die an 
die Zwillingsebene stoßen. Es wird gezeigt, daß diese Ver- 
zerrungen hauptsächlich durch verstärktes Wachstum in der 
Richtung der gemeinsamen Zonenachse [101] verursacht 
werden. Wo das Material dazu ausreichte, konnte nach- 


238 


gewiesen werden, daß die Zwillinge ein größeres Volum 
besitzen als die mitvorkommenden einfachen Krystalle. 

Bei den Zwillingen nach (032) bewirkt die Verzerrung 
ebenfalls ein Sinken der Zentraldistanzen von (001) und (010) 
und eine Erhöhung jener des aufrechten Prismas, und zwar 
wieder vor allem bei jenen Flächen, die an die Zwillingsebene 
stoßen. Die Flächen des Querprismas (101) und (101) ver- 
halten sich gleich. Bei diesen Zwillingen ist die Vermehrung 
des Wachstums in der Richtung der krystallographischen 
a-Achse die Hauptursache der Verzerrung; diese Richtung 
ist als Achse der Zone [100] beiden Individuen gemeinsam. 

Im Schlußteil wird der Einfluß der »Lagenverzerrung« 
in geschieferten Muttergestein erörtert. In einem isotropen 
Medium müßte ein Körper, der in sich selbst keine Wachs- 
tumsverschiedenheiten zeigt, z. B. ein radialfaseriges Aggregat, 
die Gestalt einer Kugel behalten. Anders müßte er sich, aber 
in einem Medium verhalten, bei dem zwar — ähnlich einem 
geschieferten Gestein — in einer Ebene (Schieferungsebene) 
alle Richtungen gleich sind, schief zu dieser Ebene und be- 
sonders senkrecht zu ihr aber Verschiedenheiten auftreten. 
Da das Wachstum senkrecht zur Schieferungsebene am 
stärksten behindert wird, müßte in diesem Falle jener Körper 
eine Gestalt annehmen, die einem Rotationsellipsoid ähn- 
lich ist. 

Die relativen Zentraldistanzen, das sind die Quotienten 
aus der gemessenen Zentraldistanz und dem Radius einer 
mit dem Krystall volumgleichen Kugel, sind für gleiche Flächen 
mehrerer, zusammen vorkommender Krystalle der gleichen 
Art in einem isotropen Medium gleich, in einem Medium 
ähnlich einem geschieferten Gestein besitzen sie aber ver- 
schiedene Größe, wenn die Lage der Krystalle eine verschiedene 
ist. Diese Verschiedenheiten verschwinden aber mehr oder 
minder, wenn man die gemessenen Zentraldistanzen dividiert 
durch die in der Lage den Flächennormalen entsprechenden 
halben Durchmesser eines Rotationsellipsoids, dessen Rotations- 
achse auf der Schieferungsebene senkrecht steht. Es wird diese 
an drei Beispielen gezeigt. Das Ellipsoid kann man- sich 
berechnen, wenn man die Dimensionen zweier verschieden 


239 


gelagerter Krystalle oder der beiden Individuen eines Zwillings 
sowie deren Lage zur Schieferung kennt. Auf diese Weise 
bekommt man, auch bei Zwillingen mit stark verschiedenen 
Individuen, für die gleichen Flächen der beiden Individuen 
annähernd gleich relative Zentraldistanzen. Die Verschiedenheit 
der beiden Zwillingsindividuen bei den Staurolithzwillingen 
läßt sich durch diese Lageverzerrung erklären. 


Das w. M. Hofrat Sigm. Exner legt eine Abhandlung 
vor, die den Titel führt: »Über den Klang einiger 
Sprachen.« 

Es wird darin gezeigt, daß der »volle« Klang des Grie- 
chischen und des Italienischen wenigstens teilweise auf dem 
Reichtum an Vokalen beruht, wobei unter Reichtum an 
Vokalen nicht die größere Zahl derselben, sondern das größere 
Verhältnis der Zahl der Vokale zur Zahl der Konsonanten 
verstanden ist. Auch trägt zu dem vollen Klang wesentlich 
bei die häufige unmittelbare Aufeinanderfolge zweier ver- 
schiedenen Silben angehöriger Vokale eines Wortes. Verglichen 
wurden in bezug auf diesen relativen Vokalreichtum die 
beiden genannten Sprachen mit der deutschen, ungarischen 
und polnischen. In ähnlicher Weise wurde die Zahl der Zisch- 
laute verglichen und auf die Schärfe und Lautheit der Artiku- 
lation als Faktor für den Klang einer Sprache hingewiesen. 


Das w. M. Hofrat Sigm. Exner legt weiterhin eine Ab- 
handlung vor: »Über eine geometrisch-optische Täu- 
schung.« 

Wenn man sich die Aufgabe stellt, auf ein Blatt Papier, 


das durch Linien in horizontal liegende, längliche Rechtecke 


geteilt ist, ein ähnlich geformtes, ausgeschnittenes Rechteck 
so aufzulegen, daß die kurze Seite des letzteren auf eine 
lange Seite eines gezeichneten Rechteckes zu liegen kommt, 
so reicht dieses, nun senkrecht stehende, ausgeschnittene Recht- 


eck viel weiter hinauf als man erwartet hat. Die Täuschung 


kann 10°, der Länge des aufgelegten Rechteckes und noch 
mehr betragen. Die Versuche, diese Täuschung auf eine der 


240 


bisher bekannten optischen Täuschungen zurückzuführen, 
blieben erfolglos und haben nur ergeben, daß mehrere Faktoren 
dabei im Spiele sind. 


Das w. M. Prof. J. Hepperger legt eine Abhandlung 
von Dr. Leo Hufnagel in Wien vor mit dem Titel: »Die: 
Bahn des großen Septemberkometen 1882 II unter Zu- 
grundelegung der Einstein’schen Gravitationstheorie.« 


Das w.M. Prof. Franz Exner legt eine Abhandlung von 
Egon Schweidler vor, betitelt: »Beiträge zur Kenntnis 
der atmosphärischen Elektrizität Nr. 60. Über das 
Gleichgewicht zwischen ionenerzeugenden und 
ionenvernichtenden Vorgängen in der Atmosphäre. 
II. Mitteilung.« : 

Die Ausführungen der ersten Mitteilung (Sitzungsberichte 
1915) werden sowohl nach der theoretischen wie nach der 
experimentellen Seite ergänzt. Zunächst wird theoretisch unter- 
sucht, welcher Gleichgewichtszustand zwischen leichten Ionen, 
schweren Ionen und ungeladenen Adsorptionskernen sich in 
einem ionisierten Gase einstellt. Aus dem Resultat folgt, daß 
bei kleinen Werten der lonisierungsstärke g mit genügender 
Annäherung die einfache Formel qg = ß'n zur Berechnung des 
Ionengehaltes » anwendbar ist, wobei die als »Verschwindungs- 
konstante« bezeichnete Größe ß’ in erster Annäherung nur 
von der Anzahl der vorhandenen Kerne abhängt. 
| Experimentelle Bestimmungen führten für ß’ auf die 
Werte: 


ZI SU Se (Innsbruck, durchlüftetes Zimmer), 
koch » » (Seeham, » ann 
10-1. > » In > Holzhütte über Wasser), 
A224» » (Innsbruck, geschlossenes geheiztes Zimmer). 


Der Ionengehalt der Luft bleibt daher durchwegs weit 
unterhalb des Wertes, den man bei gegebener lonisierungs- _ 


241 


stärke ohne Berücksichtigung der Adsorptionskerne aus der 
gewöhnlichen Formel für die Wiedervereinigung der Ionen 
berechnet. 


Derselbe legt ferner vor: Ȇber die Ladung der 
elektrischen Figuren«, von Karl Przibram. 

Es wird die auf den elektrischen Figuren sitzende Ladung 
direkt elektrometrisch gemessen. Sie wächst mit wachsender 
Spannung und abnehmendem Abstand zwischen der Isolator- 
oberfläche und der Metallunterlage und scheint vom Material 
der Isolatorplatte ziemlich unabhängig. Unter gleichen Um- 
ständen zeigen die positiven Figuren größere Ladungen als 
die negativen. Hieraus ergibt sich eine größere Leitfähigkeit 
der positiven Entladungsbahnen, eine Tatsache, die, wie der 
Verfasser dargelegt hat, die wichtigsten polaren Unterschiede 
der Figuren erklärt. In weiterer Übereinstimmung mit diesen 
Darlegungen wird der Unterschied der Ladungen beider Vor- 
zeichen in Sauerstoff kleiner gefunden als in Luft. 


Das w. M. R. Wegscheider überreicht zwei Abhand- 
lungen aus dem Institut für organische, Agrikultur- und 
Nahrungsmittelchemie der Deutschen Technischen Hochschule 
in Brünn: 


1. »Unterswehunsen über Lisnin. IL )Kalischmelze 
der Lignosulfosäuren«, von Max Hönig und Walter 
Fuchs. 


2. »Notiz über Brenzkatechin«, von Benno Elsner. 


Wegscheider überreicht ferner zwei Abhandlungen aus. 
dem I. Chemischen Laboratorium der Universität Wien: 


1. »Über Amylsulfoniumverbindungen«, von Rudolf 
Wegscheider und Helene Schreiner. 


Von den bisher unbekannnten Tri-i-amylsulfonium-Ver- 
bindungen konnten Doppelsalze des Tri-i-amylsulfinjodids mit. 
Zink-, Cadmium- und Quecksilberjodid dargestellt werden, 


242 


Die Schwierigkeit der Bildung kohlenstoffreicherer Sulfonium- 
jodide beruht nicht in erster Linie auf sterischer Hinderung, 
sondern auf der geringen Reaktionsfähigkeit der kohlenstoff- 
reicheren Jodide. Denn Di-z-amylsulfid vereinigt sich rascher 
mit Jodäthyl als Diäthylsulfid mit z-Amyljodid. 


2. »Die Identität des Aribins mit dem Harmans, von 
Ernst Späth. 


Verfasser zeigt, daß das in Arariba rubra Mart. vor- 
kommende Alkaloid Aribin mit dem von O. Fischer aus dem 
Harmin hergestellten Harman identisch ist. Da die Brutto- 
formel des Harmans C,>H,,N, Sicher festgestellt erscheint, muß 
man auch für das Aribin die Formel C ,A,,N, annehmen und 
die frühere Zusammensetzung C,,H,,N,, die übrigens in ihren 
Werten nur wenig von der neuen abweicht, streichen. 


Wegscheider legt ferner eine Arbeit aus dem Chemischen 
Institut der Universität Graz vor: »Über die alkalische 
Verseifung des Weinsäureesters«, von A. Skrabal und 
E. Singer. 

Es wurden der Weinsäuremethylester in einer Carbonat- 
Bicarbonatlösung verseift und die Konstanten der Stufen- 
reaktion ermittelt. Das erste Methyl reagiert 14-mal rascher 
als das zweite. Die Methode der Verseifung mit Alkaliicarbonat 
wurde näher erörtert und am Methylacetat überprüft. 


Das w.M. Hofrat E. Lecher überreicht eine Arbeit von 
Robert Ettenreich aus dem I. physikalischen Institut der 
Universität Wien mit dem Titel: »Reaktionszeit von Kon- 
taktdetektoren, 1. Teil.« 

Der Verfasser bespricht: zunächst die Notwendigkeit, die 
Trägheitserscheinungen an Kontaktdetektoren zu studieren, 
um eine sichere experimentelle Basis zur Prüfung der ver- 
schiedenen, zum Teil recht vagen Theorien über deren Wir- 
kungsweise zu gewinnen. Er führt den Begriff der »Reaktions- 
zeit« ein und definiert sie als jene Zeit, in der die Sekundär- 
spannung eines Detektors, wenn kein erregender Strom vor- 


243 


handen ist, auf !/, ihres ursprünglichen Wertes sinkt. Daran 
schließt sich eine Betrachtung der Grenzfälle, die eintreten, 
wenn die Reaktionszeit R groß ist gegen die Schwingungs- 
dauer eines angelegten Wechselstromes, R>>r, und wenn 
Rz 

Eine Schätzung der oberen Grenze der Reaktionszeit 
ergibt sich aus der Funkenfolge der drahtlosen Telegraphie 
zunächst zu 107* Sekunden. Eine raschere Folge von Schwin- 
gungsstößen lieferte die Schwebung zweier Audiongenera- 
toren. Läßt man diese auf einen aperiodischen Detektorkreis 
induzieren, so entspricht jeder Schwebungsperiode ein Gleich- 
stromstoß. Der Verfasser stellte sich nun die Aufgabe, fest- 
zustellen, wie rasch diese Impulse einander folgen können, 
ohne ineinander zu verschwimmen. Da der akustische Bereich 
nicht ausreicht, verwendete er elektrische Resonanz und stellte 
einen mit dem Detektorkreis lose gekoppelten Wellenmesser 
auf die Frequenzdifferenz v‚—v, der beiden Generatoren ein. 
Nun wurde bei festgehaltenem v, die Frequenz v, immer mehr 
verkleinert, so daß die Schwebungsfolge immer rascher und 
rascher wurde. Trotzdem konnte selbst bei v„—v, = 0:49. 10° 
sec! keine Abnahme der Intensität des Resonanzmaximums 
wahrgenommen werden. Daraus ist zu schließen, daß der 
Detektor dieser Frequenz noch zu folgen vermag, daß also 
RR 2.107 #8eglist, 

Sodann folgt eine Untersuchung der statischen Charak- 
teristik des Bleiglanz-Nickelin-Detektors, da diese für das 
weitere viel gebraucht wird. Es zeigt sich vor allem, daß ihr 
Verlauf im Ursprung vollkommen stetig ist. 

Um die Größe der Reaktionszeit noch weiter einzuengen, 
ist das Studium der Detektorstromkurve erforderlich. Dies 
erfolgt durch eine Art experimentelle harmonische Analyse, 
die der Verfasser in zwei Abschnitten vornimmt: 

a) die Analyse der Gleichstromkomponente; 

b) die Untersuchung der harmonischen Oberschwingungen, 
die durch Resonanzeinstellungen am Wellenmesser gelingt und 
im zweiten Teil der Arbeit niedergelegt werden wird. 

Es zeigt sich, daß die Gleichstromkomponente unabhängig 
ist von der angewendeten Frequenz (schnellste verwendete 


244 


Schwingung A = 300 m, v= 10° sec!) und daß sie. mit den 
aus der statischen Charakteristik durch mechanische Quadratur 
abgeleiteten Werten quantitativ übereinstimmt. Dies legt den 
Schluß nahe, daß selbst bei der Frequenz v = 10% sec! die 
dynamische Charakteristik noch mit der statischen identisch 
ist. Dieser Schluß wird durch Beobachtungen erhärtet, die an 
verschiedenen Detektoren an der Veränderung der Gleichstrom- 
komponente beim Anlegen von Gleichstromhilfsspannungen 
gewonnen wurden. 

Als wichtigstes Ergebnis der Untersuchungen ist an- 
zusehen, daß die Reaktionszeit klein ist gegen die kleinsten 
in der drahtlosen Telegraphie angewendeten Schwingungs- 


dauern: 
RR =s107°:8eR 


Das k. M. Hofrat E. Hatschek legt vor: 


»Mitteilungen aus der Biologischen Versuchs- 
anstalt der Akademie der Wissenschaften in Wien 
(zoologische Abteilung, Vorstand: H.Przibram). Nr. 40, 
DiePuppenfärbungen desKohlweißlings, Pieris brassicae 
L. Fünfter Teil: Kontrollversuche zur spezifischen 
Wirkung der Spektralbezirke mit anderen Faktoren«, 
von Leonore Brecher. 

Wurden Raupen auf weißem Grunde mit Ausschaltung 
der ultraroten Strahlen gehalten, so traten Puppen auf, die 
sich von den in Weiß unter normalen Lichtbedingungen ent- 
standenen durch eine geringere ÖOpazität und das Ver- 
schwinden des weißen Sattels unterschieden. 

Herabsetzung der Lichtintensität hatte nicht diesen 
Effekt. 

Wurden Raupen auf weißem Grunde einer erhöhten 
Temperatur ausgesetzt, so trat eine starke Aufhellung der 
Puppen ein. Diese Aufhellung beruht auf einer vollständigen 
Hemmung der Melaninbildung und einer starken weißen 
Opazität. 

Erniedrigte Temperatur in Weiß hatte die entgegen- 
gesetzte Wirkung. 


245 


Mithin wirkt auch andere als strahlende Wärme in dem- 
selben Sinne wie die ultraroten Strählen. Der Einfluß weißer 
Umgebung auf die Weißfärbung der Puppen beruht hier- 
nach auf der Gegenwart der Wärmestrahlen, welche eine 
Hemmung des Melanins und Förderung der Opazität bewirken. 
(Wahrscheinlich ist die starke Entgrünung dieser Puppen auf 
die starke weiße Lichtintensität zurückzuführen.) 

Hiermit sind nun alle Puppenfärbungen auf spezifische 
Strahlenwirkungen zurückgeführt worden. 

Wärme und Kälte in Finsternis hatten analoge Wirkung 
wie in Weiß zur Folge: Wärme wirkte aufhellend, jedoch 
nicht so stark wie bei weißer Umgebung. Kälte ergab eine 
schwache Verdunklung und eine stärkere Abnahme der 
Opazität im Vergleiche zu den bei mittlerer Temperatur in 
Finsternis entstandenen Puppen. 

Erhöhung des Feuchtigkeitsgehaltes in Finsternis hatte 
eine etwas stärkere Verdunklung der Puppen als erniedrigte 
Temperatur zur Folge. 

Auf gelbem Hintergrund entstanden bei Ausschaltung 
der ultraroten Strahlen vorwiegend Puppen mit weniger weiß- 
lichem Sattel. 

Ausschaltung der ultravioletten Strahlen durch Chinin- 
sulfat in Gelb hatte das Auftreten von blasser grünen, 
opakeren Puppen als sonst in Gelb entstehen, zur Folge. 
Mithin dürfte der Gegenwart der ultravioletten Strahlen in 
Gelb eine Rolle bei der Grünfärbung der Puppen zukommen. 

Hingegen erwies sich eine Umhüllung von schwarzem 
Papier als ungenügend, um die Wirkung der eindringenden 
ultravioletten Strahlen zu verhindern. 

Wurden durch Abschneiden eines Beines entblutete 
verpuppungsreife Raupen in Gelb, beziehungsweise schwarze 
Umgebung gebracht, so entstanden Puppen, die dieselbe 
charakteristische Farbwirkung wie unverletzte Raupen er- 
kennen lassen. 

Die Aufhebung der charakteristischen Farbwirkung in 
den früheren Versuchen bei totaler Extirpation der Augen 
mittels Elektrokaustors kann demnach keine Folge des er- 
littenen Blutverlustes sein. 


»Mitteilungen aus der Biologischen Versuchs- 
anstalt der Akademie der Wissenschaften in Wien 
(Zoologische Abteilung, Vorstand: H. Przibram) Nr. 41. 
Die Puppenfärbungen des Kohlweißlings, Pieris brassi- 
cae L. Sechster Teil: Chemismus der Farbanpassung«, 
von Leonore Brecher. 

Die zur Verpuppung schreitenden Raupen durchlaufen 
mehrere Stadien, die durch einen verschiedenen Chemismus 
charakterisiert sind: 

Die noch fressenden gründefäkierenden vorverpuppungs- 
reifen Raupen haben gelbgrünes Blut; ihre Bluttyrosinase 
hat einen alkalischen Reaktionszustand, eine geringe Wirk- 
samkeit und ruft in Tyrosin eine rosa Angehfarbe und die 
Bildung von nicht ausfallendem Melanin hervor. 

Die vom Futter wegwandernden rotdefäkierenden ver- 
puppungsreifen Raupen haben rötlichgelbes Blut; ihre Blut- 
tyrosinase geht von einem noch alkalischen in einen stark 
sauren Zustand über, ist sehr wirksam und ruft, wie: die von 
Halimasch, eine rote Angehfarbe des Chromogens und zunächst 
die Bildung von suspendiert bleibendem, mit fortschreitendem 
Stadium sehr rasch ausfallendem Melanin hervor. 

Die fixierten Raupen haben intensiv grünes Blut; ihre 
Bluttyrosinase hat einen sauren Reaktionszustand, eine starke 
Wirksamkeit, ruft in Tyrosin eine violette Angehfarbe und 
die Bildung von rasch ausfallendem Melanin hervor. 

Alle nichtgrünen Puppen kurz nach der Verpuppung 
haben gelbgrünes Blut, eine weniger saure und schwächere 
Tyrosinase, die, mit Ausnahme der Tyrosinase der weißen 
Puppen, Tyrosin violett verfärbt und die Bildung von sus- 
pendiert bleibendem Melanin bewirkt. 

Die Tyrosinasen der verschiedenen Stadien haben eine 
verschiedene Farbenempfindlichkeit, die sich als Resultierende 
aus dem charakteristischen Reaktionsablauf der einzelnen 
Stadien und der spezifischen Wirkung der farbigen Strahlen 
auf den Reaktionszustand der Tyrosinase ergibt: 

Demnach besitzt die Tyrosinase der noch fressenden 
grün defäkierenden Raupen eine unbedeutende Farbenempfind- 
lichkeit. Gelbe Strahlen fördern zunächst etwas durch ihre 


247 


ansäuernde Wirkung die Wirksamkeit der Tyrosinase. Nach 
längerer Vorbestrahlung haben aber die alkaleszierenden 
ultravioletten Strahlen (schwarze Umgebung), noch später 
die: hyperalkaleszierenden ultraroten Strahlen (weiße Um- 
gebung) die Wirksamkeit der Tyrosinase am besten bewahrt. 

Die Tyrosinase der wandernden rotdefäkierenden, im 
sogenannten sensiblen Stadium befindlichen Raupen zeigt 
unter allen Stadien die größte Farbenempfindlichkeit. Bei 
kürzester Bestrahlung beschleunigen gelbe Strahlen, verzögern 
blaue bis ultraviolette die Wirksamkeit der Tyrosinase. Bei 
längerer, gerade der Verpuppungsdauer entsprechender Vor- 
bestrahlung ist die Wirkung der Farben eine umgekehrte. 
Gelbe Strahlen bewirken durch die Übersäuerung die Er- 
schöpfung der Tyrosinase und geringste Ausbildung von 
Melanin, die ultravioletten Strahlen (schwarze Umgebung) 
durch die alkaleszierende Wirkung eine Verzögerung der 
normalen Ansäuerung, daher die beste Wirksamkeit der 
Tyrosinase und stärkste Melaninbildung, das hyperalkales- 
zierende weiße Licht verursacht überhaupt eine Hemmung 
des Ansäuerungsprozesses, daher eine sehr geringe Wirk- 
samkeit der Tyrosinase und sehr schwache Ausbildung von 
Melanin; Finsternis verschiebt den Ablauf des Prozesses nicht 
wesentlich von dem bei mittleren Lichtbedingungen normalen. 

In der Puppenfärbung kommt nur diese zweite der 
längeren Vorbestrahlung entsprechende Farbwirkung (Umkehr) 
zum Ausdruck. 

Die Tyrosinase von fixierten Raupen ist sehr wenig 
farbenempfindlich; gelbe Strahlen beschleunigen etwas die 
Wirksamkeit der Tyrosinase. 

Die Puppentyrosinase ist ebenfalls nur wenig farben- 
empfindlich. Hier kommt schon bei kürzester Bestrahlung 
in den Farben die umgekehrte Farbwirkung, also Beschleuni- 
gung der Wirksamkeit der Tyrosinase bei blauer bis ultra- 
violetter Bestrahlung, Schwächung der Wirksamkeit in Gelb, 
zum Ausdruck. 

Der grüne Farbstoff in der Puppenhülle wird durch 
starkes weißes Licht entgrünt. 


248 


Die Entstehung des grünen Farbstoffes wird durch gelbe 
Strahlen begünstigt. 

Mithin ist der die Puppenfärbung bestimmende Einfluß 
der verschiedenen Umgebungsfarben auf die im sensiblen 
Stadium befindlichen Raupen bedingt durch den bestimmten 
Ablauf des Reaktionszustandes in diesem Stadium, die 
spezifische Wirkung der Strahlengattungen auf den Reaktions- 
zustand der Tyrosinase und die bestimmte Zeitdauer des 
empfindlichen Stadiums bis zur Verpuppung. Diese Vorgänge 
sind so ineinander abgestimmt, daß eine Farbanpassung 
der Puppen an die Umgebungsfarben resultiert. 

So wirkt weiße Umgebung durch die hyperalkaleszierenden 
ultraroten Strahlen hemmend auf die Melaninbildung ein, wie 
auch durch die starke Lichtintensität entgrünend, so daß die 
hellsten Puppen entstehen; schwarze Umgebung fördert dürch 
die alkaleszierenden ultravioletten Strahlen die Melaninbildung 
und ergibt die dunkelsten Puppen; gelbe Umgebung bringt 
durch die ansäuernde Wirkung der gelben Strahlen die Tyro- 
sinase auf das Minimum der Wirksamkeit, so daß die 
geringste Melaninbildung resultiert, hingegen wird in Gelb 
und Grün das Grün am stärksten geschützt und es entstehen 
grüne Puppen. Finsternis verschiebt den normalen Reaktions- 
ablauf nicht; die Folge ist eine mittlere Ausbildung aller 
Pigmente, daher entstehen unter diesen Bedingungen mittlere 
Puppen. 

Da es in der Natur weder orangefarbige noch hochrote 
noch himmelblaue oder andere farbige Flächen gibt, die keine 
gleichgerichtete Farbänderung den Puppen induzieren, so ist 
im Freien die Farbanpassung eine vollkommene, denn es ent- 
stehen bei den in Betracht kommenden Umgebungen, wie auf 
weißem Gestein, weißen Birkenstämmen, ferner auf getünchten 
Kalkwänden durch die reflektierten weißen Strahlen weißliche 
Puppen, auf dunklen Stämmen, braunen Felsen, ebenso auf 
schwarz gestrichenen Latten durch die reflektierten ultra- 
violetten Strahlen schwärzliche Puppen, auf grünen Blättern 
durch die reflektierten gelben Strahlen grüne Puppen. 


< 


249 


»Mitteilungen aus der Biologischen Versuchs- 
anstalt der Akademie der Wissenschaften in Wien 


(zoologische Abteilung; Vorstand: H. Przibram). Nr. 42. 


Einwirkung der Tyrosinase auf ‚Dopa‘ (zugleich: 
Ursachen tierischer Farbkleidung IV.«, von Hans 
Przibram, unter Mitwirkung von Jan Dembowski 
und Leonore Brecher 

Dioxyphenylalanin, Bloch’s »Dopa«, schwärzt sich selbst 
in sehr verdünnten Lösungen spontan an der Luft und ist 
daher wesentlich leichter oxydabel als Tyrosin, das selbst in 
konzentrierter wässriger Lösung sich spontan erst nach sehr 
langer Zeit rötet. 

»Dopa« kann durch sehr geringen Alkalizusatz zu 
intensiver Schwärzung gebracht werden, ohne daß ein 
organisches Ferment zugegen sein müßte. 

Dasselbe Resultat wird bei Zusatz von Wasserstoffsuper- 
oxyd nicht erreicht, das vielmehr in steigender Menge 
hemmend wirkt; die Wirkung des Alkalis kann also nicht 
auf unbeabsichtigte Verunreinigung mit Peroxydspuren zurück- 
geführt werden. 

»Dopa« wird durch sehr geringen Säurezusatz in seiner 
Pigmentbildung geschwächt, so zZ. B. schon durch Preßsaft 
aus Salamanderhäuten. Gesättigte »Dopa«-Lösung wird durch 
Tyrosinase rascher als gesättigte Tyrosinlösung zur Pigment- 
bildung veranlaßt und hiebei kann die Wirkung des Alkali- 
zusatzes noch übertroffen werden. 

Bei äquimolekularen Lösungen von »Dopa« und Tyrosin 
wird durch dieselbe Tyrosinasestärke dieselbe Schwärzung 
erzielt. 

Die Angehfarbe der »Dopa« modifiziert sich in analoger - 
Weise wie bei Tyrosin und allen anderen untersuchten 
Chromogenen je nach der verwendeten Tyrosinase, hat bei 
Halimaschtyrosinase roten, bei Schmetterlingspuppen violetten 
Ton. 

Während sich die Angehfarben nach der Tyrosinase 
richten, treten bei verschiedenen Chromogenen charakteristische 
Fällungsformen auf, die sich mit den Tyrosinasen nicht 
ändern. 


250 


Albinotische Häute von Ratten reagieren saurer als solche 
von völlfarbigen. 

Helle Hautstellen von Meerschweinchen reagieren saurer 
als schwarze desselben Exemplares. 

Augenpreßsäfte sowohl albinotischer als vollfarbiger Ratten 
reagieren mindestens ebenso sauer wie die Preßsäfte aus 
albinotischen Häuten. 

Diese Augenpreßsäfte erzeugen mit »Dopa« grüne Farbe, 
die früher als Minimalwirkung von Tyrosinase in Tyrosin 
wiederholt beobachtet worden war. 

Eine eigene »Dopa-oxydase« von der Tyrosinase zu 
unterscheiden, ist nicht notwendig, denn »Dopa« ist ein 
vorzüglicher Indikator für Stellen wirksamer Tyrosinase. 

Das Entfallen der »Dopa«s-Reaktion an den albinotischen 
Häuten, Hautstellen und in den Augen von Säugetieren 
hängt von dem sauren Reaktionszustande ab, der .die 
Tyrosinase geschwächt hat (bei pigmentierten Augen nach 
Abscheidung des Melanins). 

Es spricht nichts gegen das Tyrosin als Grundlage der 
tierischen Melanine, selbst nicht das Ausbleiben der Millon- 
schen Reaktion an den von Eiweißspuren gereinigten natür- 
lichen Chromogenen, denn auch künstliches Tyrosin gibt 
nach entsprechender Behandlung negativen: Ausfall dieser 
Probe. 

Die untersuchten natürlichen Chromogene von Wirbel- 
tieren ergaben weder die für Dopa charakteristische Bräunung 
bei analoger Behandlung noch Schwärzung durch Alkali. 

Zur Melaninbildung können zwei Prozesse führen, deren 
einer durch Alkaliangriff an der Hydroxylgruppe in Meta- 
stellung zur Seitenkette bei Dioxyphenylalanin wirkt, während 
der andere bei Di- oder Monoxyphenylalanin (Dopa oder 
Tyrosin) durch Fermente (z. B. Tyrosinase) die Seitenkette 
angreift. 


ID 
O1 
ER 


»Mitteilungen aus der Biologischen Versuchs- 
anstalt der Akademie der Wissenschaften in Wien 
(Zoologische Abteilung, Vorstand: H. Przibram). Nr. 43. 
Temperaturunabhängigkeit der weiblichen Periode 
und Gravidität bei Ratten, Mus decumanus und M. rattus 
(die Umwelt des Keimplasmas VIl.)«, von Hans Przibram. 


Bei konstanten Temperaturen aufgezogene und gehaltene 
weibliche Rätten, Mus decumanus und M. rattas, weisen in 
der von Wurf zu Wurf verfließenden Anzahl von Tagen keine 
Unterschiede auf, die sich den Außentemperaturen zuschreiben 
ließen. 

Diese Temperaturunabhängigkeit der Gravidität wird auf 
eine sekundäre Homoiothermie der läufigen und graviden 
Tiere zurückgeführt, welche die Körpertemperatur erhöht und 
gegen äußere Temperaturen besser verteidigt als die primäre 
Homoiothermie. 

Das Fehlen eines den anderen Entwicklungsvorgängen 
entsprechenden Temperaturquotienten ist demnach nicht einer 
Wesensverschiedenheit der Säugerentwicklung, sondern der 
Entrückung der Embryonen von direkten Temperatureinflüssen 
zuzuschreiben. 

Im übrigen sind die Graviditätsperioden der weiblichen 
Ratten, welche durchschnittlich 24 Tage betragen, weder von 
der Geburt aus (wie es Fliess erwarten würde) vorherbestimmt, 
noch von dem ersten Eintritte der Begattung (im Sinne von 
Swoboda) aus determiniert; wohl aber kann nahe Verwandt- 
schaft zu einer Gleichzeitigkeit der Niederkünfte von Ge- 
schwistern führen, indem das Alter, in welchem die erste 
Niederkunft stattfindet, innerhalb eines Rattenstammes ein 
ähnlicheres zu sein -pflegt als bei verschiedenen Stämmen. 

Die 10tägigen Perioden nicht tragender Rattenweibchen 
scheinen ebenfalls von der Temperatur unabhängig und auch 
sonst den Graviditätsperioden sich ähnlich zu verhalten. 


Anzeiger Nr. 18. 27 


»Mitteilungen aus der Biologischen Versuchs- 
anstalt der Akademie der Wissenschaften in Wien 
(Zoologische Abteilung, Vorstand: H. Przibram). Nr. 44. 
Die Bruchdreifachbildung im Tierreiche«, von Hans 
Przipram. 

Die bei den verschiedensten Tiergruppen auftretenden 
Verdreifachungen einzelner Körperteile, auch scheinbar erbliche, 
lassen sich durch Naturbeobachtung, Experiment und bio- 
technische Analyse (Tornier's Methode) als überschüssige 
Regenerate aus Bruchflächen nachweisen. 

Diese »Bruchdreifachbildungen« folgen den von Asmuss 
zuerst erfaßten, von Bateson verallgemeinerten Regeln, 
namentlich der Umkehr der mittleren Komfponente. 

Weiters läßt sich an einem großen Material (über 
100 Exemplaren) von Krebsarten mit normaler Verschieden- 
heit der Scheren beider Körperseiten (»Heterochelie«) sicher 
feststellen, daß es sich bei dieser spiegelbildlichen Komponente 
nicht um eine Knospe der Gegenseite im Sinne Bateson's, 
sondern ausnahmslos um eine spiegelbildlich symmetrische 
Wiederholung des Gebildes derselben Körperseite handelt. 

Unter Heranziehung der früher entwickelten Regenerations- 
sätze werden auch andere bisher schwierig zu deutende Mehr- 
fachbildungen, z. B. der Hyperdaktylie, befriedigender Analyse 
zugeführt. 

Die Erscheinungen der »Bruchdreifachbildung« lassen 
auf umklappbare organische Raumgitter schließen, deren 
nähere Präzisierung weiteren Mitteilungen vorbehalten bleibt. 

Vorliegende Abhandlung ist einer ausführlichen Darstellung 
des Tatsachenmaterials an »Bruchdreifachbildungen« und seiner 
kasuistischen Analyse gewidmet. 


Das w. M. Hofrat S. Exner legt vor: 

»Mitteilungen aus der Biologischen Versuchs- 
anstalt der Akademie. der, Wassenschaften una Wen 
(Physiologische Abteilung, Vorstand: E. Steinach. 
Nr. 45. Klima und Mannbarkeit«, von Eugen Steinach 
und Paul Kammerer (Ausgeführt mit Zuwendung aus 
der Treitl-Stiftung.) 


Im Hoden der Wanderratte (Zpimys norvegicus Erxl.) 
vermehren sich bei steigender Temperatur die Leydig)- 
schen Zellen (männliche »Pubertätsdrüse«), ohne den 
Bestand der Samenkanälchen und die Spermatogenese 
zu hindern. Im Ovar vermehrensich die Theka-Lutein- 
zellen, die einen Teilder Kollikel,obliterieren machen 
(weibliche Pubertätsdrüse), ohne die Reifung anderer 
Follikel und in ihnen die Ovogenese zu hindern. 

Die Wucherung der Leydig’schen Zellen — auf Mikro- 
tomschnitten durch normale und. Hitzehoden vergleichend 
gezählt — bewirkt leichte Zunahme des Gesamtorganes, die 
ihrerseits mächtige Dehnung und Vergrößerung des 
Scrotums nach sich zieht. Der Hodensack einer äquatorialen 
Rattenart (Cricetomys gambiensis Wtrh.) bietet denselben 
Anblick dar. Außergewöhnlich verstärkt erscheinen 
auch die übrigen genitalen Hilfsorgane der Hitze- 
ratten: Samenblasen und Vorsteherdrüsen sind im Alter 
von. 3 Monaten so groß wie bei ausgewachsenen Normal- 
männchen. Der Penisschwellkörper ist mit 7 bis 8 Wochen 
bereits geschlossen, d. h. er hat den Penisknorpel vollständig 
überwachsen, was beim normalen Männchen erst in der 
10. bis 11. Woche geschieht. Eileiter und Uterus gewannen 
bei „junsen jungfträulichen ‚Tieren. eins; ‚Größe, ‚Dicke, 
Muskulatur und Schleimdrüsenentwicklung, wie sie sonst erst 
dem primiparen Weibchen im Beginne seiner Schwangerschaft 
eignet. Schon im Alter von 8 bis 10 Wochen besteht ferner 
ausgeprägter Geschlechtstrieb, dessen Äußerungen sich von 
den bloßen Spielereien und Neugierdereaktionen gleichjunger 
Normaltierchen leicht unterscheiden lassen: das brünstige 
Weibchen wird bereits sicher erkannt; auch die jungen Hitze- 
weibchen selber verhalten sich den frühreifen Verfolgern 
gegenüber durch Hochhalten des Schwanzes ebenso, wie 
wenn es sich um ältere Männchen handelte. 

Dahierbeiwederimmännlichen nochimweiblichen 
primären Geschlechtsorgan das generative Gewebe 
vermehrt ist,,so muß. jenes Plus, in der Entwicklung 
somatischer und psychischer Geschlechtsmerkmale 
alleinaufRechnung desvermehrten Zwischengewebes. 


254 S 


(eben der Pubertätsdrüse) gesetzt werden: hierdurch 
tritt das Resultat in vollkommenen Einklang mit den 
iruher durch Steinach’ verzieiten vBrsebnissen ee 
Untersuchung an Frühreife, bei Transplantation und 
Bestrahlung der Keimdrüsen. 

Im Gegensatz zu den Genitalorganen sind die akzesso- 
rischen Geschlechtsunterschiede’ der” Hitzekultur eher 
schwächer ausgebildet als die der normalen Kontrollkultur: 
Das Skelett- und Körperwachstum des Hitzemännchens läßt 
— sowohl in seiner Gesamtheit als seinen Detailproportionen 
— den Abstand vom Weibchen vermissen, der für die Art 
charakteristisch ist. Besonders nähert sich die Behaarung des 
Hitzemännchens der des Weibchens, da der leichte, schüttere, 
kurz- und dünnhaarige Sommerpelz perenniert, wodurch die 
Kluft zwischen dem langen, rauhhaarigen Fell des normalen 
Männchens und dem seidig-weichen, glatten Fell des Weib- 
chens überbrückt wird. Das Scrotum des Hitzemännchens ist, 
wie bereits Przibram beobachtete, großenteils (namentlich 
ventral-terminal) unbehaart; auch dadurch wird von der künst- 
lich heiß gehaltenen Epimys ein Kennzeichen der tropischen 
Cricetomys nachgeahmt. 

Bei noch höheren Temperaturen als 35 Grad wird 
die’ Vermehrund’ der Pubertätsdrüsenzellen wieder 
rückläufig. Dieses gewebliche Verhalten ließe sich graphisch 
durch eine eingipfelige, sowohl nach Seite sinkender als (über 
39°). steigender Temperatur abfallende Kurve darstellen; ein 
analoger Verlauf wird in den verschiedenen Temperaturen 
von der Fruchtbarkeit eingehalten: unfruchtbar in Temperatur- 
extremen, nimmt die Fortpflanzungsfähigkeit der Tiere in der 
Wärme zu, erreicht aber ihr Maximum schon bei 25°. Man 
darf daraus auf ein Entwicklungsoptimum des genera- 
tiven Gewebes schließen, das bei weiterer "Temperatur- 
steigerung — wenn die Pubertätsdrüse das ihrige noch nicht 
überschritten hat — bereits einen gewissen (wennselbst histo- 
logisch noch kaum nachweisbaren) Rückgang zeigt. 

Soweit es bei den viel ungenaueren und zusammen- 
gesetzteren Bedingungen innerhalb der Naturbestände zu 
verfolgen ist, stimmen die Verhältnisse im natürlichen 


259 


Klima mit denen des künstlichen Klimas, die Merkmale 
der Freiland-Populationen mit denen exakt analy- 
sierterExperimentalpopulationengutüberein. Mensch- 
liche Bevölkerungen warmer Erdstriche verraten in 
mannigfachen Erscheinungen ihres Sexuallebens, daß auch 
in ihrem Organismus eine vermehrte Tätigkeit der Puber- 
tätsdrüsenhormone, also doch wohl eine ebenfalls ver- 
mehrte Zahl von Pubertätsdrüsenzellen wirksam ist. 

Und wie im Versuch zeigen sich die einschlägigen 
Phänomene nur bis zu einem gewissen Hitzegrad; wird dieser 
überschritten, so findet Umsturz ins Gegenteil statt. Dabei 
ist die Umkehr — der Grad der Wärmeskala, bei dem sie 
eintritt — dem Anpassungszustand des Organismus relativ: 
für Bewohner subtropischer Zonen (z. B. Italien) ist der 
kritische Wärmegrad tiefer gelegen als für die Bewohner der 
"Tropenzonen. 

Innerhalb der durch jenen Extremumschwung gebotenen 
Einschränkung wirken auf die Sexualität im allgemeinen und 
Pubertät im besonderen Sinne beschleunigend und steigernd: 
der Breitengrad, je näher zum Äquator; die Seehöhe, je 
näher dem Meeresspiegel; die Jahreszeit, im Sommer stärkere, 
schnellere Entwicklungsschübe als im Winter, daher die 
meisten Erstmenstruierenden im Herbst; die Feuchtigkeit, 
je geringer und deshalb je minder wärmeherabsetzend; die 
Wohnung, je mehr durch künstliche Feuerung die Kälte 
des Klimas ausgleichend oder überbietend (z. B. Hütten 
der Lappländer, der Eskimos, Gegensatz von Stadt und 
Land); die Betätigung, je mehr sie den Aufenthalt in solche 
Wohnräume verlegt und obendrein (sitzende Lebensweise bei 
geistiger Arbeit) lokale, abdominale Wärmestauungen bewirkt; 
die Ernährung, je eher sie durch Menge oder Auswahl 
(Fleisch-, Fisch-, Milchkost) dem Körper Kalorienüberschüsse 
zuführt. Die Rückführung dieser Faktoren auf thermische 
Agentien — in Erwägung gezogen, nur soweit es ihren Ein- 
Nuß auf die Pubertätserscheinungen angeht — ist ein hypo- 
thetisches Unterfangen, um die sonst sehr widerspruchsvollen 
anthropologischen Tatsachen einer einheitlichen Ordnung zu- 
zuführen. 


206 


Die eben aufgezählten Faktoren, vermutungsweise also 
sämtlich auf solche der Temperatur reduziert, wirken im 
beschleunigenden, beziehungsweise steigernden Sinne auf den 
Eintritt der Pubertät, wobei man zu schlagenden Resultaten 
kommt, wenn man diesbezüglich nicht ausschließlich den 
Eintritt der ersten Menstruation, sondern namentlich auch die 
ihr vorausgehenden energischen Wachstumsschübe als Zeichen 
der drängenden Reifeentwicklung ins Auge faßt (z.B. beiJapanern 
laut Baelz und Matupi-Insulanern nach Angaben Reche’s); 
weiter auf Beginn und Ende der Zeugungsfähigkeit 
(für deren Beginn ist die Erstlingsmenstruation ein brauch- 
bares Kriterium); auf die Fruchtbarkeit innerhalb des relativ 
kurzen, zeugungsfähigen Alters, freilich oft gehemmt durch 
Unsitten (Fruchtabtreibung, prämenstrueller Geschlechtsverkehr, 
überlanges Säugen, verschiedenartige religiöse und ethnische 
Riten) sowie durch Krankheiten; auf den Geschlechtstrieb, 
wofür der eben erwähnte prämenstruelle Geschlechtsverkehr 
ein Symptom ist, mehr noch für das zwischen den Wende- 
kreisen nachweislich größere sexuelle Bedürfnis des Mannes 
als für die dahinter zurückbleibende Geschlechtslust des 
Weibes; endlich aufdieEntwicklunggewissersomatischer 
Geschlechtscharaktere (Genitalien, Mammae und Mamillae 
mancher Tropenvölker). ER 

Dieselben, vorhin aufgezählten Faktoren (namentlich durch 
Analogieschluß vom Experiment her für die im engeren Sinne 
thermischen Faktoren sichergestellt) wirken jedoch hemmend 
auf andere Geschlechtscharaktere und dadurch ausgleichend 
auf..die tGeschlechtsuntersehiede;, „'hiecher sHgehör u 
Mammae (z.B. der Buschmänninnen, der Völker im Inneren 
Madagaskars); Haarverteilung (Kopfbehaarung, Bartwuchs, 
Achsel- und Schamhaar); Wachstumstempo und erreichte 
Enddimensionensowie-Proportionen;Arbeitsteilungzwischen 
Mann und Weib. 

Die Vergrößerung der Pubertätsdrüse bei der 
Ratte wirkt auf die Abkömmlinge der wärmeex- 
ponierten Generationen nach, selbst wenn sie in 
gemäßigten und normalen (den jahreszeitlichen Schwan- 
kungen unterliegenden) Temperaturen aufgezogen werden 
oder bereits dort geboren wurden. 


mare 


en — 240 


N 
- 
9 
[7 


ID 
ar 
SI 


Dieser im "Werewen testgestellten 'RirSemeinung 
entspricht es, wenn die klimatischen Wirkungen 
frühen Pubertätseintrittes zu Rasseneigentümlich- 
keiten werden, die einem mäßigen und mählichen Klima- 
wechsel unverändert zu trotzen vermögen. Ist jedoch der 
Klimawechsel jäh, und bewegt er sich über viele Grade, so 
tritt (bei den europäischen Kolonisten in den Tropen) ein 
schnelles Angleichungsbedürfnis hervor, dessen adaptive 
Errungenschaft im Pubertätsbeginn usw. sich auch bei Misch- 
lingen aus Eingewanderten und Eingeborenen nicht mehr 
verleugnen läßt. 

(Die ausführliche Arbeit — mit Tabellen, Text- und histo- 
logischen Tafelfiguren — wird in Roux’s Archiv für Ent- 
wicklungsmechanik erscheinen.) 


Die Akademie der Wissenschaften hat in ihrer Sitzung 
vom 3. Juli 1.J. folgende Subventionen bewilligt: 


I. Aus der Boue&-Stiftung: 


1. w. M. Prof. Karl Diener für geologische Studien der Hall- 
stätter Kalke im Gebiete des Röthelstein.... K 300° — 
. Dr. Martha Furlani in Wien für geologische Studien über 
die Jurabildungen in den Nordtiroler Kalkalpen 
. K 1500 ° — 
3. Dr. Leopold Kober in Wien für stratigraphische Unter- 
suchungen im Radstätter Gebiete und an der Südseite 
dewuaögdiiehen Kalkalpen A2rN 10198 K 1600 ° — 
4. der mathematisch-naturwissenschaftlichenKlasse ' 
für die Herstellung von Illustrationen zu eingereichten 
Arbeiten geologisch-paläontologischen Inhaltes K 5000: — 
5. Dr. Hans Mohr in Graz für seine Studien an dem Nord- 
ostende der Grauwackenzone (Gebiet von Vöstenhof bei 
TEEN. EN YET. naht K 400° — 
6. Dr. Julius Pia in Wien zur Fortsetzung seiner strati- 
graphischen und tektonischen Arbeiten im Gebiete von 
Diorsen und saalteldena un N re K 1600 °— 


ID 


258 


DD 


Il. Aus der Erbschaft Strohmeyer: 


Prof. Dr. A. Sperlich in Innsbruck zur Fortsetzung 
seiner Untersuchungen über die Keimungsenergie K 300 — 


M. Aus dem Lesate Scholz: 


. Prof... Dr, "Felix .Ehrenhaft ‘in, Wien zur, Rortfihrune 


seiner Untersuchungen über das elektrische Elementar- 
guantum, und die Photophorese. u... K 2000 :-— 


. Dr. Otto Pesta in Wien für die Fortsetzung seiner Unter- 


suchungen über die Zusammensetzung des Zooplanktons 
der. Gebiresseen un in ne ee K 1000: — 


.Prof. Dr. Oswald Richter in Wien für seine Studien 


über ernährungsphysiologisch interessante Algen 
. K 2000 ° — 
IV. Aus dem Legate Wedl!: 


‚.k. M... Prof. .R. Böck: in7Wien zur ‚Anschafung neuer 


Kassetten zum photo-stereoskopischen Apparat der Aka- 
demie,u.der Wissenschaften „. 2 „ul 2 eetisien KK 22030 


.k. M. Prof. R. Pöch in Wien zur Vollendung seiner Unter- 


suchungen in den Kriegsgefangenenlagern... K 4000 ° — 


. Frau Dr. Hella Pöch-Schürer in Wien zur Fortsetzung 


ihrer Untersuchungen über Vererbung (Haarfarbe und 
Kopfformen) in wolhynischen Flüchtlingsfamilien 
KL ONOEZ 


.Dr. Felix Reach in Wien für seine Studien über die 


Ablekung. der Galle,in.sden Darm 2» 22... K 1000: — 


V. Aus der Zepharovich-Stiftung: 


. Dr. Oskar Großpietsch in Prag zur Untersuchung über 


Vorkommen, Darstellung und Konstitution der Tonerde- 
Bhosphate pa. ine. spez lie e; K 1200572 
Dr. Arthur Marchet in Wien für die Untersuchung von 
Amphibolittypen aus dem nıederösterreichischen Wald- 
viertel‘; aa IA! ‚Eredar K 500° — 


‚Dr. Hermann Tertsch in Wien für chemische Unter- 


suchungen von Gesteinen aus dem Granulitgebiet des 
Dunkelsteiner \Waldess si .aasıiat: „ferere Seele K 600° — 


259 
Selbständige Werke oder neue der Akademie bisher nicht 


zugekommene Periodica sind eingelangt: 


Sobotka, Siegfried (Siegfried Wahr): Die Feile. Neu- 
artige Deutung des Weltgeschehens. Wien, 1912; 8°. 


Aus der Staatsdruckerei in Wien. 


Anzeiger Nr. 18. 28 


a BR AIR N akt poM 


” N anacyiigeen ns W zo aannsd | 


az u 
’ Er yart>t 


za = inch Ki Na 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr. 19 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 9. Oktober 1919 


Erschienen: Sitzungsberichte, Bd. 127, Abt. Ila, Heft 9; Abt. IIb, Heft 10, 
— Monatshefte für Chemie, Bd. 40, Heft 4 und 5. 


Der Vorsitzende, Vizepräsident Hofrat R. Wettstein 
begrüßt die anwesenden Mitglieder anläßlich der Wiederauf- 
nahme der Sitzungen nach Ablauf der akademischen Ferien. 


Der Vorsitzende macht Mitteilung von dem Verluste, 
welchen die Klasse durch das Ableben einer Reihe ihrer Mit- 
glieder erlitten hat. , 

Es sind dahingeschieden: das korrespondierende Mitglied 
im Inlande, Hofrat Prof. Gustav Niessl-Mayendorf in Wien 
am 1. September; die Ehrenmitglieder im Auslande Geheimrat 
Prof. Dr. Emil Fischer in "Berlin -am'! 14,>Juli;!sund!Pref. _ 
Dr. Gustav Retzius in Stockholm am 21. Juli; die korrespon- 
dierenden Mitglieder im Auslande Prof. Dr. Ernst Haeckel in 
Jena am 8. August, und Baron John William Rayleigh in 
Witham Essex am 3. Juli. 


Die anwesenden Mitglieder geben ihrem Beileide durch 
Erheben von den Sitzen Ausdruck. 


DD 
(or) 
DD 


Rektor und Konzil der Universität Rostock über- 
senden eine Einladung zu der am 12. November 1.J. statt- 
findenden Fünfhundertjahrfeier ihres Bestandes. 


Der .‚Naturwissenschattliche Verein in Magdebürg 
übersendet eine Einladung zu der am 14. September 1. J. 
stattfindenden Feier seines 50-jährigen Bestehens. 


Folgende Dankschreiben für bewilligte Subventionen 
wurden eingesendet: 

1. von Prof. Dr. F. Ehrenhaft in Wien für seine Unter- 
suchungen über das elektrische Elementarquantum und die 
Photophorese; | 

2.,v0n Dr: Heinrich Handel-Mazzeiti in’ Wien zur 
Deckung der noch auflaufenden Kosten für seine botanische 
Forschungsreise in China; 

3. von k. M. Prof. Dr. J. E. Hibsch in Wien zur Heraus- 
gabe der geologischen Karte des Pyropengebietes; 

4. von Dr. Hella Pöch-Schürer in Wien für ihre Unter- 
suchungen über Vererbung an wolhynischen Flüchtlings- 
familien; 

5. von w. M. Prof. F. E. Suess für‘,geologische ‚Auf 
nahmen in den niederösterreichischen Alpen; | 

6. von Privatdozent Dr. H. Tertsch in Wien zur che- 
mischen Untersuchung von Gesteinen aus dem Granulitgebiete 
des Dunkelsteiner Waldes. 


Dr. Lise Meitner und Dr. Otto Hahn im Kaiser-Wilhelms- 
Institut für Chemie in Berlin danken für die Überlassung von 
200 rg Rückrückständen der Uran-Radium-Verarbeitung. 


Das w.'M. J. Hann übersendet eine Abhandlung von 
Prof. H. Ficker in Graz: »Veränderlichkeit des Luft- 
druckes und der Temperaturin Rußland zwischen dem 
Eismeer und 37° Nordbreite«, von Dr. Heinrich Ficker. 


Um die Beziehungen zwischen Druck- und Temperatur- 
änderungen in einem größeren »einheitlichen« Gebiete zu 
untersuchen, wurde aus fünf Jahrgängen als Grundlage der 
Untersuchung die interdiurne Veränderlichkeit des Luftdruckes 
und der Temperatur für 18 Stationen berechnet. Die erste 
Stationsreihe erstreckt sich vom nördlichen Eismeer über Ost- 
rußland bis in die südlichen Kaukasusgebiete, während die 
zweite, östliche Reihe vom Eismeer über Westsibirien, Tur- 
kestan bis Nordpersien reicht. Die vorliegende Arbeit, die nur 
als- Vorarbeit der eingangs erwähnten Untersuchung aufzu- 
fassen ist, beschäftigt sich mit der Verteilung der Veränder- 
lichkeit des Druckes und der Temperatur in zwei gesonderten 
Abschnitten. 

Die Verteilung der Veränderlichkeit desLuftdruckes, 
die im allgemeinen mit der Breite zunimmt, unterliegt in dem 
betrachteten Gebiet trotz seiner Einheitlichkeit großen: Stö- 
rungen. Die größeren Veränderlichkeitswerte, die sich gegen jede 
Erwartung für die östliche Stationsreihe in jeder Breite 
ergeben, weisen darauf hin, daß im Eismeer bei Nowaja 
Semlja entweder eine Regenerierung zuwandernder Depressionen 
mit Wechsel in der Zugrichtung eintritt oder daß die größere 
Druckveränderlichkeit in der Östgruppe durch barometrische 
Steig- und Fallgebiete verursacht sind, die ihrerseits durch 
die im Bereich der Ostgruppe besonders häufigen Kälte- und 
Wärmewellen verursacht werden. 

Die ausnehmend kleinen Werte der Druckveränderlich- 
keit, die in Ostturkestan und Nordpersien gefunden werden, 
können durch die Wirkung der Grenzgebirge erklärt werden, 
während das kaspische Binnenmeer in seinem Bereiche und 
in Transkaspien entgegengesetzt wirkt und die Druckvariationen 
vergrößert. Die Kältewellen, die von Nowaja Semlia be- 
sonders häufig in die Zirkulation östlich wandernder Depres- 
sionen eintreten, verwandeln anscheinend die durch geringe 


264 


Beweglichkeit und kleine Temperaturunterschiede ausgezeich- 
neten Depressionen von atlantischem Typus wieder zu rasch 
wandernden Depressionen von amerikanischem Typus. 

In den nördlichen Gebieten tritt kleine Veränderlichkeit 
des Luftdruckes bei Luftdruck im Monatsmittel, große Ver- 
änderlichkeit bei niedrigem Luftdruck ein, ein einfacher Zu- 
sammenhang, der bemerkenswerterweise in niedrigen Breiten 
fehlt und auf einen Unterschied in der Natur der Luftdruck- 
variationen in verschiedenen Breiten hinweist. Die Betrach- 
tung zweier Höhenstationen (Gudaur im Kaukasus und 
Pamirski Post) ergibt Verhältnisse, die zum Teil beträchtlich 
von alpinen Verhältnissen abweichen. 

Bei Verteilung der Veränderlichkeit der Temperatur 
wird das westsibirische Gebiet mit abnorm großer Veränder- 
lichkeit in Beziehung gebracht zu den Kältewellen, die, vom 
Eismeer ausgehend, Westsibirien besonders häufig überfluten 
und ihren Einfluß über Westturkestan bis zur persischen 
Grenze durch große Veränderlichkeit der Temperatur kund- 
geben. Die Gebiete großer Temperaturveränderlichkeit stehen 
zum mittleren Verlaufe der Isothermen in Beziehung und 
liegen sowohl in Amerika wie in Asien auf der Westseite 
der kontinentalen Kältegebiete, ungefähr dort, wo der Verlauf 
der Isanomalen die Grenze zwischen zu kalten und warmen 
Gebieten andeutet. ya 

Westöstlich verlaufende Gebirge bewirken in den südlich 
liegenden Gebieten eine abnorm geringe Veränderlichkeit der 
Temperatur (Transkaukasien, Nordpersien, Ostturkestan), was 
wieder auf die große Rolle der Kältewellen hinweist. Eben- 
falls eine Schutzwirkung gegen Kältewellen ergibt sich im 
Gebiete des kaspischen Meeres, dessen südliche Gebiete sich 
durch außerordentlich kleine Werte der Temperaturveränder- 
lichkeit auszeichnen. Die im Winter warme Wasserfläche des 
Meeres gibt an die Luftmassen der Kältewellen Wärme ab, 
so daß die Abkühlung infolge der Welle südwärts rasch 
kleiner wird, obwohl die Druckveränderlichkeit gerade in 
diesem Gebiete aborm 'groß ist. 

Während in hohen und mittleren Breiten positive und 
negative Temperaturänderungen von großen Betrage ungefähr 


265 


gleich häufig auftreten, wird in niedrigen Breiten die Zahl der 
negativen Änderungen (Kältewellen) vorherrschend. Während 
dem ostsibirischen Kältegebiet ausgesprochene Kältewellen 
fehlen, mangeln den niedrigen, warmen Gebieten Wärmewellen, 
deren Effekt dem Effekt der Kältewellen gleichkommen würde. 


Prof. Dr. Robert Sterneck in Graz übersendet folgende 
vorläufige Mitteilung über eine ergänzende Rechnung 
zur lheorie der Adriagezeiten. 

In meiner vor kurzem erschienenen Arbeit: »Die Gezeiten- 
erscheinungen in der Adria, II. Teil« (Denkschriften der Aka- 
demie der Wissenschaften in Wien, mathem.-naturw. Klasse, 
Bd. 96, p. 277 bis 324) habe ich neben dem Mitschwingen 
mit dem äußeren Meere auch den unmittelbaren Einfluß der 
fluterzeugenden Kräfte auf die Wassermassen der Adria unter- 
sucht, dabei aber nur die Ostwestkomponenten dieser Kräfte 
berücksichtigt. Dies erscheint durch den Umstand gerecht- 
fertigt, daß die Längsschwingungen der Adria mit den Ost- 
westkomponenten der fluterzeugenden Kräfte nahezu synchron 
erfolgen, so daß die hinsichtlich der Phase um 90° verschiedenen 
Nordsüdkomponenten an ihren Amplituden fast keinen Anteil 
haben. Ferner habe ich angenommen, daß die Neigungen der 
Niveaufläche unter dem Einfluß der M,-Komponente ungefähr 
der Wirkung des im Äquator befindlichen Mondes entsprechen 
und daß die Neigungen der Niveauflächen unter dem Ein- 
fluß der übrigen fluterzeugenden Kräfte den sogenannten 
theoretischen Gewichten der betreffenden Partialtiden propor- 
tional seien. 

Obwohi diese Voraussetzungen mit Rücksicht auf die 
kleinen Dimensionen der Adria durchaus mit genügender An- 
näherung erfüllt sind, habe ich mir nun nachträglich die Frage 
vorgelegt, inwieweit sich die Theorie der Adriagezeiten etwa 
noch verschärfen ließe, wenn man für jede einzelne flut- 
erzeugende Kraft die Ostwest- und die Nordsüdkomponente 
und hieraus dann die in die Richtung der Mittellinie der Adria 
fallende Resultierende exakt berechnet. Über das Ergebnis 
dieser Rechnung möchte ich hier in Kürze berichten. 


Die hiebei zur Verwendung geiangenden Formeln ergeben 
sich in .einfachster Weise durch Differentiation der Formeln 
der sogenannten Gleichgewichtstheorie, die die; jeweilige Lage 
der Niveaufläche für einen Punkt in der geographischen 
Breite. angeben. Bezeichnen wir die absoluten Maxima der 
Neigungen der Niveaufläche unter dem Einfluß der einer 
einzelnen Partialtide entsprechenden fluterzeugenden Kraft in 
der Ostwestrichtung mit ©, in der Nordsüdrichtung mit «a, so 
ist bei den: halbtägigen Partialtiden 


fang — - 2KCcosv, 
tan = &2KCcospsine. 


bei den ganztägigen 


Tao 


SE 
ang rer 


2KCsinv, 
2KC cos 2p. 


Hiebei ist X = 0:000000083827 und die Koeffizienten € 
haben für die vier halbtägigen Tiden M,, S,, N, K, und die 
drei ganztägigen A,, P, O der Reihe nach die mittleren Werte 


Ur 45426, 021137, 0:08796, 005720, 0:26485, 0°0877 
018856. 


Für = 45°, wo sin® = c0S® ist, sind. also, wie man 
sieht, die Neigungen in der Ostwestrichtung tatsächlich genau 
den theoretischen Gewichten € proportionial (Mittlere Breite 
der Adria = 43°). 

Was die Epochen dieser Neigungen betrifft, so würde 
man in einem kleinen See, dessen Oberfläche diesen Neigungen 
folgte, bei allen Partiaitiden am Ostende die Kappazahl 270°, 
am Westende 90° beobachten. In der Nordsüdrichtung ent- 
sprechen die Neigungsänderungen ‘der Niveaufläche bei den 
Halbtagstiden südlich ‚des ‚betrachteten Punktes der Kappa- 
zahl 0°, nördlich der .Kappazahl 180°; bei den ganztägigen 
erfolgen sie für, 9 > 45° in ebendemselben, für g < 45° aber 
im umgekehrten Sinne, d. h. am Nordende mit der Kappa- 
zahl 0° und am Südende mit 180°. 

Diese leicht zu erweisenden theoretischen Resultate Ber 
sich nun unmittelbar auf die Adria anwenden, die unter einer 


26. 


mittleren ‘geographischen Breite © ='43° liegt und.» deren 
Mittellinie unter einem Winkel p. = 525° gegen die Parallel- 
kreise geneigt ist. Um die Neigung der Niveaufläche längs 
der Mittellinie zu erhalten, hat man jene in der OÖstwestrichtung 
mit cosp, jene in der Nordsüdrichtung mit sing. zu multipli- 
zieren .und sie mit Berücksichtigung der Phasendifferenz zu- 
sammenzusetzen. Es ergeben sich nach dieser Methode bei 
den sieben Haupttiden M,, S,, N, K,, K,, P, © der Reihe nach 
als Gesamtneigungen der Niveauflächen längs der Mittellinie 
die Beträge | 
3:64, 1:69,,.0:70, 0,46, .1:49,.0:49, „106 cm. 

Auf Grund derselben Zusammensetzungsformel berechnet 
sich auch die theoretisch für die Neigungen längs der Mittel- 
linie resultierende Kappazahl und zwar ergibt sie sich für das 
Nordwestende der . Adria bei den. Halbtagskomponenten mit 
dem Werte x = 131'6°, bei den ganztägigen mit x = 824°. 
Da die Mitte der Adria unter 15°5° ö.L. liegt, betragen diese ' 
beiden Kappazahlen auf mitteleuropäische Zeit reduziert 130°6° 
beziehungsweise 819°. 

Die beobachteten Längsschwingungen der Adria (die in 
erster Linie vom Mitschwingen herrühren) erfolgen dagegen 
mit den Epochen x, die für die in Betracht gezogenen 
Partialtiden der Reihe nach die Werte 
BR Fa 2 2297 
besitzen. Die Anteile der unter dem Einflusse der einzelnen 
fluterzeugenden Kräfte entstehenden Neigungen der Niveau- 
flächen, die mit den tatsächlich beobachteten Längsschwingungen 
der Adria synchron sind, werden "also aus den Gesamt- 
neigungen längs der Mittellinie durch Multiplikation mit 
cos (130°6° —x,), beziehungsweise cos (81'9°—x,) erhalten: 
Dies ergibt der Reihe nach die Neigungen | 

3201,,1:02, 0:07, 0-44, 1-48, 0-29, 1"VA cm. 


Man sieht, daß die Abweichungen von den in meiner eingangs 

erwähnten Arbeit unter den vereinfachenden Annahmen berech- 

neten Neigungen, die beziehungsweise 
2:99, 1:38 0:58, 0,38:.47 75, 0r58,1.L'24; cma 


D&D 
[@}) 
[0,0) 


betragen haben (a. a. O. p. 309), nur ganz geringe sind; die 
hier erhaltenen genaueren Werte sind bei den Halbtagstiden 
um etwa den sechsten Teil ihrer Beträge größer, bei den 
ganztägigen hingegen um ein Sechstel kleiner als sie sich 
a. a. O. bei der einfacheren Rechnung ergeben hatten. 


Im gleichen Verhältnis haben wir also auch die Größen m 
in den die Längsschwingungen der Adria charakterisierenden 
Differenzengleichungen An =c ($ — m) zu verändern (a. a. O., 
p- 310), die ihrerseits wieder in erster Näherung dem Abstand 
der strichpunktierten von der gestrichelten Kurve in den 
Figuren 3, 4 und 5 der genannten Abhandlung proportional 
sind. Es ergibt sich also, daß sich der vollständig exakten 
Theorie entsprechend, die strichpunktierte Kurve, die der 
Mitberücksichtigung der Einwirkung von Sonne und Mond 
auf die Wassermassen der Adria entspricht, bei den Halbtags- 
tiden M, S, N, K, um etwa ein Sechstel ihres Abstandes 
weiter von der gestrichelten, dem bloßen Mitschwingen ent- 
sprechenden Kurve zu entfernen, bei den Eintagstiden A,, P, O 
sich aber im gleichen Verhältnis stärker an ‚sie anzunähern 
hätte. Namentlich die letztere Veränderung führt, so gering sie 
ist, immerhin noch zu einer etwas verbesserten Überein- 
stimmung mit den beobachteten Amplituden der Längs- 
schwingungen. 


Was die theoretischen Kurven der durch die Einwirkung 
der Erdrotation entstehenden Querschwingungen betrifft, so 
erfahren sie, da diese Einwirkung den Größen & proportional 
ist, nahezu die gleichen Verschiebungen wie die Kurven der 
Längsschwingungen. Außerdem gibt es noch Querschwingungen, 
die unmittelbar durch die Neigungsänderungen der Niveau- 
flächen längs der einzelnen Querschnitte hervorgerufen werden. 
Diese haben einerseits einen zu den Längsschwingungen 
synchronen Bestandteil, der zur Reduktion der beobachteten 
Amplituden auf die Mittellinie Anlaß gibt (a. a. OÖ, p. 311), 
andererseits einen, der mit den durch die Erdrotation erzeugten 
Querschwingungen synchron ist, aber im Vergleich mit ihnen, 
wie die Rechnung zeigt, so kleine Amplituden aufweist, daß 
er außer Betracht bleiben kann. 


269 


Auf die hier nur kurz angedeuteten Formeln und Rechen- 
methoden, die sich auch für die Anwendung auf andere 
kleinere Meeresteile als brauchbar erweisen dürften, möchte 
ich bei anderer Gelegenheit ausführlicher zurückkommen; hier 
wollte ich nur darauf hinweisen, daß im Falle der Adria auch 
die Verwendung dieser noch etwas exakteren Methode zu 
keinen irgendwie nennenswerten Abweichungen von 
den in der eingangs zitierten Arbeit berechneten theoretischen 
Amplitudenverteilungen führt. 


Dr. Rudolf Wagner in Wien übersendet zwei Arbeiten 
mit dem Titel: 


LeoVorbläaitdornen als Kfettereinrichtung Dei 
Celastrus flagellaris Max.« 


Bei dem anfangs der fünfziger Jahre im Amurgebiet ent- 
deckten Strauche sind die Vorblätter der Zweige als Dornen 
entwickelt, und zwar soweit das Herbarmaterial, auf das man 
eben angewiesen ist, festzustellen erlaubt, vorwiegend an der 
Spitze jener peitschenförmigen Äste, denen die Art den 
Namen verdankt. Die Vorblätter sind hakenförmig gekrümmt 
und mit ihnen hängen sich die Äste bei ihren Bewegungen 
an andere Pflanzen an, um so näher zum Lichte zu gelangen. 

Eigenartig sind hier auch die als verzweigte Fäden ent- 
wickelten Nebenblätter, die indessen frühzeitig abfallen. 

Hinweise auf das Verhalten der Vorblätter bei anderen 
ostasiatischen Celastrus-Arten beschließen die Studie, weitere 
Vorkommnisse von Vorblattdornen scheinen bisher nicht 
bekannt zu sein. 


2. »Zur Geschichte der Spigelia marylandica L.« 


Die meistverfälschte Droge nordamerikanischer Herkunft 
ist die Radix Spigeliae, ein altes, schon den Ureinwohnern 
der atlantischen Staaten geläufiges Wurmmittel, das schon 
frühzeitig in die Materia medica der eingewanderten Europäer 
seinen Weg fand. Außerdem noch eine durch die auffallend 
schönen Blüten ausgezeichnete Pflanze, wurde sie vielfach 


276 


abgebildet, auch in der Wiener medizinischen Literatur des 
18. Jahrhunderts. Im Jahre 1856 war sie Gegenstand einer 
ausgezeichneten, den verschiedensten Gesichtspunkten gerecht 
werdenden Studie Louis-Edouard Bureau’s, ‚des derzeitigen 
Nestors der französischen Botaniker. 

Die bisher publizierten Abbildungen erlauben eine sichere, 
eindeutige Bestimmung der morphologischen Elemente des 
Blütenstandes nicht oder nur teilweise, so daß sich Verfasser 
veranlaßt fand, das nicht ganz einfache Gebilde einer Analyse 
zu unterziehen. Es resultierte ein Wickelsympodium, das 
durch progressive Rekauleszenz kompliziert ist und sich 
in ähnlicher ‚Weise auch ‘bei. anderen Arten der Gattung, 
indessen durchaus nicht bei allen, findet. 


Prof. Dr. F. Heritsch und R. Schwinner in Graz über- 
senden eine Abhandlung ‚mit dem Titel: »Über die Drehun- 
gen beim Ranner Erdbeben vom 29. 1.:1917«. 

Der erstgenannte Autor stellt fest, daß in: Rann und 
Umgebung an Grabsteinen und anderen Körpern eine Drehung 
im Sinne des Uhrzeigers und entgegengesetzt demselben 
stattgefunden hat, und zwar fanden beiderlei Drehungen 
in räumlich eng begrenzten Gebieten, neben- und durch- 
einander statt. 

Der zweitgenannte Autor stellt zuerst durch Vergleich 
mit der Literatur fest, das die vom Ranner Beben vorliegenden 
Beobachtungen typisch für das Phänomen sind und gibt dann. 
eine kritische Übersicht der bisherigen Erklärungsversuche 
Die mathematische Analyse, die nebenbei eine Verbesserung 
der von Omori (On the overturning and Sliding of columns 
1902) aufgestellten Näherungsformel liefert, ergab: 

Die Hauptschwingungen der Nahbeben mit Perioden von 
1 bis 2 Sekunden wirken hauptsächlich umstürzend, die 
Drehungen aber werden von den jenen übergelagerten schnellen 
Schwingungen mit Perioden von 0'2 Sekunden und weniger 
verursacht. Daß die periodische Schwingung sich in eine 
einseitige Verschiebung umsetzen kann, liegt an dem Zusammen- 
wirken von Horizontal- und Vertikalschwingungen gleicher 


271 


Periode und Phase. Die Drehung selbst kommt dadurch zustande, 
daß die Resultierende der Reibungskräfte und die bewegende 
Kraft ein drehendes Kräftepaar bilden. (Übereinstimmend mit 
Mallet.) 

Da die vorerwähnten kurzperiodischen Schwingungen nur 
kurze Laufstrecken zurückzulegen vermögen, ohne allzusehr 
geschwächt zu werden, ist das Phänomen der Drehungen auf 
die Nähe des Bebenherdes beschränkt; eine unmittelbare 
Abhängigkeit von der Bebenstärke im allgemeinen. besteht 
nicht, auch ist es nicht zulässig, aus Beobachtungen an ver- 
schobenen und gedrehten Grabsteinen etc. '‘ohneweiteres, wie 
es manchmal versucht worden ist, Bewegungsart und Richtung, 
söwie die Maximalbeschleunigung abzuleiten. 


Dr. Heinrich Handel-Mazzetti in Wien übersendet eine 
Abhandlung mit dem Titel: »Neue Aufnahmen in NW-Jün- 
nan und S-Setschuan.« 


Prof. K. Brunner übersendet eine im Chemischen Labora- 
torium der Staatsoberrealschule in Innsbruck ausgeführte Arbeit 
von Prof. J. Zehenter unter dem Titel: Ȇber Metaoxy- 
tolylsulfone.« 

In dieser Arbeit wird gezeigt, daß sich durch Einwirkung 
von Vitriolöl auf -Kresol unter bestimmten Bedingungen 
zwei Oxysulfone, «-m-Oxytolylsulfon und ß-m-Oxytolylsulfon 
genannt, bilden. Nebenher entsteht noch 3-Kresol-6-Sulfonsäure 
und eine zweite Kresolmonosulfonsäure, deren Konstitution 
und Eigenschaften noch nicht näher bestimmt werden konnten. . 

Es werden Trennung und Analyse der beiden Oxysulfone 
durchgeführt und zur weiteren Kennzeichnung einige Abkömm- 
linge dargestellt sowie das Verhalten zu Alkalien und zu 
Oxydationsmitteln einschließlich Salpetersäure untersucht. 

... Schließlich wird versucht, die möglichen Konstitutions- 
formeln für die beschriebenen Körper aufzustellen. 


Folgende versiegelte Schreiben zur Wahrung der 
Priorität wurden übersendet: 


1. von Dr. Josef Tagger in Innsbruck mit der Aufschrift: 
»Prometheus Nr. 1. Versuche mit dem Farbenkreisels; 

2..von Dr. Max de Crinis in, Graz mit der, Aufschrift: 
»Ein neues Verfahren zur quantitativen Bestimmung 
wässeriger Lösungens; 

3. von Max Becke in Wien mit der Aufschrift: »Farben 
und Farbensehens; 

4. von stud. phil. Arpad Kövesdy in Wien mit der Auf- 
schrift: »Mnemonikse; 

5. von Franz A. Ulinski in Wien mit der Aufschrift: »Das 
Problem der Weltraumfahrt«. 


Das w. M. Hofrat Hans Molisch überreicht eine im 
Pflanzenphysiologischen Institut der Wiener Universität von 
Fräulein Lene Müller ausgeführte Arbeit, betitelt: »Über 
Hydathoden bei Araceen«. 


1. Amorphophallus Rivieri scheidet zur Zeit der Anthese 
am Appendix durch Spaltöffnungen, die die Funktion von 
Wasserspalten übernommen haben, Saft aus. Der ganze 
Appendix erscheint infolge der Guttation wie mit Wassertropfen 
bespritzt. Der Druck, mit dem die Tropfen ausgepreßt werden, 
rührt von dem osmotischen Druck des Knollens her, ist also 
kein Wurzel- sondern ein Stammdruck. Der ausgeschiedene 
Saft enthält sehr wenig Zucker, ein Amin und ein Nitrat. 

2. Die an den Spitzen der Araceenblätter befindlichen 
Hydathoden zeigen die Guttation oft in hoher Vollendung, 
und lassen sich, soweit untersucht, aufsteigend auf drei 
Typen zurückführen: Philodendron-, Alocasia- und Colocasia- 
Typus. 


a) Die nach »Zypus Philodendron« gebauten Blattspitzen 
zeigen Wasserspalten an ihrer Spitze, die nur wenig 
von normalen Spaltöffnungen abweichen, dementsprechend 
ist die Anzahl eine große. 


273 


b) Die dem » Typus Alocasia« angehörigen und im anato- 
mischen Bau mehr minder übereinstimmenden Blatt- 
spitzen, weisen wenig Wasserspalten, dafür aber relativ 
große auf. 

c) Die höchste Vollendung im Bau finden wir bei Colocasia 
antigquorum, Ariopsis und Stendnera. 


3. Pothos gracilis weist Heterophyllie auf. An demselben 
Stamm finden sich grübchenlose Blätter, die in der nächsten 
Nähe ihrer Basis Würzelchen tragen, und solche mit 
Grübchen, aber ohne Würzelchen. Die Funktion der Grübchen 
konnte nicht ermittelt werden. Bei beiden Blattarten finden 
sich am Rande kleine Höckerchen, die ihrem anatomischen 
Bau nach als Ausscheidungsorgane anzusprechen sein dürften. 


Selbständige Werke oder neue der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Genau, A.: Mathematische Überraschungen für Lehrer und 
Rechenfreunde. 2. Auflage. Arnsberg i. Westf., 1919; 8°. 

Geographisches Institut der Universität Berlin: Karte 
der Verbreitung von Deutschen und Polen längs der 
Warthe—Netze-Linie und der unteren Weichsel sowie an 
der Westgrenze von Posen. Berlin, 1919. 

Tschermak, A.v.: Bioelektrische Studien an der Magen- 

° _muskulatur. I. Mitteilung: Das Elektrogastrogramm (Egg) 
bei Spontanrhythmik des isolierten Froschmagens (Sonder- 
abdruck aus Pflüger’s Archiv für die gesamte Physio- 
logie des Menschen und der Tiere. Band 175, 3/6). Berlin, 
19193,8% 

— Die finanz- und baugeschichtliche Entwicklung der ' 
deutschen und der tschechischen Universität in Prag seit 
der Teilung (1883). Denkschrift. Brünn, 1919; 8°. 

— Julius Bernstein’s Lebensarbeit. Zugleich ein Beitrag zur 
Geschichte der neueren Biophysik. Berlin, 1919; 8°, 
Deutsches Museum in München: Verwaltungsbericht über 

das fünfzehnte Geschäftsjahr 1917 — 1918. 


3 


Drr 


nu 


la 7% 


- 


L) 


We Ri SLLEEERT a aß Y 


di 14 NE 
je ah f er a aß bi 
RSEhnäche 


1919 Nr. 6 


Monatliche Mitteilungen 


der 


 Zentralanstalt für Meteorologie und Geodynamik 


. Wien, Hohe Warte 


48° 14:9" N-Br., 16° 21°7' E v. Gr., Seehöhe 202-5 m 


Zeitangaben, wo nicht anders angemerkt, in mittlerer Ortszeit; Stundenzählung bis 24, 
beginnend von Mitternacht—=0N. 


Juni 1919 


276 


Beobachtungen an der Zentralanstalt für Meteorologie 


48°14°9' N-Breite. im Monate 
Luftdruck in Millimeter Temperatur in Celsiusgraden 
Tas | To 7 Abwei- Abwe - 
= Tages- chung v. Tages- (chung v. 
h h h S=Sn| h h h 

[ a A mittel |Normal- z 1e . mittelt |Normal- 

| stand | | stand 

1 742.7 742.4 741.6 | 42.2 | — 0.5 10% 0% 223.9 18.8 19.6 |—+ 2.3 
2 ı 39.6 33.6. 383.3 | 88.8 | — 4.0 18.1 21.4 15.4 18.3 |—+ 0.9 
3 | 41.0 40.38 42.0 |41.3| — 1.5 12.1 15.3 13.5 13.6 | — 3.9 
443.5 42.4 41.6 | 42.5 | — 0.3 10.5 14.3 12.6 12.5 | — 5.1 
Se een | ea 85.2 12.4 el tor. 14.2 | — 3.6 
6 | 40.9 43.4 45.9 | 43.4 | + 0.5 13.0 15.2 14.5 14.2 | — 3.7 
7|47.6 47.5 47.2 |47.4|—+ 4.5 13.0 14.2 14.0 13.7 | — 4.3 
8|47.9 47.5 48.0 | 47.8|—+ 4.8 14.6 20.1 17.8 17.32) — 058 
9|48.6 48.7 49.3.) 48.9 ı+ 5.9| 17.0: 23.83 20.9 20.4 |-+ 2.4 
10 | 50.5 50.2 51.0 | 50.6 |—+ 7.6|| 20.1 26.4 23.7 23.4 |+ 5.3 
11 | 53.8 52.5 51.3 | 52.5 |+ 9.4| 18.5 23.5 Id 20.6 + 2.5 
12 | 49.7 47.5 46.0 | 47.7 |—+ 4.6 16.4 24.6 20.8 20.6 —+ 2.5 
13 | 46.1 46.2. 46.2 | 46.2 |)—+ 3.1 20.9 23.5 19.4 21.3 |+ 3.2 
14 | 46.5 46.5 46.8 | 46.7 |—+ 3.6 1920 O7, 16.5 18.4 |—+ 0.4 
15 47.4 47.6 48.8 | 47.9 |—+ 4.7 14.4 1726 14.4 15.5, — 2.4 
16.| 50.2 49.1 47.9 | 49.1 |+ 5.9] 13.5 19.5 15.7 |. 16.2 | 
17 | 48.3 47.2 46.9 | 47.5 |+ 4.3|| 14.5 22.5 1987 18.9 + 1.1 
18 | 47.3 46.4 45.5 | 46.4 |—+ 3.2 15.7 24.5 17.3| 19.31 + 1.4 
19 | 46.5 45.9 45.9 | 46.1 |+ 2.9 or, ıl ZUR 22.2 21.5 |—+ 3.4 
20 | 46.7 45.5 44.8 | 45.7 |—+ 2.4 19380 29.9 ANEU 21.9 | + 3.7 
21 | 45.4 44.1 43.0 | 44.2 | + 0.9 18.2 _ 28.0 22.4 233.9 |+ 4.6 
22 | 48.2 49.7: 50.1 7 493° | 6.0 17.2 18.8 15-0 17.2 | — 1.28 
23 | 48.2 44.6 43.0 | 45.3 |+ 2.0 13.0 20.0 16.8 16.6 | — 1.9 
24 | 42.0 40.1 41.3 |41.1|— 2.2 19.3 19.5 det 15.6 | — 3.0 
25 |-89.1 389.0. 839.6 189-2. hl) nit.2 12,7 12.2 12.0 | — 6.7 
26.1 37.6. om4. 85742 8628. 6rD | 2 13.0 13.7 112.9.) 069 
27 | 32.6.. 37.1..40.3 |) 86.7 | — 6:6|| 10.9. 12.1 12.3 11.8.) ml 
28 | 43.0 45.0 45.2 | 44.4 |—+ 1.1 12.4 15.7 14.6 14.2 | — 4.8 
29/|43.7 41.9. 40.874211) — 1.2] 14.8 18.6 16.0 16.3 | — 2.8 
23021, 39.11, FAlnar, 4228 | 24 la — 28 11307 21041 10.1 10.4 — 8.7 
Mittel 1744.81 744.51 744.54|744.62| -+1.50 15.0 19.6 16.6 17.1 SU 


Höchster Luftdruck: 753.5 mm am 11. 
Tiefster Luftdruck: 732.6 mm am 27. 
Höchste Temperatur: 29.0° C am 21. 

Niedeiste Temperatur: 8.9°C am 23. 

Temperaturmittel 2: 17.0°C. 


31 7 El): 
22 (7,14, 21,21) 


DD 
SI 
N 


und Geodynamik, Wien, XIX., Hohe Warte (202'5 Meter), 


Juni 1919. 16% 2 eBebängev: Gr: 
Temperatur in Celsiusgraden Dampfdruck in mm | Feuchtigkeit in Prozenten 
Sehwarz- Blank- Sn Irages | Tdges 

Nax i kure] 1 kugert | Strah- h h hr || h i h > 
Max. Min. | kusel! kuge hung? 7 14 zu | 7 142 21 a 

Max, Max. | win, | | 

— ER EN. A| 
242482 11.6 52089 6 -9.A= ara 1024 2)60) 20. NN 58 
Nor: 13.0 ol 341 2121,10.47 10.77 10az 21076 u 82 69 
16.3 10.8 41 25 Ta Ri ee 7.2 65 57 68 62 
Tarsd 95.0 44 27 5 5.9 62 74953 5) 
134,002.10.3 44 29 80, 56..1 ne. 0852 GHaR|l. oz 25 278 58 
1. 1 AD 2 0 a INES 5.6 82 69 64 12 
19..0,4183.0: | 78826 9 922 9R9 Sa 9M6 82 SEHE. so 
Dim 212.A, | >50. 80 9 IR SS FIRO IaU Tee Aue 53 61 
24.0, ,15.0 755 39 10 8.8 1.8) iKOlge: 90 61 37056 ol 
PROTEINE 5 AO E35, 0.3 1254 1150 HI AO 52 
PReoindı 50 37, 111.095 0 10 69 44 57 57 
SE a a I 5 | a a a a re > u Bone aa el 68 
See LE) 507 86:1 Do ı 14.47 14.1) 1325 19 ER 74 
Det 92235) Er Ina 100 ES 9.8 BOEDS a 61 
12 213.1 46 311° 9 TA YSR2) ©1098 7.8 61 54 68 59 
202.977 152 49 34 a | Mt Mnzleret6) 1.9 68 43 65 | 59 
24.5 10.8 36 39 ee ON On een 8.5 si, 3977.45 55 
2940: , 12.0 53 40 SSL rule 128 76 25 50 50 
> 5 41 9 928er, 1028 S.8 A ee, 49 
26.9 2.1.6.2 548250.) 18 12.297 10407 1138 W118 73.40 65 60 
IR. 2 let 80 56 a sl 12.3 1.2: rl TIEREN: 70 63 
23.3 712.3 47 Sl geil. 97.0 9606 8.8 Se: 150 60 
21.0 s.9 45 31 7 8.0 Sad K0RO ein 2: sl 74 66 
2.00 .1 2 82754109125 1 OT | Re En 79 
Das 19.4044 Jar 1011 48.3 9,1 | 87er ie anal Binass u @zau || 78 
ae I 0 | 87 94 997 93 
tar 79.9 DT 9 7.6,1° PO NA oil Se Tal 7 
18.0: 712.0 Aa NR 20 737.9 Far  9GEG bez oe Aline 56 
2020 712.3 45: "al OP 70.0 Man, MONG S.4 DDr 1 61 
we: 9A), 2016,00 | 8.8 17357 08.1 | 90 1780 87 S6 
2.1 12.4 | 466 322.919.6 Ben ER! 952 190, 53266 64 

\ 


Höchster Stand des Schwarzkugeltbermometers: 56°C am 17. u. 21. 


Größter Unterschied zwischen Schwarz- und Blankkugelthermometer (stärkste 
Pirahlung): 17°C am 2, 4, 14, 17.1.2} 


Tiefster Stand des Ausstrahlungsthermometers: 5°C am 4. 
Höchster Dampfdruck: 14.9 mın am 12. 

Geringster Dampfdruck: 5.5 mm am 28. 

Geringste relative Feuchtigkeit: 25"/, am 18. u. 19. 


Be ! In luftleerer Glashülle. 
E ® Blankes Alkkoholthermometer mit gegabeltem Gefäß, 0.06 m über einer freien Rasenfiäche. 


i Anzeige Nr. 19. 30 


J 


[0° 


ER: 
Beobachtungen an der Zentralanstalt für Meteorologie 


48°14°9' N-Breite. im Monate 

Ye 
| Windrichtung und Stärke |. Windgeschwindigkeit Niederschlag, 2 
| n. d. 12stufigen Skala in Meter in der Sekunde | in mm gemessen 2 
| ARE > 
Tag | | | ® 
en 14h 21h | Mittel | Maximum! | 7h 14h 21h a 
| I {dp} 

E | 

1 Er a NNESIT ZW: \ 2.0 SSW 4 ei — —_ — 
2 "Wa3 05 W. ol SWNWSl 23,0 NW . 13.0 _ _ 2.2eR | — 
3 WNW2THW -2 WNWll 28.4 2 N 12.8 _ _ -- — 
4 WNW3 =W 58 EWwew2l7428 | ZWENWI, 12.0 _ _ -- _ 
5 WNW3., W.3 W-A 48| W 14.4 _ = = _ 
6  wWNW2 NNW3- NW 3l 5.0 NW .13.6 0.0e 2.Se —_ _ 
7 |WNW3 NW 3 NNWI| 93,5 INI\WV: a = 2.3e 0.28 | — 
8 NW 2 N#2 NS 1 2256 | ONNWo 19.4 —_ —_ —_ = 
9 | NNW2 N 3 WNWiI| 3.4 N 10.0 _ _ _ —— 
10 NW 3 N 3 NNEI| 3.6 NV ll. _ _ —_ _ 
11 |NNW2 NNE2 NNE1| 3.3): NNE 10.5 _ = _— | 
12 — 0 Bopil — 0| 1.6 ESE 6.3 _ - 
13 WNW6 WNW3 W 2| 4.4 NW, 20.6 0.0e 0.le. 2.90 ı — 
14 wNW2 NNW3 NW 2| 4.8! WNW. 13.9 0.0® _ 0.0e | — 
15 | NW: 3 .NW.A NNWAl ol | WW MO. 8 — _ _ _ 
16 NW 1 N #2, Saw 02.42 I ENNIWIE ST = _ En 
7 —,0.,N 2 NNWI| 1.6 SW 8.8 _ _ -- = 
18 —, OaeN: 2 ENWaaN Ela NNE 8.7 _ = _ —_ 
19 — 0 NNWi1 Ne Ale Ww 6.1 _ —_ -- 
20 We, 1 e0SB 2 — 0) 1.2 SE 7.5 _ = _ _ 
2A —/O’NNW1 .W.1l 1.3) WNW .18.3 _ = _ _ 
22 | NW 4 NNWA4 No. 1539 NW 20.0 0.0e 7.9e _ - 
2a | I NIn I ZESEr2I ES Wer 22 SE el _ _ —_ — 
24 | WSW1 S 1 WNW3| 3.21 WNW. 16.7 - = 1.50 | — 
25 wWNW3 NW3 WW 2|I ©.6 NV =Ell8.6 3.9e 2.20 0.20 \ — 
26 | SSE 2 SSE 2 ESE 2| 3.3 | SSE 14.8 || 0.0e 1.70 5.le | — 
Bart w6 w5 WS5l 9.5 | WSW 23.7 126.0 0.le 0.50 | — 
28 wNW5 WNW5 W.2|l 8.3) .WNW. 21.4 0.08 _ _ _ 
29 | WSW2 SS 92° Well dB2 a WEN VW 18 —_ = - _ 
30: | NNW 1 2ıW -3 I wen 820) SNNWoeN2.5 7.20 5.30 —_ _ 

Mittel 2 2.4 1.6 3.6 1278 37.1805 922 „Aral 2 6 


Ergebnisse der Windaufzeichnungen (nach dem Schalenkreuz): 
N NNE NE" ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW 
Häufigkeit, Stunden 
106 43 10 An el AU) 222, 19 5,,113,.4,,1987 08 51 
Gesamtweg, Kilometer 3 
1058 463 46 16 1122200 111 272:.,94.u1487,,10377235, 1292 22608 A697 2831 
Mittlere Geschwindigkeit, Meter in der Sekunde 
2.8 3:0, 1.3.1.1 1.69 2.6.:2.8..8.8 12:9, 27 1.8328,4 Au EEE 
Maximum der Geschwindigkeit, Meter in der Sekunde 
8:1 6.1 2,2 1.4 3,3 4:4 5,83 7.2 6.7.42 Sl 111 IR Ba 
Anzahl der Windstillen (Stunden) — 23. 
Größter Niederschlag binnen 24 Stunden: 32.8 mm am 26.u.27. Niederschlagshöhe: 7 
Zahl der Tage mit e: 14; Zahl der Tage mit =: 1; Zahl der Tage mit R: 2. 


1 Den Angaben des Dines’schen Druckrohr-Anemometer entnommen. 


279 
und Geodynamik, Wien, XIX., Hohe Warte (2025 Meter), 


E Juni 1919... .v; 16°21:7!, E-Länge,v. Gr. 
h, 
ic | \ Bewölkung in Zehnteln des 
et | sichtbaren Himmelsgewölbes 
5 = Bemerkungen nn — 
= E: 7h 14h 21h »8 
Se 
aabne - 0) 11 30-1 1.83 
defgf | ol 1645— 1835, Rl 1720750, &0 1950 —20. 6071 10071 101 Set 
gfeed | a0 abends. | 100-1 90-1 90-1 9.3 
ddeee | 0 mens. | 80-1 70-1 100-1 8.3 
feefg e0 2050 —23 zeitw. 70-1 60-1 10180 TRT 
gfedd | e0 1,5 —7,9— 10, el72 1120 — 1230: 9 21. 101 g1 80-1 9.0 
ggmed | e 5—8Szeitw., el 102° — 1145, 1330—14, ed-17. || 10160 1018071 80-1 9.3 
emebh | — 7071 4 3071 4.7 
bebba we 10-1 30-1 10 7 
bbebe — 19 4l 3071 2.7 
ncbaa | 0 mittags. 80-1 10 0) 3.0 
: aaaan | ool. | 9) 9) 0) 0.0 
fgeee | e071 710-8, RinNW, el! 1610-1750, e&) 2320730, 1007180 80-1 9071 9.0 
efmec | e0 1415. 701 9071 St 6.3 
bndem | .a0 abends. 20-1 31 Az 4.0 
= I bbbba | a0 mens. u. abends. 10-1 21 10 1.3 
ncbaa | «I mgns.; oo071, 70 40 0) BT 
| abban | .a0 mgns. u. abends; ool. i 0) 0) 0) 0.0 
mbnge | a0 mens. 30 10 10071 4.7 
cdbaa — 30-1 19 10 ba 
aacen | <in W nachts. 0) gl 30-1 2.0 
ffmba | e1 635—930, 1017281 21 11 4.3 
bbneg | a0 mens. ;<in NW nachts. 20 7071 60 5.0 
I feggg | ei 161% — 9071 .:10071 -101el | 9.7 
- | ggmbn | 001-605, e® vorm. zeitw., e! Böen 12—16 ztw.|| 101 901 .. 2071 Ga. 
fgggg | 0 530, 919 —13, el 13— 701. _10lel 10181 9.0 
ffggf | e172-330, dann e—6°", &0 735, 10-20 zeitw. ; sl 10180 8071 3% 
ggmec | e) 60. [9 aus W. || 101 10071 10 7.0 
ffggg | e0 830735, =0 vorm. 10071 90 101 So 
ggfec 0 02%-—125, ei 12°— 55, 60 S5— 122 zeitw., || 101el 10180 20 8 
| [ei 1225 — 1400, 
Mittel 9.9 5.7 5.0 5.5 
e 
| 
Schlüssel für die Witterungsbemerkungen: 
a= klar. f = fast ganz bedeckt. k == böig. 
b = heiter. g = ganz bedeckt. l = gewitterig. 
ec = meist heiter. h = Wolkentreiben. m = abnehmende Bewölkung. 
d = wechselnd bewölkt. i = regnerisch. n = zunehmende 33 


- e = größtenteils bewölkt. 
Der erste Buchstabe gilt für morgens, der zweite für vormittags, der dritte für nachmittags 
der vierte für abends, der fünfte für nachts. 
Zeich'enerklärung: 

Sonnenschein ©, Regen e, Schnee x, Hagel a, Graupeln A, Nebel =, Bodennebel 5, 

ebelreißen =, Tau oa, Reif —, Rauhreif y, Glatteis vv, Sturm #, Gewitter R, Wetter- 
euchten $, Schneedecke X, Schneegestöber -#, Dunst oo, Halo um Sonne ®&, Kranz 
um Sonne (D, Haio um Mond U), Kranz um Mond W, Regenbogen N. 
eTr. — Regentropfen, Fl. = Schneeflocken, Schneeflimmerchen. 


1 Die Angabe der Bewölkung ohne Index wurde aufgelassen, da sie sich für den Vergleich mit 
er Index-Bewölkung als wenig brauchbar erwies. 


230 


Beobachtungen an der Zentralanstalt für Meteorologie und 
ya Wien, XIX., Hohe Warte (202'5 Meter), 
im Monate Juni 1919. 


N 


| Dauer |# _ 7 Bodentemperatur in der Tiefe von 
Verdun- ||. des |are2| = Sm He > 000 
. stungl; | Ronneml se 0.50 1.00m 2.00m 3.00m 4.00 m 
Tag P = | ın N 
rg inmm | scheins |e »o" 2 Tarısı se 
I in See &| mittel mittel = ==, = 
zh | Stunden! DS 

1 1.4 Ener 2984| 5.8 | 12:8 IT 8.8 S.6 
2 1.4 | CR) 2.8 ‚4 1320 9.8 8.3 8.6 
3 12 Ali. 3.6 10.0 LEIR 13.4 9.9 828 8.6 
t Dealer A 16.7 13.6 10.0 8.9 8.7 
5 28 5.4 | 10.0 16.6 1847 11 oJagıl s.9 SH 
6 1550 1:94: 8.8 16.4 at 102 9.0 8.7 
7 0.7 0.0039 .7 15.8 18% 10.3 9.0 8.7 
8 1.8 14126 DR 15.9 1326 105 9.1 3.R 
9 29 13.4 9,0 A 13.7 10.6 | 8.7 
10 3.0 14:29 19,8 19.1 13.8 10.6 92 8.8 
11 1.8 9.9. |..6.0 2 8 14.3 10.7 9.2 8.8 
12 1.218 Ze 7 21.3 14.9 1087 9.3 8.8 
13 1.6 3.22-1% 10.0 21.5 15.4 10.9 9.3 8.9 
14 2 Ze 20T ORT 10.9 9.4 8.9 
15 1:9 9.2 10.3 19.9 15.9 0% 9.4 8.9 
16 5) 14.4 4.7 19.8 16.0 1.112 0.8 9.0 
7 17.9 11.8 6.7 20.6 16.0 13 028 9.0 
18 2 14.70. 8:0 215 16.2 11.4 9ez 9.0 
19 1.8 ee Ss DE 16.4 nk 9.6 9.0 
20 1.4 12.3 8.8 Bars ıl 16.8 Tr 9.7 I) 
21 Br ro m Bes 23.38 ea ae 9,8 ! 
22, 1.4 ) 8.83 2302 17.4 4128 9.8 ren 
23 al 11.0 YnE 83,8 21.4 16.0 1282 10.0 Sail 
24 VER 28 SIE, 20.7 ze el 10.0 ORZ 
25 al 6.0 | 10.3 19E2 17.4 12.3 10.0 9.2 
26 0.4 Oz e 17.9 17 1283 1081 9.2 
27 1.8 0.84 TR S 16.6 16.6 12.25 10.2 9.3 
2 28 al 10.0 1:57. 16.2 12.6 1052; 9.83 
29 0.8 2.8 Do 15.8 10.7, N) 1053 IND 
30 0.9 0.7. 13.0 15.9 15.4 12.6 10.4 I 
Mittel 1036 7.38 | 7.8 el 19.8 112 9.9 8.9 

Summe 46.5 232.8,.| 

| 

I 


Größte Verdunstung: 3.0 mm am 10. 

Größter Ozongehalt der Luft: 13.0 am 30. 

Größte Sonnenscheindauer: 14.7 Stunden am 18. 

Prozente der monatlichen Sonnenscheindauer von der möglichen: 46°/,, von der 


mittleren: 99 0/,. 


Berichtigung zu Mai 1919. 
RN Se Dr Ausstrahlungsminimum am 8:4, am 14: 5, Be 3.4. Dampfdruck 
am 8. 7h: 6.4, Tagesmittel: 7.1; Monatsmittel 7": 6.6; Gesamtmittel: . Größter Unter- | 
schied zwischen Schw arz- und Blankkugelthermometer (stärkste Se It 29°C aaa. u 
und 21. Tiefster Stand des Ausstrahlungsthermometers: Cam. 


1919 


Monatliche Mitteilungen 


Zentralanstalt für Meteorologie und Geodynamik 


Wien, Hohe Warte 


48° 14°9' N-Br., 16°21°7' E v. Gr., Seehöhe 202-5 ın 


Zeitangaben, wo nicht anders angemerkt, in mittlerer Ortszeit; Stundenzählung bis 24 
beginnend von Mitternacht = ON 


Juli 1919 


Beobachtungen an der Zentralanstalt für Meteorologie 


48° 14°9' N-Breite. im Monate 
Luftdruck in Millimetern Temperatur in Celsiusgraden 

. Verduns len A we e Abwei- 
ne Th 14h oh Tages-|chungv. Ah 14h 94h Tages- |chungv. 
Ä “ mittel ‚Normal- mittell |Normal- 
l 3 N stand_ nr vr A 

| | 
1 1742 .Am7 41:2, 74050 | am2r 3 B2| 10a 145 5 2.5 29 68 
2 | 38.01 139.45 Doll | Belaiıh3 all) Bla FAS DEI rn. I | 
3 41.702,68 ..:0 [42389 = .0:& 6 11.99. 917.8 993 5. Meer 
4 11 45.2.145.0.. 4477 145500 1,6: 14,19:%19.4. 915.5 | Dean 
5648.71 42.1: 41,5 1 A241] == 1.0 14.089023. 1 21.49.98 or 
6 | 43.5 42.5 41.8 | 42.6 0.8] 16.0 .° 23.8 - 21.4) 230.2 Same 
7.1 42.8.042.9.@43/6 | 1311 — 0,39 18.19. °25.1 717,8) 90.30 ae 
8 141.3 %,38.0  38.9. 38% | — 417. 18.29. 726.0 915.9) OO Tee 
9:1 36.7. .89,8 1,4280. 39.5) —r3.9| 13 13 15.9.1. 115,1 14.6 
10 142,5 a0.2 22.0 222 |- 1.217151 18.2. 18.9 16,4 |- 3.3 
11 | 41.3 40.0. 39.8 | 40.4 |— 3.0] 16.0 21.5. 16.4| 18.0|- 1,8 
12 .| 39.7 .1.38.9.. 39.6 1394 | = 4.0: 16.42 )21.5 ig, 2 as 
18:0089.7. 13920 2 02 908 | Dem 1728 21.5 16.4 | 18.6 | 8 
14 :1:45.8 45.5 45.3 | Aulssiae Silaelsamt ua.9 12.8 | ITS 
15 51,43.8 740.5: 3951. 4104 — 2731| 13.004: 18.7 Rus. | vYn.eo ee 
16.) 39.3 40.0. 42.3 |-40,5 \ 2391 132 20.6 14.8 16.2 |— 3.9 
17 | 45.6 43.8 44.2 |44.5|+ 1.1) 13.6 19.9 17.8, 17.1 84 
18, 44.2 za2.8 22.043 = Orr 17 0b 19.4 19.6 |— 0.6 
19:1142.6 241.6 241.4 4194 -= 185.1. 17.8% 224.2 18.21.00) Sr 2 
20. 1141.7 141.4 21.5 141,51 41@845.17.90.455.9 3015 | apz 
21 148.0 0 Saseitasnte el ir 2 13.5 | 17.0 |— 3.3 
22:1, 45.7 49.8 42.5 1.44.04. 0.6] 12.5 17.6 15:0 | 19.0) 
23 | 40.7 39.0 '20.2120.0 1 3.2] 14.2° 20.9 15.8 | 10 BR 
24 |'40.8 40.1 40.7} 40 5:hen2le |mıs,antunggss | .17.38:) 17.4 | E28 
25 041.4 SA1.1 4.7 -ALEN = 20], 15.3°.518.0.74,15 4.) Faso rn 

i 

26. 742.4 721:.,9:348,0.1.42 2-8 1.000 04,0 16.1 |— 4.1 
27 21143.4 048.9 -44.0'1.48.8 = 0,4% 12.87 .116.1 7% 15.4. WB 
28%44.0 :48.3 43.3 | 43,5.)-+ 0!1|7 12.90.19.3 7 -.15.4 | Me er 
29 :043.0 042.7 48.6.1411 018 -15.710.218.6)7 1a.7 | Mens en 
302,43.,9 243.5 225, "A4o0R =2:025 0 13 022074 16.8 16.9. | 8.4 
31 46.1 045.9 46.6 | 62 GEH IT. 15.3 .920.7 1° 14.5 | 108 | 

| | | 
Mittel 742.45 741.87 742.26/742.18| —1.22| 14.8 20.1 16.8 | 17.1 |— 2.8 

| | | 


Höchster Luftdruck : 746,6 mm am 31. 
Tiefster Luftdruck: 736.7 mm am 9. 
Höchste Temperatur: 26,7° C am 20. 
Niederste Temperatur: 9.4° C am 1. 
Temperaturmittel?2: 16.9° C. 


ze 21: 
= 27E (da 14. 25 21 ). 


. 


TEE EEE AUGE = 
he ne 


TEE Ten en rem nt 


und Geodynamik, Wien, XIX, Hohe Warte (202:5 Meter), 
I, 277 IT Tanner. Gr 


Jul 1919, 


283 


Strahlung): 23° C am 6. 


Tiefster Stand des Ausstrablungsthermometers: 7°C am 1. 


Höchster Dampfdruck: 14,9 mm am 6. 


Geringster Dampfdruck: 7.5 mm am 14. 
Geringste relative Feuchtigkeit: 450/, am 4. u. 24. 


! In luftleerer Glashülle. 


r 
:] Temperatur in Celsiusgraden | Dampfdruck in sum Feuchtigkeit in Prozenten 

a a | | 
Max. --Min na la | A zu 4b _ 91m |Tages-| „un _44n...91n | Tages 
BE ; ® 3 mittel | - | mittel 

| Max. Max, | Min. | 

| 
178..9.4 39 26 7 9:0 9:3,410,0 9.4 954,-75 W868 s5 
al OR: 51 8 8 11.10.7W 41067 9.2 10:2 97 66 ) si 
9108 48 31-| 10 Sl, Ben 2.0 8.8 35 59 78 74 
BEE II: 1. 8 7 29. Bo 270 63 
23.5.112.2 50 = Sn. a 1,10» 12.0 212. LEI 84 63 7 74 
24.8, 4.0 50» : 27-1 12 1.FL:1N ARE. 14.991134 822 61 78 74 
25.2 ,15:4 551 89.1. LA. 12. AN 122 ME,3|. 10 80 60 94 78 
26.2--15.2 542° 49] 184.1.13.77 AI 212.032 BET 56 #289 73 
18.6 12.9 AB S0E | Pr OR 2 GE he 90 91 82 35 
19.0 14.5 AS le LONG, NE 3295 21020 75 64 73 72 
21.) 13.8 51 „.33-| 141 1.20.1VA058 012.35] 470 74.557 788 72 
22 .8..14.8 53: 31] .124,.10.7U 15 19.8 19,6 71 95 67 66° 
22.7 --14.4 480788.0 18 4.10.7 242.2 119.01 WA 7167: 64: W75 70 | 
ia Malle 47 31) 11 1.9 Ba, = 7.8 7.8 Dass os) 66 
3). Bl 45 80 9 8.9 9,3 8.2 8.5 BD 58,05 67 
20.9 12.2 |--45 31-| 12 | 8.9” v0 09.6] 9.2 | 7a. 507776 \068 ° 
207128 48 31 (11) 8.3 9.1 8.5 8.6 72,53 -56 60 
23.9 -15.6 52.187 9.3 9.4 11.1 8,9 64 47 66 59 
25.5 14.6 Da 0 el N 12.7 3.4.|.,12.9 SI et 70 
26.7 15.7 51 41 54 12.0, 127 2 I 1222 12V Ba ae 69 
20.0 —12.6 46 - 8D (14) 12.77 12,4 9.4 | 11.5 83 7281 79 
18.4 111.9.1-43 28-|(1P)|.0.5vUn ug 8.8.79 weiz.| 88: Sariup 70 
21358 52 34-| 11 1.10. W MMS 8.8. 10.2 86 "61 66 7 
20.4 12.8 53... .87 | 10 7.9 7.29 9.0 8.8 Ba 4a, 56 
U oa 7 ar A an een en Be N ft 68 76 74 
19.0 12.8 51 34) 13 9.9 3.9 31078 9.9 7 538 90 74 
17.9: 112.2 45 28| 11 8.8 9.0 8.2 8.7 s0 66 63 70 
18.9 10.0 51 35 9 9.6 8.7 10.3 93 88 52 --78 72 
19.45.12.7 AH es DE 5 MS RO: 86 78 82 s0 
Den. | 11.3 HL aa 10 106 RA 10.2 10.1 92 53 Ta 72 
21.3.213.2 50° Bar 141 9.10.6 9.9 18.E 710.2 81 540.182 72 
22.2 12.9 149:0 33,1 Eee 19,24.10:4& +40 .5:4:,40,4 8S0 59 75 71 

Höchster Stand des Schwarzkugelthermometers: 55° C am 7. 
Größter Unterschied zwischen Schwarz- und Blankkugelthermometer (stärkste 


* Blankes Alkoholthermometer mit Etats Gefäß, 0:06 m Wr einer ch Rasenfläche. 


284 


Beobachtungen an der Zentralanstalt für Meteorologie 


48° 14°9' N-Breite. ’ im Mon 


ate 


| Windrichtung und Stärke | Windgeschwindigkeit Niederschlag | 2 
' n.d. 12-stufigen Skala in Met. in d. Sekunde inmm gemessen | = 
Tag Pa as ee = 3 
zu 14h 21h |mMittell Maximum! | a 14h pn | 
1! | Q 

| 

1 B-158SE 28:4 2,8 | -SSBr 12.1 0,00, D.00 oe 
2. (1 2.50 EAN: Bl 8.0 EN Wr — — 2.le | — 
3 we Ew Hnag w'1r13.49 708 00.1 FED 
4 |wnwa wNw3 w il 3.8 | WNW 13.1 | 0.0e — a 
5 ESE & <SSE 1 ,2.,8° 4.2.2 SE 9.6 a = Ba 
SI-LsESEH ESE2T 0.2.0 14 SEC ELLE z 0.20 | — 
7 Wi NW Bzw Hisfz Kr INW iz. orte = 2.340) — 
8 ESE 1 NNW1 WNW6| 3.6 |WNW 35.1 _ = 20.70 | — 
9 |wnw5 wuw5 W öl 9.9 |wNW 25.4 | 5.66 16.9e 0.30 | — 
10 W 2 WNW3WNW2| 5.2 |WNW 15.1 2 = te 8 
11 W .1 NW 2 wNWwil 2.9 | NW 2 — _ 2.30 | — 
12 W. 3 wWNW3 WNW3|l 5.2 |WNW 15.1 || 0.8e = Ba. * 
13 |wWNw3 W AWNW5l 5.6 | WN\W‘ 18.2 =. — 0.1Ie | — 
14 NW ww 3,W 14.5 | WNW' 15.8 — 0.le 0.06 | — 
15 w ib SSE 1 Sswul 21 |'.SsE 3 111-0.00 Kr BE 
16 N 3 NNE3 NW 4| 4.6 | NNE 12.1 || 4.66. .0.2e REAL. 
17: |WNWi NNWA w 3 5.8 | WNW 14.0 | — a Be 
18:|wNnw3a NNE1I — 0) 2.9 |WNW 9.7 = er et 
19 — Br EU USSW HRS I SSW BT .B = > Be 
20:| ENE1 NW 1 ’W il 1.9 ,WNW' 15.0 ar. ” Ben 
21 |wNwWw3 NW 2WNWAl 5.1 | WNW 15.5 3.36 .0.8e 5J1el- 
22 |wNnw3 WNW4 W 1| 5.6 | NW 14.7 | 7.6e 0.4e - |- 
23 |wWNW2 WNW3 WNW2| 5.3 | WNW_ 14.7 || 0.3e = — ran 
24 | SUNW2.: N“) NW 2 2.3 IMWNW2.08.9 = = Ba 1 
25 W 1ıWNW4 w 4| 6.1 | WNW. 15.5 4 vn Se 
26 | WNW4 WNW4 NNW 1l 6.0 Wansala,8 = = 1.80 | — 
27 NW 4 NW 4 NNWi1l 5.8 | NW 17.1] 8.0e B2 I ee 
28 — 0 N; 1 0 DM  ENNWWR. 4 en 0.28 | — 
29 u Se a a) SE 4.4 = 0.le 0.1ej — 
30 — 9- N“ 1 NNWil.1.6 INNE 4 7.8 & en 0.12 | — 
31 = DB. BEA Ber Da" IE NW tea. _ = 0.58. | — 

Mittel 1.9 2.4 1:8 I 3.8 13.9 ||} 3748 ’ 48.62.2868 


Ergebnisse der Windaufzeichnungen: 
N NNE NE ENE E ESE SE SSE S SSWSW WSW W WNW NW 


Häufigkeit (Stunden) 

60 837 12 3 9 22 16. "IS el 4 78:20 NAT 
Gesamtweg in Kilometern 

465.323 37 10 45 170.131. 263 185, 127..30 33 1168 ‚33876 1337 


Mittlere Geschwindigkeit, Meter in der Sekunde 
1.7. 2.4.0.9 049,142 2.3 AR 2.7 0,8 72.8 Br Sara 


Maximum der Geschwindigkeit, Meter in der Sekunde 
6.4.5.8 2.5. 1.422 73.974.726, MON DD En OS LE 
Anzahl der Windstillen (Stunden): 34. 


Größter Niederschlag binnen 24 Stunden: 43.2 mm am S. u. 9. 
Niederschlagshöhe: 92.4 mm. 
Zahl der Tage mit e: 21; Zahl der Tage mit =: O0; Zahl der Tage mit R: >. 


1 Den Angaben des Dines’schen Druckrohr-Anemometers entnommen. 


NNW 


43 


6.1 


z 


und Geodynamik, Wien, XIX., Hohe Warte (202:5 Meter), 


Juli 1919. 112177 E-Bange’v.'Gr: 
a | | Bewölkung in Zehnteln des 
2 | sichtbaren Himmelsgewölbes 
5 = Bemerkungen Hari r= 
en u © 
> 5 7h 14h 21h en = 

I — 
ggmba | e) 930 — 12 zeitw.; a? mgns. [| 101 9071 0 6.3 
bbndn | ei KR 1535 — 1615, 8071 1630— 1740; 2? mgns. 10 6071 30 253 
gfedm | ei 015420, &0 735—810, el Böe 1510750, @0-1 | 101 2 7ie0-ı1) S.O 
bbede — [2050 — 2140, | 1 Bu 71 Be 
eednb | <in- NW 21—22. | 60-7 go 90-1 0 
bbene | oTr. 2030, ei R 2045 — 2110; Rin W 17— 18. 3 10 401 2. 
endba | e! Rin S 1225745, e2 iR 1615 — 1730.  [.a®”mgns.| 30-1 30-1 30 3.0 
ndeef |el7?R 19— 21, e 12350 — ; >24 aus WNW abends, | 60-1 9071 SleiR| 7.7 
ggeed | el 1—10, 60 10—12 zeitw., e!R 1220 — 1350, 017. 101el go-1 9180 | 9,3 
eedem |<in W 21. [18—22 zeitw. | 7071 7071 6012 14.6.7 
beded | eTr. 1450, 8971 1815— 1935, 2010720, ei 2130745, 20 6 60-1 7 
edmbb — | 5071 70-1 4071 15.3 
beegf |e% 1730—21 zeitw. | W301 8627 1012280) 7.0 
mddmg| eTr. 102030, ei 1315720, eTr. 18. | ‚11 071 10 3.0 
gggeg | eTr. 6, 6071 2315 — 101 100 OD 
gggim | el — TB; RinS 15—17. | 10180 100-1 100 10.0 
ecdng — Sal 60-1 101 6.83 
mbpnd — || 10 Sl 101 4,7 
babba | ool”2 mens. | 10 11 (0) 067 
bedeg |Rin SW 17—18; ei R 234 — IH 50-1 101 8.9 

| 
fgggg | e!—120, e1S— 10, ed ia-—12, 1415 zeitw.,|l.190 gl 10180 a: 
gfmbn | e!— 725, e® vorm. zeitw. [e071 1520 — | 10lel 90-1 11 RR 
gemaa ed 1 410-630, 91 Gl 10) 5.0 
beefg — | 4071 sı 100 4, 79 
gmedg — ı 101 10071 70... 9:0 
ddngg | el 1S— 07.058 g0-1 101el | S.3 
femba | e971— 550, 90-1 80-1 10 6.0 
cbdee | e0-1 1735750, 220 90-1 7071 6.0 
ffemb | e0-1 10—12, e0 1705720; 11730, alabend,. | 91 g1 30 1.0 
edhbb | al mgns. u. abds. | ‚S0-1 21 10 2.7 
benba | elf 1440 — 1530, e0 1610715; MO 1720, al mgns. | 19 10071 (0) 3:0 
Mittel 5196) 6.5 5.7.1, 0.8 
.| 
Schlüssel für die Witterungsbemerkungen: 

klar. f = fast ganz bedeckt. | k = böig. 

b = heiter. 8 = ganz bedeckt. | l = gewitterig. 

c = meist heiter. h = Wolkentreiben. m = abnehmende Bewölkunz. 

d = wechselnd bewölkt. i = regnerisch. | n = zunehmende » 


&»= größtenteils bewölkt. 

Der erste Buchstabe gilt für morgens, der zweite für vormittags, der dritte fürnachmittags, 

der vierte für abends, der fünfte für nachts. 
Zeichenerklärung: 

Sonnenschein ©, Regen e, Schnee %, Hagel a, Graupeln A, Nebel =, Nebelreißen = 
Tau .a, Reif —, Rauhreif V, Glatteis ru, Sturm 9, Gewitter R, Wetterleuchten <S, Schnee- 
gestöber #, Dunst oo, Halo um Sonne &, Kranz um Sonne ®, Halo um Mond Q), Kranz 
um Mond W, Regenbogen f}}. 

eTr. — Regentropfen, «Fl. = Schneeflocken, Schneeflimmerchen. 


BEER UNT? 


285 


Beobachtungen an der Zentralanstalt für Meteorologie und 
Geodynamik, Wien, XIX. Hohe Warte (202°5 Meter), 
im Monate Juli 1919. 


Ver- | Dauer |5, E — | Bodentemperatur in der Tiefe von 
dun- | des |S5=3|0.50m 1.00m 2.00m 3.00m 4.00m 
Tag | stung || Sonnen- ee 
inmm | ne S E 8) Tages- Tages- 14h 14h 14h 
zh kunden äo © Ep = | mittel mittel 
1 0.4 3.2 4.7 14.9 Kam2 12.6 10.4 9.4 
2 190) 9.6 7.3 15.4 14.9 12.6 10.4 9,4 
3 10) 4.0 a3 oil 14.5 26 1030 9383 
- 1.4 ahgsil TRNT 16.6 14.5 12.6 19.5 9.5 
5) 0.9 10.6 27 729 14.9 129 10.8 9.9 
ö 0.6 11.9 1»3 19.0 19 12.9 10.6 9.6 
7 12.0 ae! S.0 2042 15.5 112.9 10.6 9,6 
S 1.8 s.4 9.0 20.8 1539 12.9 1026 9.6 
9 1.0 4,4 L2RO 20.0 16.4 1308) 10.7 DER 
10 1,8 4.9 KO) 1920 1026 12.6 10.7 ea 
11 12 11.4 8.5 19.1 625 12.6 10.8 Ey 
12 ZN) 10.1 9.3 19.8 16.0 1247 10.8 08 
13 2.0 8.3 0) 201 16.6 1228 10.8 9.5 
14 1.4 10.4 9.3 1927 16.7 1208) 10.9 9.8 
15 N 0.9 8.3 19.2 16.8 12.9 10.9 9,8 
16 20 1039 11.3 19.1 16.8 13.0 10.9 9.9 
17 2.4 10.8 11.3 18.6 1647 13.0 10.9 %9 
18 1.4 12.0 8.0 19.6 16.6 13.1 ER) 9.9 
19 a) 13.5 all 20.8 16%7 Por 11.0 9.9 
2 12 1 en. 17.0 18.1 11.1 10.0 
21 0.8 02 12:7 2088 17.4 132 ale 10.0 
22 1083 DL JRET. 1985 17.5 13.8 lg 10.0 
23 0.8 8.6 9.3 18.8 1799 13.4 17,2 10.1 
24 1.6 8.0 10.3 19.2 INer 13.4 11.2 10.1 
2D 6 3.6 9.0 19.4 er 13.5 Ih leer) 10.1 
26 hai 9.0 10.3 eh al 11 13,5 11.3 Or 
27 1.3 3.4 1920 18.7 17.22 13.9 lets 10.1 
28 1.0 1.6 112.0 | 15.4 17.0 13.6 11.4 10.2 
29 0.4 2.8 5.7 IST. 16.9 13.6 11.4 10.2 
30 1.4 ol Ba 15.4 16.9 13.6 110 10,3 
31 10 10,8 9.3 19.2 16.9 Nora 11.5 10.3 
Mittel 1 Te 8.9 19.0 16.5 13.0 10.9 9,9 
Monats-| 38.4 287.9 
Summe 


Größte Verdunstung: 2.4 mm am 17. 

Größte Sonnenscheindauer : 13.5 Stunden am 19. * 
Prozente der monatl. Sonnenscheindauer von der möglichen: 490/,, von .d. mittleren: 8S0,,. 
Größter Ozongehalt der Luft: 12.7 am 21. 4 


Der vorläufige Bericht über Erdbebenmeldungen in Österreich wird wegen des spär- 
lichen und unregelmäßigen Einlaufes der Meldungen in den nächsten Monaten zusammen- 
fassend nachgetragen. 


186) 
@) 
| 


Beobachtungen an der Zentralanstalt für Meteorologie und 
= Geodynamik, Wien, XIX., Hohe Warte (202'5 Meter) 


Windmessungen mittels Pilotballonen im Jänner und Februar 1919. 


Seehöhe: | 230 : 7 500% |Ü 1000 1500. | 2000 2500 Größte Höhe 
| ön 80 BD... BD I 55 & &n 
Datum SS es es Se Seele 5 = Se 
Zn 3.0 Sn 2.0 22 a ee 
M. Z. E al a ale ir Sa Sa aa Zi a aa = oe Sa a = ak aa Fe 
fe=) & c & [a7 = - e 
Jänner: 
1. 958 Ww 8 NW ZENW- 13 2SW: 17,8NW 16) SSNW 10] 27. 0NW, 10 
2...912 —_ 01 SSW ALWSIWV A\WSW 3 .W..° 6|..W,; -94 31 als, 
4. 904 S 91,8, 221 SSW 361,S8W, .11,.8W, 18) .S\W- 231.43 |1,8W, 3 
Ss. 894 E 3! SE 8| SSE 16| SSE 21| SSE 25) SE 24| 37 | SSE 29 
13. 1004 — Ol, ai. AUWSW, A4l,cW,; 7) 5 Win 6ua\Wle BA0 EV 8 
24. 853 WNW 3. N Ss N SINNW. 5 ENE 6|. W,. 0158| WSW..7 
29. 927 NNE 2) ENE; 6,8 14, E13, Ei- 111 ESE. 171,80 ESE 19 
30. 855 NNW. 4, N0W. 7, ,NE-, 6, . E Ars 6) 20 E 6 
Februar: 
5. 940 WNW- 1I3VNW 51 (NW 101 WNW14WNW-. 7| SW 5152| W.21 
6. 934 N 8S| N\W 7|NNW 12| NW 20 18) NW 28 
8. 900 NNW 6| NNW 10| NNE 12| NNE 21| NNE 23 20| NNE 23 
11., 9% W 83 WNW10 NW 23) NW 13| NNW 14 N 9| 38| NNE 14 
12. 900 We 5IAVNWIICNW: 23] ©2NW' 32| NNW 17 21 | NNW 14 
14. 853 E 2) ESE 6|° S 13] SSW 13| SS\W 11} SSW 111 46 S 512 
18. 1009 ESE 3 Ww 11 SV wel 
21. 103 ESE 11WSW 4 °W° 3 8SE 2) SW Ol ESE 1] 3858| SSW 5 
DLINOAT _ OES Sims 7@s 7|-SSE 4| SSE 31 61)| 8W. 28 
25. 808 — 0.WNWV 3) W 2 NWUI Al ANWEI 6 23INNW 9 
26. 939 S IIWSW 51° W° 21 [31 Pr 25 
28. 1018 W 19 WNW 14 WNW 16] AVNW 201 WNW18I WW. 121 30) 8\W 7 


Seehöhe: | 3000 | 3500 4000 4500 | 5000 5500 | 6000 
Jänner: 

2, 912 W 14 | 

Au I SW. 25 |, SW 25 | SW; 34 

Ss. 8 SSE 24| SSE 30 

13...10% WSW: 9... W 8 W s 

24.85 SW. 21, 8W: 2:88 22SBW 81 B\V -3| SW. 8 

29, 92 ESE 19 | 


Februar: 


5. 960° we 9% We 15 w rw Ast: Ww W | 
ri, 9% N TUNNE 13 g 
14. 853 ssw 9|ssw 9| SSE 9 = 48 
m 21. 10% SE 2 S 8 
22. 10% SI. 8 SSIV 13 | SW 17|:8W 191 BW 22| ISwW 25| SW 26 
28. 1018 SW 7 ; 


285 


galten an der Zentralanstalt für Meteorologie 


Windmessungen mittels Pilotballonen 


Seehöhe: | 230 500 1000 1500 2000 2500 | 3000 3500 
SER, ‚sro lan ne ee 

Datum 5% Eur ER: 38 ER 35% 3% EEE 
an nn a an an aan au a N an 

M, E: Zu 20, | TS 2 8 TR Sie leere To 

| P4 ja rs ja ra ja ra je 2] 

März 

5. 1009| w 9) W 17|WNWI5|WNW12| NW 9|wWNW12/wNwi13l W 11 

6. 8566| — OINNW 2| NE 2IWNW 3) W 3 

8. 8%| NNE 1| SE 3 S 4|SSW 5] SW 2|WSW 5IWSW 6|WSW 5 

10. 849 |WNW7IWNWI1| NW 11| NW 10| NW 11| NW 18 

11. 8385| W 6° W 13|WNW 8| NW 9 

12. 9388| ESE 3) SE 7 S 14| SSW 15| SW 9 sw ı13]"sw 15| SW 14 

13. 8542| ESE 1 W 3 1 W 16|WSW 8 SSW 8| SSw 13] SSw 16| S 16 

17. 1068| NNW7| NW 7|NNW 15) NW 18| NW 18 

18. S|WNW4 NW 7|NNW 14| NNW 15] NNW 18| NNW 14| NNW 12|WNW 3 

20. 9202| NE 2) NNE 1| w 2|:Sw Awsw 3 w 3wNW 4WNW 5 

29. 932 |WNW7| WNW 10] WNW 19! WNW 17| WNW 12 

31. 935 | WNWS|WNW29| WNW 13| WNW 17) WNW 19| WNW 39| WNW 35| WNW 39 

\pril | 

1. 980IWNW6| W 7. W  9)WNW17IWNWI13|WNW 9|WNW 7|. W. 18 

3.85 | NW 3, NNW ANNE 12) N 9) WSW 10] « »- 

5 9233| ESE ıWNW 3) w 8 

7.950) ESE 2| — SSE 8| SSE 8|: S. 8| SW 6|WSW 8| sw 3 

10. 94%0| ENE1|ESE 3) — SIR 7 

11. 915IWNW6| NW 12| NNW 10 

16. 9566| W SIWNW SIWNW10)| NW 8WNW 8| WW 10|WSW 9 

17..94| W 6|WNW12| NW 9 NW 9|NNW 8S|NNW 9| NW 10 

19. 936 |wWNW8| NW 101 N 14 

24. 858|WNW6| NW 101 NNW 8S|INNW 10 NNW 10 N 6| NNE 4 NW 4 

28: 8312| ESE 4 SE 4| SSE 14| °S 9) SW 10. SW -7|8SSE 2) wSWw-6 

30. 9455| SW 2] SW 2| SSE 2|wsw 5] wsw' 6 

Mai 

9, 9419| SSE 4| SSE 9| SE 10) SE 10 

10. 8433| SSE 6| SSE 7| SSE 15| SSE 12) S 9| S 3 SSE 5|°S’ 5 

12. 835 |WNW6IWNW 6| NNW 12| NNW 11| NNW 12 

15. 94Ul. N ‚5:4 N. 8 IN „dl N SL NNE O|NNE 13). NNE 12 Nee 

16.901 |°N A N 8 ıN "EI NNE "EINNE 7 N ZI NNE 7 weze 

17. 927| ENE 2| NNE 2) S O0|NNW 9| NW 13 

22. 8577| NW 3) NW 5| NNE 8| NE 11| NNE 12| NNE 10] NNE 10 

23. 830|NNW6|NNW 5| NNW 13 

26... 917 ıNNWA| N. | NNE. BI NNE 7 N, 5v.Nc 5l%7N, sie Nase 

31. Sö| ENEıl S 3 SE 2| NW 2| NW 6| NW 8 


und Geodynamik, Wien, XIX., Hohe Warte (2025 Meter), 
in den Monaten März, April und Mai 1919. 


2 
oO 
oO 
oO 


Richtung 
m/sek. 


> 
[11 
[> 
>, 


a 
= 
(=) 


(bit 
oa 
oO 
oO 


Richtung 


Richtung 
m/sek. 


Richtung 


m/sek. 


6000 


o© 
=) 
> 
o 


Größte Höhe 


m!sek. 


Richtung 

Richtung 

Richtung 
m/sek. 


ım!sek. 


m!sek. 


Richtung 


/ 


Richtung 
ı/sek. 


Ware 


| WSW 15 


SE 2 


WNW 1 
WSW 8 


WSW 23 


ESE 3 
WSW 7 


SSE 5 


NNW 17 
NNE 9 


WSW 


SSE 


E 
WSW 


Ss! SSE 15 


3 SE 2 
13) WS\W 1A 


5| SSE 4 


NNE 11 


9). S 131 SSE 12 
45) WNW17| WNW 24 


SSE 
Sy 


NNE 12 


WNW2 


DEIGEINVS elld 
ZU BEN: «u 
WNW. 
N alt 
NW 8 
SW 14 
SSE 18 
20) WW 118 
WSW 3 
WNW10 
WNW15 
5| WNW 39 


WSW 29 
22 BE W. 
12) WNW 
SSE 


15 
75 WNW21 
)) WSW 6 


SE 
S 
211 NNW 
N 
NNE 
NW 
NNE 
NNW 15f 
N 
NNW 


290 


Beobachtungen an der Zentralanstalt für Meteorologie 
Windmessungen mittels Pilotballonen 


9 
| 


Seehöhe: |: 230 500 | 1000 1500 | 2000 2500 | 3000 | 3500 
a En. nn.  . SR & xy En 1 It RE 
Daum ER 554 Dal se gel Seele 
sea 52 a m Sn z2 3.2 = 2 52 
M+E232.-138 8 DorS SS SEN SEN 2 —_ ER 2 
-E e2 | ® ge, a2 EB ar | ARE & 
Juni: | | 
1. 96|wNW2| NW 2 N 4 NW 9| NW 9 | | 
2. 912I|WNW5|WNWI12 WNW 9 W 4 W 4AWNW AWSW 5 
3..83583[| NW 6| NNW 7| NW 6/[WNW 13) WNW 18| WNW 27| WNW25 
4. 1165| WNW7|WNW13|WNW10| NW 11| NW 11 
8. 10381 NNW.A| «Nu 6 NNW :8| No 51 EN. 771 0.N. ZU. N “ZUNNEHR 
9... BE WV 5 el EN IC EN. 284 i 
10. 835) NW 5|NNW 7| N 6| NNE 7| NNE 11| NNE 11| NNE 8| NNE 7 
11. 858|NNW4|NNW 7| NE 9| NNE 8| NNE 5 
12. 9185| ENE 2| SE 3| SSE 6|WSW 2/|WNW5| ww 4A WNW ANNW 2 
14. 94| W 6|WNW 7|WNW18| WNW 16| WNW 18|WNW 22|!|WNW15| W_ 13 
16. BES INNWA. Ns 2) N 2, IN 4A NNE>10) NNE Ill a0? 
17. 852INNW2INNW 3) NNW 3) NNW 5I| N 6 N 10 
18. 9285| NNE 2) NNW 4 NNW 3I|NNW 6 N 5| NNE 6 NNE 6| N. 7 
19. 9| w 3) w 38S8w 3) SW 3 NW 3INNW 4'NNW5 N & 
20:,.856 TB 1wsw. il IS 3% 13.74 SSp Fell BE I: ENE Al wos 
21. 8727| E 2\wNW 1|wSw 2|wNw 1wNW A W :4:Sw 3 Sw 3 
>23. 1016| SSE 4| SSE . 2| SSW 2 | | 
24. sa| S 3 S A SW A SW AWSW 2|WNW 5) w 8 WwNWwia 
55. 8599| W 8IWNWI11WNW15| NW 16| NW 17| NW 15): NW i11| NW 10 
26. 83| SSE 4| SSE 9| S:15| 'S. 22| SSW 21 
28. 837 | WNW1A| WNW 22| WNW 22| WNW 23 
Juli | 
2. 825.| ENE 1| SSE. 6 Sr 13 SW 10 | 3 
4. 99) W 7IWNWI3|WNWI11| NW 8| NW 12| NW 7 WNW14| WNW11l 
5 83 EB -2| SE 1|l .S.. 7) SSW. 8! SW. 5) WSW 6 WSW sSINSmIo 
7. . 84|ESE.1| 8) 27 SWw 2 WNW. 0). SW” 4LSW” All WERT Nr 
10. 1037| W 9| W 8WwWNWwi7z| NW 16| NW 11 
{1. 907I)WNWA4|WNW 3 WNW 9|!WNW11|WNW 9| W 7 wWw 9 W 
12.:916| W 7| W 8S| W 16|WNW15|WNW13| W 16 WSW 17| WSW17 
13. 93) W 44 W 7Z|IWNW 7IWNW 9|)WNW 5 
14. 937) NNW 5| NNW 10| NW 10IWNW15| NW 18 
15. 923) SSW-2| 8: 6) SSW A| SSW 4 SW 7 
: 17. 921 WNW6| NW 6) NW 14: NNW 20| NNW 28 | 
18. 909 |WNW5|WNW13| NNW 6|NNW 51 NW 7[INNW10| NW _6/ NW 
19. 920 ENE 1) ESE 2 
20; 981 W.5| We 7 0 Ww 6. W8W'2L SW "3 SSw"5| Ss "7 Ssswee 
23. B6|WNW3IWNW 4A W 4 | 
34. 9a N 1) No 2INNW 3INNW 5 NNW 5 
95. 1016| NW 5| NW 8 N 1414| NNE 8! NNE 8| N. 10) NNE 10) N 
‘56. 9390| W 7IWNW15| NW 19| NW 19 
38. 9092| N 2\NNW 2|WNW A NNW10| NW 8SIWNW 7) W 4 W 
30. 85s| NW 2? NNW 2| NW 2| NW 2INNW 7|INNW 7| NW 8 NW 
31. 88INNW2|NNE 2 N 6 N 7INNW 5|NNW 3! NNW 4. W 
Seehöhe: | 8000 | 8500 | 2000 | 9500 10000 10500 
10. Juni 835 NNE 12| NE 13) | 
12. Juni 918 N NNW.2. N 8 NS NIE 


und Geodynamik, Wien, XIX., Hohe Warte (202:5 Meter). 
in den Monaten Juni und Juli 1919. 


4000 4500 5000 | 5500 | 6000 | 6500 | 7000 | 7500 |Größte Höhe 
SR ae D. &n . | do N on | 
Brennen re een. eg ee 
SS BE or ee Sa 

& E e a | & E E E | z 

>| NW- 8 

32| WSW 5 

30| WNW 25 

| 24| NW 13 

NNE 11| NNE 15 4149| NE 15 

k 00 N 24 

EINNE 8|INNH 6 NE 7|NNE 7| NNE 5| NNE 5| ENE 7| NNE 5186| NE 13 

j 24 N 6 

2 Iwnw 4|Inuw 6|NNW 7|NNW 5| NNW 7|INNW 7| NNW 6| NW 614 NNW 7 

F | 33l w 14 

E 

. ZEN. 

N 7 N. 9 NNE 10) NNE 9| NNE 44 SNE 13| N 4|NNWw18s0l N 14 

N AawNnw alWNW 6 WNW5| NW 3 601 NW 3 

|SSE 2| SSE 1lWNWw ı| NW 3|.NNE 2 61| NNE 2 

sw 3 w 2| NW 3 NNW5| N 3 NNE 2| NNE 3| N - 3106| NNE 4 

I12| wSsw 5 

w is 42| w 18 

1851 NW 10 

24| SSW 15 

15 WNW23 

19| SW 14 

ww 7 w s| ww 5WNWUuWNW2 1671 WNW 24 

WSwiolwswiil w 2) w 3 wa wWw 4% 67| W 14 

wswil w 10 47) Ww 12 

21| NW 10 

Bi w ı 42| Ww 16 

EI w 16 w 15| W s|WwSWw 6| SSW 43 6.W 7 

a 21IwNnWw 4 

4 22| NW 20 

N 23|wsw 9 

j 1231 NNW 20 

ZI WwWw AwNW AWNW 8 5ıl NW 9 

7|wsw 2 

Ss 51 S 5/I sw 3lwsw 4 Sw 8 61 SW 9 

tl wer 8 

ni; 23) NW 6 

a 


a 
I18| NNW 13 
35 w 9 
w 11|WSW13l WSW 2] WSW 2 61) WSW 21 
41|WNW 6 


9000 | 9500 | 10000 | 10500 
| 
| | 


Seehöhe: 8000 | 
| 
N 6 N 9 N 6| NNE 6 NNE 4 
| 


| 
18. Juni 928 N 14 
| 


Pr Juni 8% NNE 5 


% 
Le 
" Fan 
D Pi A EN 
Is 
Korg 
j 
Her f 
ir 
H 
1 
> 
en 
en 
. 
ed 
4 Y W 
x 
Y B 
x R 
EAN 
Bar 
EEE 
zn 
Pe . 
5 . 
3 k 
. 
A 
. 
p = 
\ 
AR 
4 
f 
1 
i 
| 
j 
i v 
N 
“ ir 
je ’ 
[; ” 
! 
ER IReT 
x « a ir 
MR Nez g‘ 
[7 ’ 


an 


AK co 
2 AL 


1919 “r..& 


Monatliche Mitteilungen 


der 


Zentralanstalt für Meteorologie und Geodynamik 


Wien, Hohe Warte 


48° 14°9’ N-Br., 16° 21°7’E. v. Gr., Seehöhe 202-5 mn 
Zeitangaben, wo nicht anders angemerkt, in mittlerer Ortszeit; Stundenzählung 
bis 24, beginnend von Mitternacht — Oh. 


August 1919 


1 


j 


\ Anzeiger Nr. 19. 31 


294 


Beobachtungen an der Zentralanstalt für Meteorologie 


48°14°9' N-Breite. im Monate 
Luftdruck in Millimetern Temperatur in Celsiusgraden 
Tag Abwei- Abwei- 
3 "| Tages- chungv. Tages- |chung v. 
h } hi 1 h h 
7 LE 212 mittel | Normal- 7 14 28 mittel? |Normal- 
stand stand 
1: 1746.7. „745.9 745.2 145291 722 14.7 22.8 19.8 19.1|— 1.3 
2 44.9 44,5 44.1 | 44.5 |—+ 1.0 18.2 19.8 18.0 18.7. = 2106 
3 are re ilteys ıl il 22 19.0 | — 1.2 
4 14.382, 45.02 BAG HE ASN SB 14.2 1872 13.8 15.42 
5 46.1  A8.8 A3.01 44,87 058 1229 le) 18.0 17.1.8300 
6 4320, 407 85 429174276, 2029 16.1 20m 170.0 ee 2.8) 
7 40 292 AUR0r SA83202 ER ACE—g) Sal ana 1125 16.1 | — 3.9 
8 au ee ed. 22 13.9 16.9 15.0 15.3: — 826 
9 49.6 48.9 48.5 149.9 |-+5.5 13.4 19.3 oral 16.17) ya 
10 218227 2730,23 46:47 1 4781922336 18.6 25.8 22:6 22 31er 255 
11 A ee een) 15.0 >7.9° 19.4 21.8|—+ 2.1 
12 47.4 46.2 47.5 \| 47.02 3.5 15.8 23.6 20.1 19.81—+ 0.1 
13 48.6 46.8 44.9 | 46.8.|-+ 3.3 Ta 24.7 2022 20.7 !—+ 1.0 
14 au en zul | 20 27.8 219 23.5 |—+ 3.8 
15 Ay) er are | ee 1arsıl Zale®, 17.8 18.1 | — 1.6 
16 ne er ee 2 14.6 DOM 15.4 16.7 | — 2.9 
17. 47.9, 46.7 47.31 47.3 | -+- 3.7 14.5 23.8 BAlTERT, 20.0 | + 0.5 
18 AST FASSADEN 19.8 24.9 192 21.83 89 
19 48206 Ara AB Se are a! 26.8 20.4 21.4. 1 a2 
20 Ar ee RE zahl 27.0 2225 22.2 
zul 44.9 43.4..,483.8.1.44.0.1-+- 0.3 19:5 30.7 24.2 24.8 |—+ 5.8 
22 ee A 47.1 |—- 3.4 18.9 le ee) 19722) 23082 
28 a a U ES eg Son ee er 16.3 an) 10225) 1952-2055 
24 43.7 40.6. 4202| B2anl Zr 17 16.4 2259 13.4 17.6: 7 
29 ORGEL ASIAN 42.9 As 108 1720 12.8 14.0 4.5 
26 lo eis allen || asia | 505 7 19.0 14=5 19.1 es 
27 311...95 23926, FAR | 8 9H0 a — AA: 13.6 20.4 15.4 16:5. | —el8 
28 ART AA AR. | AA.S | 2067 15.9 DONE, 18.6 19.2. LO 
29 Aa 4925977409, 9E 42 5a 16.0 24.6 20.6 20,22 
30 alarsı ers)  Alasaer Ir@kge! 4.0 SAD 2 332 1226 18.0 | —+ 0.0 
Sl AASAT ADRIA NASE 10.6 16.4 13.8 13.6 | — 4.3 
Mittel 745.18 744.17 744.461744.59| 40.89 16.0 RE) 17.8 18.7 | — 0.6 


Höchster Luftdruck: 749.6 mm am 9. 
Tiefster Luftdruck: 737.3 mm am 26 
Höchste Temperatur: 31.3°C am 21. 
Tiefste Temperatur: 9.8°C am 5. u. 26 
Temperaturmittel: 18.5° C. 


52,9). 
ZU 2,27, 0,9): 


und Geodynamik, Wien, XIX., Hohe Warte (202:5 Meter), 


August 1919. tor ale ieebängerv-Gr: 

Temperatur in Celsiusgraden Dampfdruck in mm Feuchtigkeit in Prozenten 
Seliwarz- Blank- | Aus- 
Max. Min. | kıgelt kugat! Stab: | zum jan gm [Tages u jan gm | Tages- 
lung ® mittel mittel 
Max Max | Yin, 

ZAm2Me 11.8560 36 11 BI a. 2. men ir 90749 5 66 
2122 116.6) 50% -34 14 Mill. dr. BOB ION BI“. „mA 66 
22.9 16.7| 47 83 a2 120 len Mor rl ze 150 re 72 
ismas 712r 0047029 9 7.8 ZA T.S Tez | 764 wet For 59 
21.3 9.8 48 32 >) 3.7 210,29 1129 1.1089 8317 550 70 
20.8 15.5| 45 32 ar I lzror + ars Aa. Pl3ret 79002 795,,30 86 
19=8 18.9748 #37 12 17. 20..087 Pi 95a 10.0 771.285 08 78 
as 12.8) 48 30 ln! et aan lu "68.9655... 58 
20=50 12.2790 =.88 11 7.9 8.4 10.3 8:0 1769 24507778 66 
26.2 13.5] 54 3 12. ,.10.3 211.8g..4.9 K IRS | 6 EVaso 59 57 
28.2 16.0) 57 41 tor 213.212 100 12 89.9189, 88 69 
2a.)  15.7\ 50° 35 13 92.3. 21906229505 15.1020 el 58 
Dom 9E 1 14219452401 18) |, 11.6,.710.,9 7 132 20 120 Ü 47,7 08 68 
Benaa lo.5| 92= 37 | 15 I 11:3 90.85 773.0 1.7 DES ITE 67 56 
24.1 13.9) 50 34 15 8.9 8.10 ,7.0 8.2 64 45 52 54 
j leo, ı 11129 TAomr32 10 8.6 DR lSEINA 0 095,952, 02 64 
24.8 11.9] 49 38 11 98 02.108,93, 29386 7 10201 1950, 50 60 
25.4 17.4) 52 38 9,1172. 27007,6.21129 1, 12.0 TEENS u 64 
27.0 15.3) 54 41 147 12.30°°10.6 18.6 | 1252 39m AU 76 67 
27.4 15.2 52 40 14 | 13.3 13.0 15.4 | 13.9 U ri) 72 
81.3 17.8, 56 43 14 | 14.5 IS pre I DZ, 88 830 54 57 
24.3 16.8] 49 34 ze 62 1250210.0271927,58 17.101059 N2597 280 73 
23.5 14.2) 49 35 1221810. 9/7710.4.7 28.9.7 10351 739450, 098 62 
22.9 12.890 =33 12 9.2 9.8 10.5 IT 6 45 91 67 
720 10,.831.50, 28322 1.12 8.6 6.4 8.5 78 80 44 ,77 67 
19.3 9.8) 49 31 9 9.2 9.6 10.4 IE 902.58, 5 78 
Bali 112.7 746032 2517 10.4.2211.9.010..28 1710,37 STEGE RTB 7m 
Dana, 12.8 79507=35 11 0 9 Ze 8272.32, 478 MA 
\ 25.2 14.4| 50 34 13 | 13.2 14.3 14.2 | 13.9 On 6227 108 7 
24.2 10.6) 50 37 ern 13.67 1.0 °79.2, 1258 37.0.662.2:50 79 
17.1 9.9| 46 29 10 129 7,00, .9%0 8.1 | 78 „00 do 70 
222 118r.7100. 1 3521| 2a 1046 10.5 10.9 | 10.7 ae 67 


N Höchster Stand des Schwarzkugelthermometers: 57°C am 11. 


f Größter Unterschied zwischen Schwarz- und Blankkugelthermometer (stärkste 
‚"Strahlung): 29°C am 1. 


5 Tiefster Stand des Ausstrahlungsthermometers: 8°C am 5. 
% Höchster Dampfdruck: 15.4 mm am 20, 

Gerings!er Dampfdruck: 6.4 mm am 25. 

Geringste relative Feuchtigkeit: 300%, am 21., 


1 In luftleerer Glashülle, 
® Blankes Alkoholthermometer mit gegabeltem Gefäß, 0.05 m über einer freien Rasenlläche. 


296 


Beobachtungen an der Zentralanstalt für Meteorologie 


48°14-9"' N-Breite. im Monate 
| Windrichtung und Stärke || Windgeschwindigkeit Niederschlag, 2 
| .n.d, 12-stufigen Skala |in Met. ind. Sekunde in mm gemessen D 
N = | ee em = 2 
= 
zu 14h 21h Mittel  Maximuml 7h 14h 214 [5 
102) 
1 — 0 WNW3 WNW1 DT Nw 10.0] _ _ = 
2 NW 3.WNWA WNW1 4.3 NEO _ 0.08 0.le | -- 
3 WE 20 Was N .NWVE Dr U IWENIVWVG 1522 = 0.0e 0.006 | — 
4 NW 3.WNW3 WNW1 4.3 | WNW 13.8 _ 0.08 a 
5 SSE 1 Sye2 Se 2 27. al ESSEIE, It = = 0.08 | — 
6 — 9. SE 1 SE 1 1.0 S 4.7 0.l1e :0.0e 0.28 | — 
7 We 3 a Van NW SR. END GT = 5.08 1.4e | — 
8 WOW 220.0 22 4. NW,2 | 8.4, WNWN 8.6 = O0.le — |— 
9) IWNW3-..N . 2 WNWiıı, 2.6 | WNW -7.3| e= — _— | 
10. [|WNW2 WNW3 WNW2 3.4 N 323 — —_ — Il 
ll — 0 WSWw2 NW 2 3.3 N 18.3 | = — 7.4Ae | — 
12 NNW3 .WNW3 WNWI1 4.6 | NW. 12.3 = — —e He 
13 WI 2 el N 1.8 | W.NW. :6.1 _ — —e 
14. |iWNW2,,.W A Wis 2 8»9 VS .1,32.6 u == 
15 Ne AN 8 SNNET 4.0 N 12.3 —_ — |- 
16 w 1 En ER 1 1.2 NW 4.9 2 — —KHlE 
17 SSW 1. ESE.1 WNW2 0.9 ENNV? 80. = -- — les 
18 WW SEN Ware: Nom 3.4. ‚ı WINWE 18.1 — _ —; le 
19 un Oel N 0.8 W 4.7 -- — — 
20 — 0,,8E8 I8SW, 1 123.1, 2SSE 0 29.4 = —_ —, I 
2i — 0. WSW3 WSW3 12.61 EONW 9133 _ — — 2) — 
22 N, Boa. N 22 WINMWA Lk 852 1 BINW- 28:8 0.2® - 0.00 | — 
23 WNW2 WNW3 WNW2 3.5 | WNW 15.2 0.08 —e 
24 -:|WNW3 WNWA W 1 4.6 NW .20.0.| _ - 3.08 | — 
23 NW 3 NW3 WNWi1 2.9 INIWVE 28.4 1.7e 0.0e — 7 
26. |IWNNV 1 S 3. SSE 2 3.6 | SSE 15.0 _ _ 0 
27 SW Wi Vi 1.5 |LWNW 3.3 E 0.0e 0.08 | — 
28 Ne 1 Sl — 0 1216, | ARSEN GE 78.5 _ —_ —E 
29 SE 1. SSE.2 SSE 2 2.0, | 5SS8B,7.109 _ _ —e len 
30 — O0 .WNW3 WNWA4 4.1 | WNW. 21.7 _ — 2.3. | - 
ı 81 WNW3 NW 3 NNE1 3.8 | WN\W. 13.6 6.50 _ — 
Mittel let 2.4 146 3.0 11.4 8.0 D. lo 
Ergebnisse der Windaufzeichnungen (nach dem Schalenkreuz): 
N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW 
Häufigkeit, Stunden 
Sl! 14.,,20 A032 8 24: ,.1%,41.26,., 184085 
Gesamtweg, Kilometer 
35 637 780 AElEE6z 85 -127 578. 31l 54 123. 140 1533. 2946. 1174 443 
Mittlere Geschwindigkeit, Meter i. d. Sekunde 
0.6'1.7,1.2 Pimasie7u 1.87 2,.0- 2.7 1.9, 1.4 2.8.9.4. 4 Vor 
Höchste Geschwindigkeit, Meter i. d. Sekunde 
Bine 2,2 095,0 7.2 0.8 0 30. ee ee er 
Anzahl der Windstillen (Stunden) = 63. 
Größter Niederschlag binnen 24 Stunden: 28.8 sm am 30. u..31. Niederschlagshöhe: 


48.0mm. Zahl der Tage mit e: 10;. Zahl der Tage mit =: 3; Zahl der Tage mit R: 5: 


! Den Angaben des Dines’schen Druckrohr-Anemometers entnommen. 


und Geodynamik, Wien, XIX., Hohe Warte (2025 Meter), 
August 1919 16 217. B-Fänge v. Gr. 


Gage Bewölkung in Zehnteln des 
28 sichtbaren Himmelsgewölbes 
ER Bemerkungen — 
38 Do 
= zu 14h 21h en 
3 | .& 8 
bened | al mens. 10 61 gor1 9.9 
ffgff e) 10, 1820730, 80-1 10172 9071 9.0 
edmde | eTr. 14, e' 16— 18 zeitw., 21. 9071 4018071 8080 9,0 
bndeb | 89 1159, 11 51 30 50) 
bbngg | e0 1925, el 2215 — 24; al mgns. 10 801 100=1 6.3 
gfgge | "657, 7—8 zeitw., 1210, 17 — 20, 10160 „40071. 310071) 1950 
effee o0 910715, el 1215 — 1415, e172 Böen 16— 1740, 100-1 10180 gso-1 9.3 
ffeem | el 715725, eTr. 1158. [e0118— 20 zeitw.| 100-1 71:2 nl 2880 
ccebbb _ 10 21 10 .ö 
ndbbb — 40-1 20-1 11 2.3 
ednfe | el72R 1630 — 1735, 8071 1840—19. 30-1 34 _. A72 5.0 
eddmce | D115— 16. 10071 6071 40 687 
cbbaa 60 10 0) 2.3 
bbbbn _ 30 0 10 lo) 
embba — 70-1 10 0 2.7 
i aaaab | „01 abends. 0) 0 0) 0.0 
| Ibacnf | Sin W 20-21. 0 10 8071| 3,0 
cenee | KinS 17. 11 al 90-1 4.3 
mabaa | al mens. N) 1071 0 0.3 
aaaaa | al, =0 mens. Se 0 9) 0.0 
bbnee | Rin SW 21 — 24; el71 2345 — 11 11 61 27 
ggfmb | e071—050, &0 6, 1420730, eTr. 16390 — 1730 zeitw. 101 90-1 30-1 7.8 
bnddd | e® 1300725; a1 mens. 10 7071 60 AT 
ddfsg | el 1510 — 1610, 8071 1810 — - 50 10071 10180 8.3 
femed | e071—-3, 8% 6—725, 90180 80-1 8071 8.3 
jeeeef | al mens.;<in.W 21 —22. gu1__ 61 79 7.3 
gdgmb | e® 1150 — 1210, eTr. 16--17 zeitw.; =! mgns. 101=1 101 41 8.0 
bbban | .a071 mens. 11 al 0 IRB 
gmbac | al, =! mgns. 101=1 11 0 3.7 
— fenggg | e"R 142050, el72R 1630 — 20, el 20599 —., 30 10172  10lel 77 
- Lemdmb| e!71_-6;<Sin W 20—21. 80-1 61 21 5.3 
| 4.9 9.1 a 
Schlüssel für die Witterungsbemerkungen: 
2 a= klar. f = fast ganz bedeckt. k = böig. 
— b= heiter. = ganz bedeckt. l = gewitterig. 
— e=—meistheiter. h= Wolkentreiben. m= abnehmende Bewölkung. 
d= wechselnd bewölkt. i = regnerisch. n = zunehmende » 


e — größtenteils bewölkt. 
4 Der erste Buchstabe gilt für morgens, der zweite für vormittags, der dritte für nachmittags, 
& der vierte fürabends, der fünfte für nachts. 
” 


Zeichenerklärung: 


£ Sonnenschein ©, Regen ®e, Schnee x, Hagel s, Graupeln A, Nebel =, Nebelreißen =! 
Tau a, Reif —, Rauhreif \/, Glatteis ev, Sturm 9, Gewitter KR, Wetterleuchten <, Schnee- 

gestöber $, Dunst co, Halo um Sonne ®, Kranz um Sonne (D, Halo um Mond []J, Kranz 

um Mond W, Regenbogen N]. 

eTr. = Regentropfen, xFl. —= Schneeflocken, Schneeflimmerchen. 


Beobachtungen an der Zentralanstalt für Meteorologie 
Windmessungen mittels Pilotballonen 


| seehöhe: | 230 | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 
Su | &n nn Se D nn 5 ED Bop 
MEZ SE EEE ISIS EI Te ee 
Bu | En Ry er ie hg; m... Be 
q 
1. 820 |wnw4| WNwW 6| NW 10| NW 11| NW 13] NW 13| NNW 10] NNW 12 
2. 912 |wnw5lwNwiol W 5| NW 14| Nw 21|wnw27|wNWw27]) — 
3. se| w 5) w 19) w ıolwnwi2|wnwi2lwnwis|wNnw2B| — 
4. 840 |wnwelwnw 6|wnwi2lwnwi14 — a = 
5. 8s| E ı| SE 3] s ı1lssw 7| sw 4 sw slwswit w 16 
6. 2 E 2 = a : - Br 
7. 108 | w 7| w 16|lwnw s| nw 10) NW 8|WNW15|WNW 18|WNW17 
8. e x % = ne = = = 
9. 83 |wnwalwnw 9| nw 9| mw 8| nw 6| ww 12| NW 18| NW 283 
10. _ = - + A a s & 
11. 92| w 7| w ı1olwnwii|l NW 8| uw 10] Nw ı15| NW 17| wnwWi5 
12. 928 |wnwe| wNw 15| WNWw 17) WNW23|WNW19| NW 24 NW 24| NNW 24 
ı3. 80 | w 4| NW 4| NW 6| NW 9|NNW 8|NNWILNNWI2) — 
14. 92 |wNwö5| NW 6| NW s| nw 11|wwwi2| sw 14] — = 
15. 10%: |NNW 6|NNW 9| NW 11| NW 14|WNW25| WNW20. NW 20| NW 283 
16. sı |ENE2| vn ılwnsw ı|l sw sInw 7| nw 9 Nw is| nw 17 
17. 98 | ENE 1) SSE ı| w 2|wnw 4| nw Alwnw 7| — — 
ı8. 87) w 7|wnw slwnw elwnw 5lwnw 6| NW 5|wNwW 6|WNW 6 
19. 89» |ENEi w 3 w 3 w 2) w 2| w Awnwöl NW 5 
20. 85| E i| w 2| w 2lwnwa nw 5° — = = 
21. s5 |ene ıl w 5wnw 4 w tolwnwi3lwnwial ww 6 wsWwiı 
22. 859 | NW 3|NNW sinnwiol ww 11 — = = z 
23. ss| w alwnw 3 nw s| nw 9| nw 11] NW 13| ww 14l WNW 10 
24. gı| w 7) w 19| w 2ılwnwizlwswizlwnwisl w 20) Ww 80 
25. _ = = En _ = = 
26. sis | SssE 5. S 4Assw 9) — 2 - - = 
27. 95 | ssE 1. S Awsw5| w 8| w 7| w oWwswi0| sw 7 
28. m |ENE 2. N il nw 4lwNw 5| SW 8| Sw 10) W 7IWSW 6 
29.102| E 4; SE 5| SE 7|ESE 1| NNE I|nNW ı| NW 83) NW 3 
30. 9 | w 5|wsw 7| w 4Alwsw e| SSsw 7| Sw 8 Sw 11| sw il 
31. 945 |wNW5|wNW 7| NNW 12| NNW 10| NNW 12| NNW I1|nNW 7) — 


und Geodynamik, Wien, XIX., Hohe Warte (2025 Meter). 
im Monate August 1919. 


4000 4500 5000 | 5500 6000 | 6500 | 7000 Größte Höhe 
&n 50 &n 8n 60 ön &n | &n 
Ss nd Ss > S > Ss nd Z d S 4 S nd S Ss 12 
3.® 3,0 Er 3a 3.0 3 © ee 310 
Se Ne aa a a a 2 a u Ss 2 | Sa 
N ISBES OS SEEN SONS SEES Sys 2 SS 
eg E e | & E | & E - e2 
NNW 10 NNW 9| N 11| N 14 — — — 59 N 16 
— .—_ — — == — — 33 WNW25 
- _- — — u — — 34 WNW 36 
— — — — — — — 15 WNW14 
15 — — 2 _- — — 43 Ww 12 
wnwi7|) w 19 w. 16 — = - — [52]. wNWwi14 
NW 19| NW 20| NNW 23 — — _ — 52 NW 24 
NW 17| NW 200 °— = — -- — [47 NW 18 
NNW 21 — — — — — _— 41 NNW 22 
- - _ E= — — 30 NNW 12 
— — _- — _- — — 25) NW 14 
— —_ — — — _ — 35 NW 23 
NW 18| NW 18| NW 14| — — —- — [52 NW 17 
— = == — = — — 27 NW 6 
NNW10| N 9| NNW 12| NN 9|NNW 7 — — 63 NNW 9 
NW 7\NNW 10 — — = — — 49 NNW 10 
— -—_ == — == — = 24 WNW 7 
WSW 14| WSW 14 — — — — — 48 Ww 18 
— — == — — — — 07 WNW 14 
- = — — —- — _ 39 WNW10 
— — — — -- — — 39 WNW 28 
el =. En m u A =. 11 SSW 7 
SSW 11| SSW: 9| SW. 8 — _ — _- 54 SW 12 
WSW 8| W AT aa aW BL N 10, Mel2lg went 
WNW 3) WW. 5|WSW 8| WSW 8| WSW 10| WSW 13) WSW 16| 86 w 28 
IWSW 11l SW - 10| SW  10| SSW 12| SW 15 — == 61 SW 1% 
EL er er e- — = —- 30 NNW .7 
Seehöhe: 7500 | 8000 | 8500 | 9000 


28. August 904 181% W1,,10 
29. August 1029 


300 


Beobachtungen an der Zentralanstalt für Meteorologie und 
Geodynamik, Wien, XIX., Hohe Warte (2025 Meter), 


im Monate August 1919. 


ö | Me, 55 { Bodentemperatur in der Tiefe von 
Ver- Dauer des | ee : - 
B dun- Sonnen- Be Ss 0.50m 1.00m 2.00m 3.00m 4.00 m 
Tag stung |jscheinsin | 2 „I 8 ten 
: oO 8058 SE BD: h h h 
in mm Stunden s& SE Hal mittel 14 14 14 
I E 
1 5 ,0:68]17 11959 8:0 19.6 16.9 897 1175 10.3 
2 5 1.3 8.0 20.0 17.1 13:7 11.6 10.3 
3 1.6 22 8.7 19.8 1752 1857. 11.6 10.4 
4 1.6 10.6 7.0 410 19.4 178 1937 147 10.4 
5 1.0 9.2 5.0 11.19.4 1 13T. 14.7 10.4 
6 0.6 250 240 19.9 1783 1347 1149 10.4 
7 142 1.9 9.7 19.5 74 1838 11:7 10.4 
8 1.4 4.1 9.0 18.3 17.3 13.8 11.8 10.5 
9 1.4 13.2 8.0 3  +8.1 17428 13.9 1178 10.5 
10 15.8 10.9 8,0 19.3 16.9 13.9 1448 10.6 
11 2.2 83 7.0 20.7 71 13.9 11:9 v4 0 10486 
12 2,4 9.2 9,7 21.0 17.4 13:9 11.9 10.6 
13 1.6 12.8 6.3 21.0 17.57 14.0 11.9 10.6. 
14 3.2 12.6 7:0 117 2840 17.9 14.0 11.9 10.6 
15 2,4 11.6 8.0 DT 18.1 14.0 11.9 1087 
16 EI a 5.7 22.3185 14.0 12.0 10.7 | 
7 1.6 11.8 4.3 21.9 18.6 14.1 12.0 1047 1 
18 1.6 10.7 5.7 22.4 1847 14.2 12.0 10.7 
19 1.0 11.4 3.0 22.8 18.9 14.3 1251 10.8 4 
20 180, 12.4 3.3 || 23.4 19.1 14.4 12.1 10487 Ä 
21 2.2 14 147 28.7 19.2 14.5 191 10.8 | 
22 v1 0.6 7.3 28%7 19:5 14.5 1272 10.8. 
23 2.1 8.8 7.83 22.4 19:7 14.5 1242 10.8 4 
34 1.6 3.5 9.3 || 21.6 19.5 1447 12.2 10.9 | 
25 1.0 6.4 10.3 20.6 19.4 14% 12.3 10.94 | 
26 ee 66 3.0.4 1985 K 191 # 1227ER 10.9 | 
37 oT 2,6 2,7 19.4 18.6 14.7 12.4 11:0 | 
28 0.9 19.8 2,3 ee ae Er: 14.8 12.4 11.0 8 
29 0.9 9.0 1.3 20.3 18.4 14.8 12.4 11.0 | 
30 al 6.2 6.0 20.8 18.2 14.8 12.5 11307 
31 1.0 7.4 8. 19.0 18.4 15.0 12.6 11.0 
| Mittel 1.5 8.2 6.2 20.8 18.1 14.2 12.0 10.7 
M ts- ’ 
Iisummel 46.2 253.8 | 


Größte Verdunstung: 3.2 mm am 14. 

Größte Sonnenscheindauer: 13.2 Stunden am 9. 

Prozente der monatlichen Sonnenscheindauer von der möglichen: 570/,, von 
der mittleren: 1030/y. i | 

Größter Ozongehalt der Luft: 10.3 am 25. 


Der vorläufige Bericht über Erdbebenmeldungen in Österreich wird wegen des 
spärlichen und unregelmäßigen Einlaufes der Meldungen in den nächsten Monaten zu- 
sammenfassend nachgetragen. 


Aus der Staatsdruckerei. 


ee tee 


| 
; 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr. 20 


Sitzung der mathematisch-naturwissenschaftlichen 
Kiasse vom 16. Oktober 1919 


Erschienen: Sitzungsberichte, Bd. 127, Abt. IIa, Heft 10; Bd. 128, Abt. IIa, 
Heft 1, Heft 2. - 


Das w. M. R. Weegscheider legt eine Arbeit von 
Prof. E. Abel vor mit dem Titel: »Kinetik der Wasser- 
stoffsuperoxyd-Jod-Reaktion.« 


Das w. M. W. Wirtinger legt vor: »Studien zur Bunt- 
ordnungslehre«, von Arnold Kowalewski in Königsberg. 

Es werden hier einerseits Ergänzungen zu früheren 
Arbeiten des Verfassers auf dem Gebiete der Buntordnungs- 
lehre vorgeführt, andrerseits Ansätze zu gewissen neuen 
Fragestellungen entwickelt. 

Inhalt. 1. Kapitel: Komplementarismus zwischen harmo-. 
nischen Ternenbuntringen aus 7 Elementen. 2. Kapitel: Voll- 
ständige Bestimmung der doublettenfrei zerlegbaren voll- 
kommenen Buntringe aus gedoppelten Siebeneramben. 3. Ka- 
pitel: Beispiele unzerlegbarer vollkommener Buntringe aus 
gedoppelten Siebeneramben. 4. Kapitel: Eine merkwürdige 
Buntfolge von kubischen Konstellationen und ihr Zusammen- 
hang mit Steiner'schen Dreiersystemen. 


Das w. M. Hofrat H. Molisch legt vor: »Mitteijlungen 
aus der Biologischen Versuchsanstalt der Akademie 
der Wissenschaften in Wien (Pflanzenphysiologische 
Abteilung, Vorstand: W. Figdor). Nr. 46. Änderungen 
der Spaltöffnungsweite unter dem Einflusse ver- 
schiedener Bedingungen« von Alfred Burgerstein. 

Die einfache und so viele Vorteile bietende Infiltrations- 
methode von Molisch zur Orientierung über die relative 
Weite der Spaltöffnungen veranlaßte mich zu einer Reihe 
einschlägiger Untersuchungen, deren Ergebnisse sich, wie 
folgt, zusammenfassen lassen: 

1. Die noch bestehende Meinung, das Infiltrationsvertahren 
lasse sich bei dichtbehaarten Blättern nicht anwenden, ist 
unhaltbar; denn ich fand, daß gerade bei solchen Blättern 
diese Methode zur Erkennung der relativen Weite der Spalt- 
en speziell zu empfehlen ist. 

An nicht zu stark insolierten Blättern sind die Spalt- 
sungen weiter geöffnet, als an Schattenblättern. desselben 
Pflanzenstockes, . während bei intensiver, längerer Sonnen- 
bestrahlung des Laubes eine Spaltenverengerung eintritt. 

3. Die Spaltöffnungen an im Herbste gelb verfärbten 
Blättern wurden in der Regel geschlossen gefunden; es gibt 
aber auch Pflanzen, deren gelb gewordene Blätter sich mit 
Benzol rasch infiltrieren. 

4. Unsere bisherigen Kenntnisse über das Öffen- oder 
Geschlossensein ‚der Stomata an welkenden Blättern wurde 
erweitert durch die Prüfung von 250 Arten aus 150 Gattungen, 
wobei sich unter anderem ergab, daß Spaltöffnungsschluß 
sowohl an welken wie auch an vertrockneten Blättern bei 
Holzgewächsen viel häufiger zu finden ist, als bei krautigen 
Pflanzen. Die Beobachtungen von Molisch an Tropaeohum 
majus werden dahin ergänzt, daß die volle Wiedereröffnung 
der Spalten an lufttrocken gewordenen Biattspreiten eine 
postmortale Erscheinung ist. Werden welkende Tropaeolum- 
blätter mit geschlossenen Spalten durch heisses Wasser oder 
durch trockene Hitze getötet, so erfolgt dann die Infiltration 
ebenso rasch und gleichmäßig, wie bei vollkommen turges- 
zenten Blättern. Auch bei verschiedenen anderen Pflanzen 


303 


konnte beobachtet werden, daß dieselben Blätter bei einem 
gewissen Grade des Welkseins keine, im vertrockneten 
Zustande aber mehr oder weniger gute Benzolinfiltration 
zuließen. 


5. Für die wenigen bisher geprüften Betulaceen und 
Saliceen stimmen die Literaturangaben nicht überein. Meine 
an 35-Betulaceen gemachten Infiltrationsproben zeigten, daß 
sich an welkenden Blättern die Spaltöffnungen in allen Fällen, 
jederzeit, und meist sehr bald schlossen. Bezüglich der 
Gattung Salix, von der ich 50 Arten (inklusive Hybriden) 
von Juni bis September jeden Monat untersuchen Konnte, 
ergab sich unter anderem, daß die Zahl der Arten, bei denen 
an welkenden Blättern Spaltenklausur erfolgt, mit dem Vor- 
schreiten der Vegetationsperiode abnimmt. Sehr ungleich 
verhielten sich Populus-Arten. 


6. Über den Zustand der Spaltenapertur zur Nachtzeit 
konstatierte ich bei 78 Freilandpflanzen (zumeist von anderen 
Autoren nicht untersuchten Arten), im September: Weit offene 
Spalten hatten 13, mäßig geöffnete 15, sehr verengte 14, 
geschlossene 36. Andere Beobachtungen beziehen sich auf 
den Einfluß künstlicher Verfinsterung verschieden langer 
Dauer. 


7. Verschieden modifizierte Versuche mit Topfpflanzen 
lehrten, daß auf das Offenbleiben von Spaltöffnungen 
Besonnung bei mäßiger relativer Luftfeuchtigkeit wirksamer 
ist, als Aufenthalt in einem nahezu dunstgesättigtem Raume 
bei gleichzeitigem Lichtabschluß. 


8. Vergleichende Infiltrationsproben an Blättern von Frei- 
landgewächsen und an Blättern abgeschnittener Sprosse, die’ 
im Wasser stehend, neben den eingewurzelten Pflanzen auf- 
gestellt blieben (mit täglicher Erneuerung des Wassers und 
der Schnittfläche), zeigten eine von Tag zu Tag sich ver- 
mindernde Spaltenweite bei den isolierten Sprossen. 


Die ausführliche Arbeit wird in den Verhandlungen der 
Zool. Botan. Gesellschaft in Wien erscheinen. 


304 


Das w. M. Prof. C. Diener überreicht eine Abhandlung, 
betitelt: »Neue Ammonoidea trachyostraca aus den Hall- 
stätter Kalken des Salzkammergutes. I Abteilung: 
Tropitoidea.« 

Diese Abhandlung bildet den dritten Teil der Nachträge 
zur Cephalopodenfauna der Hallstätter Kalke. Sie umfaßt die 
Beschreibung der mit langer Wohnkammer versehenen 
trachyostraken Ammoniten aus den Familien der Faloritidae, 
Tropitidae, Sibiritidae, Celtitidae und Didymitidae. Im ganzen 
werden 46 neue Arten beschrieben, von denen 6 unbenannt 
gelassen worden sind. Die Mehrzahl der neuen Arten entfällt 
auf die karnisch-norische Mischfauna und die Subbulatus- 
schichten des Feuerkögels bei Aussee. 


Das Komitee zur Verwaltung der Erbschaft Treitl 
hat in seiner Sitzung vom 11. Juli 1. J. folgende Subventionen 
bewilligt: 

1. k.M. Prof. J. E. Hibsch zur Drucklegung seiner geo- 
logischen Karte des Pyrogengebietes ............. 8.800 K; 

2. w. M. Prof. F. E. Suess zu geologischen Aufnahmen 
in den. niederösterreichischen Alpen ar. 2... : EEE 3000 K 

3. k.M. Hofrat C. Doelter zur Vollendung seines Werkes 
»Chemie der Minerale« „....-- ET TET PETE 3000 K; 

4. Dr. H. Handel-Mazzetti zur Deckung der Kosten für 
die Hereinbringung seines in China gesammelten botanischen 
Materials. einen: Kredit voT. asp 2 Jsyls Ernte: 12.000 R. 


Selbständige Werke oder neue, der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Kämpf, Johann: Urkraft und Urstoff oder Wärme als allein- 
herrschende Macht im Weltall. 1. Bändchen, 1. und 2. Ab- 
schnitt. St. Joachimsthal, 1919; 8°. 


Aus der Staatsdruckerei in Wien. 


| 
| 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr. 21 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 23. Oktober 1919 


Erschienen: Denkschriften, Bd. 95, 1918. — Sitzungsberichte, Bd. 127, 
Abt. I, Heft 6 und 7; Heft S und 9; Heft 10. 


Das w. M. R. Wegscheider legt eine Arbeit von Prof. 
EB. Abel” vor mit "dem: Titel: »Kinetik "der" Wasser- 
stoffsuperoxyd-Jod-Reaktion II« 


Das w. M. Hofrat E. Müller legt eine Arbeit von Ludwig 
Berwald in Prag vor mit dem Titel: »Zur Geometrie in 
einer speziellen Kongruenz erster Ordnung und erster 
Klasse.« 


Das .Komitee zur Verwaltung der Erbschaft Treitl 
hat in seiner Sitzung vom 11. Juli 1919 Dr. Heinrich Handel- 
Mazzetti eine Subvention von 3500 K zur Drucklegung 
seiner Karte des chinesischen Flußsystems bewilligt. 


Selbständige Werke oder neue, der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Rosenberg, Heinrich: Sammlung von Vorschriften über die 
Verwendung von Asbestpulvern und von Talkum. Wien, 
1919; 89, 


33 


# ar 
% 
Er Be N 4 
Ä > Er Ver ’ 
h ( wi f i Töne Ya a 6 tz Aue ner Ar | eher 5 
m, sfonaikted: senazeiunuis-deiere gen ab grarsi@ 
Se | eror dere ‚es more © 
kun ; h en dene u a 
ni Ne ee de Helen Alten. 
"8 Vene Ä iR. EB ana 
er Si tt » . f j' ‚Bat, ü Neal An 0 
Sr oT HirY Sat 
i Y » ir 4 ICEr. 


* x u, R % Pa A 7 + id 
ea a aA önid‘ Isar rl ai 
rt} Jay Are! 
ER AB RL Er Ts & ee 


ES SNTFRRT NN En e (a are 
sh SH HERYE di BIEE klar.) 
= BRRE Bu aim 
0 


Ve e: IS. 
e allkilany 
Jsuhwed 


ers 
: Kehberhn E er 
an , es Fü BERR- 
"Adoin . siarab 


Lk 
Be 
an Lean 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 | ENT 22 | 


Sitzung der mathematisch-naturwissenschaftlichen 
- Klasse vom 30. Oktober 1919 


-- — 


. Fachlehrer Josef Molterer in Wels hat eine in der 
Sitzung vom 23. Oktober I. J. der Klasse ‚vorgelegte Mit- 
teilung über einen an der Flugbahn von Geschossen 
beobachteten stroboskopischen Effekt bei Beleuch- 
tung derselben durch einen mit Wechselstrom be- 
triebenen Scheinwerfer übersendet. 

Ein Teil der Flugbahn von Projektilen, welche von einem 
Maschinengewehr ausgesendet wurden, stand während der 
Nacht unter der Beleuchtung eines mit Wechselstrom be- 
triebenen, seitlich aufgestellten Scheinwerfers. Während die 
Projektile die Scheinwerfergarbe passierten, glänzten sie Stück 
für Stück, einer Perlenschnur vergleichbar, auf und zeichneten 
hierdurch mit außerordentlicher Schärfe die ballistische Kurve 
am dunklen Nachthimmel auf. Die Bilder der Projektile waren 
so klar, daß bei Anwendung geeigneter Apparate ohne Zweifel 
selbst die Rotation der Geschosse photographisch hätte fest-. . 
gehalten werden können. Auch einzelne Projektile konnten 
in ihrer Flugbahn gut beobachtet werden. 

Nach Meinung des Verfassers ließen sich bei entsprechender 
photographischer Aufnahme der Erscheining eine Reihe von 
Fragen der Ballistik, wie die Abweichung der wirklichen von 
der berechneten Flugbahn, die Präzession und Nutation der 
Geschosse u. a. m. in einfacher Weise direkt beantworten. 


308 
Das w. M. R. Wegscheider überreicht eine im I, chemi- 
schen Laboratorium der Wiener Universität ausgeführte Arbeit: 
»Ein Beitrag zur Frage der asymmetrischen Syn- 
these«, von Richard Weiß. 
» 


Die unsymmetrischen Ketoketene vom Typus * =C=D 


b it Alkoholen Ester der F IX a F | 
ister > . Es wär 
geben mit oholen Este er Form „ COOR s ware 


nun möglich, daß bei Anw endung eines nel an en Alkohols 
eine Ve entstehen, würde, ‚deren Säur erest, EIG 


selbst optisch aktiv und nicht als Racemat aupreich würde. 
| GH! 
CHE 
7-Menthol einwirken und erhielt den d- Pheny I-p- -tolylessigsäure- 
I-menthylester. Io I MA c = 8044 und e a 8456 
in Aceton), Xp, = 190 bis’ 196°. 


Imm 


Der Verfasser ließ auf Phenyl-p-tolylketen 


Die Darstellung des Phenyl-p- tolylketens führte ‚der Ver- 
fasser über folgende Verbindungen aus: 


a) Benzyl ihn G;HSCH,—CO--C,H, —=CH;; 


6 


b Dibrombenzyl-p- toly Iketon, F= 197-5 bis 199323 


co) p- N C,H; —CO--C0- :6, H,O, „nbre= 0 
bis 101°; ; Mi oltHlag 
5 AR ph TALLFIIIE 19 GH, i i 
d) Phenyl--tolyigiycolsäure BR >H, OH G Leon 
Frs 431 bisid837% 


e) Phenyl- , N RE 
CH, | 


#454 hist 15885 
CH,CH, ERS? > be uk un 


0.01 mnı 
’ 


‘f) Phenyl-p- LiyIketen, ‚wurde nicht isoliert. 


Weitere Versuche mit unsymmetrischen ‚Ketokefenen, 
optisch aktiven Aminen, Alkoholen und. Säuren. sind im 
Gange. 


309 


Das w. M. Hofrat. Prof. Dr. Wettstein überreicht eine 
Abhandlung von Prof. Dr. Fridolin Krasser (Prag) mit den 


"Titel: »Ein.neuer Typus einer männlichen Williamsonia- 


Becherblüte aus der alpinen Trias.« 

Übersicht über die wichtigsten Untersuchungsergebnisse 

1. In der alpinen (wahrscheinlich oberen) Trias von 
St. Cassian in Südtirol wurde ein neuer Typus einer männ- 
lichen Williamsonia nachgewiesen und als W. alpina nov. sp, 
beschrieben. 

2. W. alpina ist auffällig durch reiche Gliederung der 
Blüte.. Es, wurden sechs Zonen darin. unterschieden: Saum- 


‚zone, Lappenzone, Kelchmund, Schlundzone (Drüsenzone?), 


Speichenzone und Zentralfeld (Bechergrund). Die Blüte ist 
eine mehr kelchartige Becherblüte. Saumzone und Schlund- 
zone sind ihr eigentümlich und besonders charakteristisch. 
0 alpina steht der W. whitbiensis (aus dem Dogger 
von England) habituell und nach der Anordnung der Synangien 
am nächsten. 

4. W. alpina repräsentiert gegenwärtig den ältesten 
(Trias!) Typus einer männlichen Williamsonia-Becherblüte. 


Prof. Dr. Fridolin Krasser in Prag übersendet eine Ab- 
handlung von Dr. Justin Greger (Prag): »Untersuchungen 
über die Lichtbrechung einiger Harze.« 

Von 39 Harzen der drei von Wiesner und Bamberger 


 unterschiedenen Gruppen. wurden nach Ausarbeitung einer 


eigenen Methode zur Herstellung spiegelnder Flächen unter 
möglichst gleichen Grundbedingungen unter Verhinderung der 
Verflüchtigung von Beimengungen mit dem Zeiß’schen Krystall- 
refraktometer die Brechungsindices bestimmt. Es ergaben sich 
folgende allgemeine Resultate: 


1. Die Brechungsindices der untersuchten Harze bewegen 
sich (annähernd bezogen auf ihre Schmelzpunkte) bei Natrium- 
licht und einer Temperatur von 18° C. zwischen 1'525 und 
1:670. 


310 


2. Durch die Temperatur und die damit in Zusammen-- 
hang stehende Verflüchtigung von Beimengungen, vielleicht 
auch durch Umlagerungen, wird die Lichtbrechung wesentlich 
beeinflußt. 

3. Die Brechungsindices stehen in direktem Verhältnis zu 
den unter gleichen Bedingungen ermittelten SERIE! AR UNE 
Härten, Dichten und der Löslichkeit. 

4. Die Brechungsindices gestatten zum Teil schon an 
und für sich eine sichere oder annähernde Bestimmung der 
betreffenden Harze, andrerseits mit Berücksichtigung der‘ 
übrigen physikalischen Eigenschaften. Die Richtungen der 
chemischen Untersuchung können dadurch auf enge Grenzen 
beschränkt werden. 


Selbständige Werke oder neue, der Akademie bisher nicht. 
| zugekommene Periodica sind eingelangt: 


Universität in Basel: Akademische Publikationen für 1917 
—1918, 


Aus der Staatsdruckerei in Wien.. 


De 3 70 Urgew- ne 


Akademie der Wissenschaften in Wien 


Nr. 23 


Bbaslal mt. 
Jahrg. 1919 


Sitzung der mathematisch-naturwissenschaftlichen ‘ 
Klasse vom 6. November 1919 


— 


Der Präsident der Nationalversammlung hat am 
S. Oktober 1919 die Wiederwahl des ordentlichen Professors 
der Mineralogie an der Universität in Wien, Hofrates Dr. Fried- 
rich Becke, zum Generalsekretär der Akademie der Wissen- 
schaften in Wien für weitere vier Jahre und die Wahl des 
ördentlichen Professors der klassischen Philologie an der 
genannten Universität, Dr. Ludwig Radermacher, zum 
Sekretär der philosophisch-historischen Rlasse dieser Akademie 
ebenfalls für vier Jahre bestätigt. | 

Gleichzeitig hat der Präsident der Nationalversammlung 
den ordentlichen Professor der deutschen Sprache und Lite- 
ratur an der Universität in Wien, Dr. Walther Brecht, den 
ordentlichen Professor der Ägyptologie an dieser Universität, 
Dr. Hermann Junker, den Historiker Dr. Heinrich Friedjung 
in Wien und den ordentlichen Professor der semitischen Philo- 
logie an der Universität in Graz, Dr. Nikolaus Rhodokanakis, 
zu wirklichen Mitgliedern der philosophisch-historischen Klasse . 
der Akademie der Wissenschaften in Wien ernannt und 
folgende Wahlen von kötrespondierenden Mitgliedern dieser 
Akademie der Wissenschaften genehmigt: 

die Wahl des Feldmarschalleutnants des Ruhestandes 
Dr. Artur Hübl in Wien und des ordentlichen Professors der 
Chemie an der Universität in Graz Dr. Anton Skrabal zu 
korrespondierenden Mitghedern im Inlande in der mathematisch- 
naturwissenschaftlichen Klasse, des ordentliı hen Professors der 


3» 


312 


semitischen Sprachen an der Universität in Wien, Dr. Rudolf 
Geyer, des ordentlichen Professors der neueren und Wirt- 
schaftsgeschichte an der Universität in Graz, Dr. Heinrich 
Srbik, und des Oberstleutnants des Ruhestandes Otto Voetter 
in Wien zu korrespondierenden Mitgliedern im Inlande in der 
philosophisch-historischen Klasse sowie des Professors der 
deutschen Sprache und Literatur an der Universität in Berlin 
und vorsitzenden Sekretärs der preußischen Akademie der 
Wissenschaften Geheimrat Dr. Gustav Roethe zum korrespon- 
dierenden Mitgliede im Auslande in der philosophisch-histori- 
schen Klasse der Akademie der Wissenschaften. 


Das w.M. Hofrat Prof. F. Hochstetter überreicht folgende 
vorläufige Mitteilung des Dr. K. Toldt jun.: »Symmetrische 
Zeichnung der Säugetierhaut ivufolge des Haarkleid- 
wechsels«. 

Bei im Herbst getöteten einheimischen Säugetieren (unter- 
sucht wurden bisher hauptsächlich Feldmaus, Siebenschläfer, 
Eichhörnchen, Feldhase, Hauskaninchen) findet sich an der 
Innenseite der in ausgespanntem Zustande frisch getrockneten 
Haut meistens eine mehr weniger ausgedehnte, oft auffallend 
symmetrische Zeichnung; sie besteht aus dunkelbläulichen bis 
schwarzen, seltener gelblichbraunen Flecken, beziehungsweise 
Streifen in der weißlichen Grundfärbung und deckt sich oft 
nicht mit der Zeichnung der Felloberfläche. Darüber ist in der 
wissenschaftlichen Literatur nichts näheres bekannt, doch 
wissen Rauhwarenkundige, daß derartige Flecke mit dem 
Haarkleidwechsel in Zusammenhang stehen. Tatsächlich werden 
diese durch die schräg in der Haut steckenden pigmentierten 
Wurzeln von dicht beisammenstehenden färbigen Haaren, die 
noch im Wachstum ‘begriffen sind (Papillenhaare), hervor- 
gerufen (»Indirekte Hautzeichnung«, Toldt jun. Zool. Jahrb., 
Abt. f. System, 35. Bd., 1913). An den lichten Hautgebieten 
finden sich dagegen ausgewachsene Haare (Kolbenhaare), 
deren Wurzel, auch wenn der Schaft pigmentiert ist, farblos 
erscheint. Allerdings können hier auch farblose Papillenhaare 
oder vorherrschende, in Entwicklung begriffene, lichte Schaft- 


313 


strecken von mehrfärbigen Haaren in Betracht kommen. Die 
indirekte Hautzeichnung, die nicht mit der »direkten« ver- 
wechselt werden darf, bringt die Färbungsverhältnisse der 
einzelnen, gerade in Entwicklung begriffenen Fellagen deut- 
lich abgegrenzt zum Ausdruck und erweist sich als ein wert- 
volles Mittel zum Studium des Haarkleidwechsels. 

Bei den bisher untersuchten Arten begann der Herbst- 
wechsel in diesem Jahre im August und dauert jetzt (Ende 
Oktober) noch an. Er vollzieht sich nicht gleichzeitig am 
ganzen Körper, sondern setzt, was noch kaum bekannt ist, 
bei den einzelnen Arten zumeist an bestimmten Stellen ein, 
worauf er in ziemlich regelmäßiger Reihenfolge die anderen 
ergreift. Innerhalb der einzelnen Art finden sich jedoch in 
der gleichen Gegend zur selben Zeit verschiedene Zeich- 
nungen, selbst ganz lichte Häute; das kann mit einem indivi- 
duell verschiedenzeitlichen Eintritt des Haarkleidwechsels, mit 
der verschiedenen Färbung des Felles (bei Eichhörnchen) und 
vielleicht auch mit Altersverschiedenheiten zusammenhängen. 
Vielfach beginnen sich die Haare an manchen Stellen erst zu 
entwickeln, wenn die neuen Haare an den Stellen, welche 
zuerst zu wvechseln anfingen, bereits mehr weniger aus- 
gewachsen sind. Dann zeigen die Bilder der Häute aus vor- 
gerückterer Zeit oft das Negativ zu den früheren. Mitunter 
folgen, je nach den Längen- und Wachstumsverhältnissen der 
Haare, die einzelnen Phasen rasch hintereinander, so daß die 
Haare längere Zeit hindurch an allen Stellen gleichzeitig in 
Entwicklung sind; dann ist die Haut im Bereiche dunkel- 
haariger Stellen durchaus dunkel. Das gilt namentlich auch 
für den Wechsel des Haarkleides des Neugeborenen zum 
Jugendhaarkleid (Feldmaus, Siebenschläfer). 

Auffallend ist die Symmetrie, mit der der Wechsel vor 
sich geht. Der Hauptzug ist der longitudinale (mehr weniger 
breiter Streif entlang des Rückens oder jederseits entlang der 
Flanken oder der Extremitäten; von solchen Streifen Kann 
zeitweilig nur der kraniale und der kaudale Teil vorhanden 
sein). 

Im allgemeinen beginnt der Herbstwechsel an dem relativ 
dickhäutigen Rückengebiet und schreitet von da auf die 


314 


Extremitäten, die Flanken und auf den Bauch fort (Feldmaus, 
Feldhase). Beim Eichhörnchen tritt. er zunächst in der Kreuz- 
gegend mit Fortsätzen auf. die Schenkel und die Dorsalseite 
des. Schwanzes auf; ‚dann breitet er sich.nach vorn auf den 
Rücken aus,. die Mittellinie als schmalen Streif zunächst frei- 
lassend, später auf die Flanken und die Vorderbeine. Beim 
Siebenschläfer scheinen sich ähnliche Verhältnisse, . aber viel 
rascher abzuspielen. Beim Hasen und Hauskaninchen ist die 
Rückenhaut zeitweise scheckig, da die Haare hier der Länge nach 
verschieden ‚gefärbt sind. Mitunter sind einzelne kleine Flecke 
unregelmäßig. über die Haut (besonders am Rücken) verstreut, 
was offenbar den Beginn oder das Ende des Wechsels dar- 
stellt (Feldmaus). Nur in vereinzelten Fällen, und zwar erst 
in letzter Zeit (Kälteeinbruch) fanden sich bei einigen Arten 
(Hausmaus, Waldmaus, Waldspitzmaus) größere dunkle Gebiete 
ohne Symmetrie verteilt. N | 

Zu einem genaueren Einblick in diese Verhältnisse bedarf 
es noch zahlreicher weiterer Beobachtungen, namentlich hin- 
sichtlich des Frühbjahrswechsels. Von Wichtigkeit ist auch die 
vergleichende Heranziehung der behaarten Wassersäuger, der 
Graber, der hochnordischen und tropischen Säugetiere sowie 
der Haussäuger. ‚Schließlich dürfte der Vergleich mit anderen 
Wachstumserscheinungen .des Integuments (Reihenfolge bei 
der Vogelmauser sowie, beim, Erscheinen der Behaarung, der 
Federn und der, Reptilienschuppen an. den Embryonen usw.) 
manches Bemerkenswerte bieten. * 


FIR9 Na; 


Monatliche Mitteilungen 


der 


Zentralanstalt für Meteorologie und Geodynamik 


Wien, Hohe Warte 


48° 14-9" N-Br., 16° 2177‘ E v. Gr., Seehöhe: 2025 m 


‚Zeitangaben, wo nicht anders angemerkt, in mittlerer Ortszeit; Stundenzählung bis 2 
; beginnend von Mitternacht — ON. 


September 1919 


316 


Beobachtungen an der Zentralanstalt für Meteorologie 


48°14°9' N-Breite. 


im Monate 


x 


Luftdruck in Millimeter Temperatur in Celsiusgraden 
Tag Tee m | Abwei- | Abwei- 
| |Tages- chung v. Tages- chung vv. 
h h heezı | h h | 

[ 12 2 mittel |Normal- { Er Al ‚ mittel | Normal- 

| stand | stand 

1 744,0. °744.6 745.8 [744.8 |4+ 0.2] 10,7 16.5 14.2) 18.0020 0 
2 45.6 45.3 44.7 | 45.2 |—+ 0.5 12.2 16.6 13.83 14.0. — 3.6 
3148.00 242,1 2742%87 04228312220) 2926 17086 7.01 —- 0.4 
443.7 44.1 45.6 | 44.5 | — 0.4| 14.2 21.1 16.9 | 17.4 | +4 0.2 
5 |, 47,1 47.3 48.1: 147.9 |-# 2,61 16.9 »22.7 17.9.1 10ER 
6... 47..9,07 47,4. 47.1: 194745) 42245 1.01920n0212 16.419717.» 20 
72, 47,6 46.7 47.4 | 47,2 | + 2.2| 13.7 23.1 18.8 | 18.5 + 128 
8 | 48.08 48,6 49.9 | 49,0 |-+ 3,9|| 13.6 23.0 18,7.!. 18,4! 1.9 
90 29022.50-. 3225112 5089812 20531 mel O2 18.0 | 18.3|—+ 1.9 
10 | 52.3 52.6 58.3 | 52,7 |+ 7,5|| 17,8 23.8 zul! 20.I + 4.77 
11 | 54.3 53.6 52.8|58.6 |+8.4| 14.6 22.2 16.7| 17.8 |4-1.8| 
12) 9140, 749257°:497221750,.1 | 4.97 12.977 72459 19.3.1 19.2 202 
18 | 48.3 47.3. 47.0 | 47.5 |+ 2.3) 14.3 24.9 19.3:] 290 
14 | 46.1 45.0 44.3 | 45.1 | —- 0.1|| 15.7 24,2 18.8 19.6 —+ 4.2 
15 | 45.2 45.6 46,8 | 45.9 | + — 14.7 24.6 21.3 20.21 + 5.1 
16 | 49.8 50.0 50.9 | 50.2 |+ 4.9|| 18.1 23.9 192 20.4 + 5.4 
17 1 .51,2...49,7 .49,0-] 50,0 |=+-4.7 1223 22.4 16.4 17.4 + 2.5 
18 48,0 45.1 42,5|45,2 | 0,1 13.0 22,3 18.2 ee) 
18. Ba, 2783317 3033 Ba ee 14,003 20.3, 19.4 + 48 
20 | 32.7 836.6 836.3 | 35.2 | -10.0|| 12,9 14.2 10.2 12.4 | — 2.1 
21 | 83.302. 32.02 233297), 83. le 12202988 16.3 73 1122 1 = 3.1 
22 32.2 35.2 38.8 | 35.4|— 9.8| 5.8 7,2 2.085008 1 
23 1.41.07 041,50 a1, Alu re 10,2 |. 103 ne 
24 43.8 44.7 45.5 | 44.7 | — 0.4| 7.6 14.9 il ats 11.4, — 2.4 
25 | 47.5 47.1 47.6] 47.4|+2,3|1 9.5 :22.8 15.2 , 15,8 | 225 
26 | 48,3 46.2 44.4 | 46.3 | 1.3| 12,1 20.4 15.4 16.0 + 2.4 
27 44,0 42.8 40.6 | 42.5 | — 2.5 150 18.9 16.7 | 15.5 + 29 
28: 39,8 87.0 .87.:8 | 38:0. = 7,0] 14,7 222,7 19.9 | 19.1 | 4357 
29 | 41,8 44.2 48.1 | 44.7 | — 0.4 inc 8) 16.1. 418.9 ke: 5.5 
30 | 50.0 48.7 46.9 | 48.5 |+ 3.7|| 11.0: 14.5 1347 13.1 — 0.2 
Mittel 1745.27 744.84 745.01|745.04|) —0.04| 13.0 20.4 16.3 | 16.6 |—+ 1.3 


Höchster Luftdruck: 754.3 mm am 11. 
Tiefster Luftdruck: 730.3 mm am 19. 
Höchste Temperatur: 25.4° C am 15. 

Niederste Temperatur: 3.9°C am 22. 

Temperaturmittel 2; 16.5°C. 


1717.07, 14, 21). 
az, 14, 2128 


317 
und Geodynamik, Wien, XIX., Hohe Warte (202'5 Meter), 


September 1919. 16: 217 B-kange v. Gr. 

Temperatur in Celsiusgraden Dampfdruck in sum Feuchtigkeit in Prozenten 

Schwarz- Blank- ir I | | Habe 

; we] i ı | strah- h h oıh | 2 h n 91h E 

Max. Min. | kugel! kugel Ing? 7 14 21 | mittel | 7 14 21 nee! 

Max. Max. | yin, 

18.1 9.4 44 30 8 8.4 9.2 : 8.7 87 66 70 74 
mar Al). ,44 228 10 8:9 10.070058 985 78 71: 90 80 
28, 9,9 47 32 9a ELON TEE 20 lan! 97 58 80 78 
22 13.2 | 51 37 12 Um Bye 128 12.4 96 638 8 84 
PERS» 14.9 | 51 88 ze 1.8 1255 9.4 1132 82 7681763 69 
Pax0, 13.9 |. 50.85 R2a1 109 SA Re Som ol öl 76 
2349, 112.6. 02517 37 11 112 Door ao 96 55 68 73 
23.0 13.0 | 49 34 1241 10R 912 27 122 Tr 020587 78 76 
22.8 14.0 | 49 34 12 | 11.5 9297 HRS A 91 50 76 72 
Pan 11627 51 35 18.171023 10.2 92421 102,0 68 47 51 bp) 
BI 43.521.058 82 | Di, 11.0 440.7 40,5 1; 20:20 BOuass4ı 74 72 
vo 1 ra} 937. 10 | 10.4 ea OR 94 4 © 66 
29R0, 21326 ST, 1151 441705510, 92 116 ER 91 49 70 70 
24,6 14.8 4972835522125 S11R61 3537 13 Se 76 
er 2.0 | 52 88 121,7 18,8: 1259 112,6 94 58 68 7 
24,0, 216.7 47 835 142 1285 a.z 1085 16 Sl 52 63 65 
Daron, 124.7 21.290 2835 11 || 10.0 9.7 959 O7 86 48 68 67 
23.0, 1223 49 35 10 Io los 88 DS dl 72 
24.1 13.3 48 35 1121,10 2A 93:49 5 709 ge 
lamsr /.9.3 30, 22, 12 a We 8.4 83. 90. 18 78 
dl: 988 41 26 6 7.6 210.4: #780 8.3 87.075 88 83 
8.3 3.9 Do 4 6.0 6.5 6.4 6.9 37 °85 8 834 
14.9 5.1 42 26 3 6.0.6.2 7.6 6.6 85 50 81 72 
19:8 6.6 40 26 4 1.0 9285 29E7 9.0 ODE 95 89 
23.0 8.4 48 34 6 3:7 9ror lo 9.8 98 45 89 77 
20.5. 11.9 47 33 92 Or SE URS Tales 9872657 90 84 
18.9 10.9 44 31 9 Oro 1237 Nar2ale 1 97 2 80, 93 90 
22.8, 1888 48 35 11 32027212897 11326. 11239 St Gen Eike 80 
22,0 1425 502538 741,2198|11412.9751122/67 3102331016149 79 64 75 73 
Isar 11,0 42 27 11 8.1 8.8 9.8 So) 84 ul 88 79 
Bla 9a ORT 19272 1026 105 89 60 77 75 


Höchster Stand des Schwarzkugelthermometers: 52°C am 11. u. 15. 


Größter Unterschied zwischen Schwarz- und. Blankkugelthermometer (stärkste 
Strahlung): 17°C am 29. 


Tiefster Stand des Ausstrahlungsthermometers: 3°C am 23, 
Höchster Dampfdruck: 13.6 mm am 28. 

Geringster Dampfdruck: 6.0 mm am 22. u. 23. 

Geringste relative Feuchtigkeit: 41"/, am 12. 


! In luftleerer Glashülle. 
® Blanlies Alkoholthermometer mit gegabeltem Gefäß, 0.06 ın über einer [reien Rasenfläche. 


318 


Beobachtungen an der Zentralanstalt für Meteorologie 


48°14°9' N-Breite. 


im. Monate 
ua Pa a m ze zn Zt cv 0 u Sun Di u U nn un u 12a u = ua un Z 2 De ln ln De 2 zn cn Za0n eo 


| Windrichtung und Stärke Windgeschwindigkeit | Niederschlag, 2 
| n. d. 12stufigen Skala in Meter iin der Sekunde | in mn gemessen > 
las 7 > 0 Tees { ö 
er, 14h 2jh || Mittel Maximuml - | '7h 14h 2ih IS 
| | . Z 
ı ||NW L.NNW2! N H 3.1) NNW 10.5 ® = = 
2 NW 2Unw 2 waWwil 2,6 |" NW’ 8.3 2: ze ee 
3 se) 117 sE9B 1.88 1,°%4 | Vs, #-To.z — — Er 
4 | SELL INNBA 2-0 Voss | "ww! "2.2 = er m. ® 
5 |WNW3 nw's !Nnw al "2.4 | ww’ i2.l | 14 = ee 
5 |IwNWwi Nele 0) 1A) NW SB — = 
A ABO I aa Fa 4.5 £ ss Be, 
BU | 1 EIGEN WIR LEN 4 0146| PNA 210.9 Mn. e ie 
ge wel BE we Baal 1 Sn Na S = u 
fo |WNWw2 Snw3 N 3| 3.3| NNW 11.1 4 a A 
Er Eee ae ee a 52 = ne 
12 SEM FSSENB isSwill ©3,2 | -SSE "13.4 EN 2 ie 
13 Ross RB. 9.7 | 8.5555 RN e Be, 
14 || SSE 1 Ü'ESE 8 Issw'il '2/7 SE 10.4 as = Bu 
5 |jwSWwi OnNEA EN 2] !1%a |UNNE’ 74 £ > di 
16 —. 0 NNE2,INNBE) >25, NNE 2 Ze 
17 — 0 Nr — 0 (07 N 5 - — _. IE 
8" | Wer ss. Issw 10170) saw. & e ee 
19 ORSSEM: HR IM 3422 | 0 55 9 5 ar = BE = 
20 |;WNWwalinwi2 „20 2454 | ww 19.5 486 73.50 oe 
21 || E 128 323NW8| 5.3) WNW N208 = il = 
38 |iNW5TnNWw8'Ww 2] 61|' NW" 17.903446 17.00 Lie 
23 SE Ss 9.0 | j.2e — ne 
2a ESSE: 199 5 12 5 | Se I ae Be — da 
25 RT en we 913,08, Bon Me = RZ 
26 || — 0.85 2, mwewil 1.5, ssE, 0 ı an, |- 
27 u OU SBMAD 55 51913 BEWF INA TI ae nn 
28 RR 00 Is) 4 A -43 sy 8.45.H0|, geiz m a 
; 29 We Eon Mi Beta). dsl | Ownwe- 11.5 & > Be 
; 30 NW DERSE | 9. 220-2409 N 7.8°1 0.14 (0.00. En 
"Mittel | 1.0 2.0 {:; 2.5 10.2 || 41,2 20.bsl | 


Ergebnisse der Windaufzeichnungen (nach dem Schalenkreuz): 
N ONNEFSNEZENE BE TESE 


Dora ed 


417 880.29 487261227102 


a 2 


SE 


24 


257 


SSE  S SSW SW WSW W WNW NW 
Häufigkeit, Stunden 

s> 39 33 20 u Ss 64 

Gesamtweg, Kilometer : 
1205477. ° 310° 97° 80. 599713057 723 

Mittlere Geschwindigkeit, Meter in der Sekunde 

1.5 3.0.23. am 2:61. EI ur 

Maximum der Geschwindigkeit, Meter in der Sekunde 
6.1 3.3 83.3 9.52 30,.3.,.922 


DROTSA ST OD MOTION 7758054 
Anzahl der Windstillen (Stunden) — 


Größter Niederschlag binnen 24 Stunden: 63.6mm am 21.u.22. Niederschlagshöhe: 75.0 mm. 


108. 


Zahl der Tage mit e: 4; Zahl der Tage mit =: 6; Zahl der Tage mit R: 2. 


! Den Angaben des Dines’schen Druckrohr-Anemometer entnommen. 


NNW 


319 
und Geodynamik, Wien, XIX., Hohe Warte (202:5 Meter), 


September 1919. 16°21°7' E-Länge v. Gr. 
| | 
hu | ı Bewölkung in Zehnteln des 
eo | | sichtbaren Himmelsgewölbes 
= = Bemerkungen ee m 
Sen | zh 14h on | 82 
#1 | SE 
cemba | «al mens. 30 sı 21 4.3 
ngmac _- 101 3 0) 4.83 
gmbaa | =Imgns. 101=1 11 0 3.7 
abncb | al mgns.; R in SW 22. (0) 41 30-1 2.3 
ccdeb u Sl 7071 3071 4.3 
bbbaa — 10 sl 10 1.37 
abbac | al mgns. 0 Sl 10 1.3 
dedba = 30-1 60-1 30-1 4,0 
abcbb } almgns. 0) 20-1 3071 1937 
nddba | ©0114. 7071 6071 20 5.0 
aaaaa | almgns. 0 0 0 0.0 
‚aaaaa | almgns. 0 0) 0 0.0 
aaaaa | almens. 0) 0 0 0.0 
aabaa | «almens. u 11 0) 0.3 
bbdba | al mgns.; ool vorm. 10 60 30 3.83 
aaaaa — 0 0 0) 0.0 
‚baaaa | ai mgns. 10 0) 0) 0.3 
bbbaa | almgns. 20 10 0 1.0 
aanbn | -al mgns.; e0 2310, 0) 10 0 0.3 
ggemc | e071 040 — 1050, 1016071 101 20 oe) 
enggg | -a? mgns.; el72 1720 — 7071 80-1  10lel 8.3 
ggggm | e172— 1150, e0-1 1310 — 1630, 2045 — 2350, 1016172 10180 10180 |10.0 
bbaaa | e® 1;.al mgns. 0=0 10 0) 0.3 
gmeac | .22,=1 mgns. 100=1 90 0) 4.3 
cbcba | .a?, =0 mgns. 30-1=0 30 61 4.0 
baaaa | al,=0=1 mgns. 2071=0 0) 0 087 
gmbba | .a2, =172 mgns. 11=1 40 21 2.83 
gmdee | .n?, =1-2 mgns; RinNW 14—15, e0 2315 — 101=1 60 80-1 8.0 
eddeg | e'—1. 80-1 6071 80-1 7.3 
feema | 0 330—420 zeitw., eTr. 9—11 zeitw. 8071 Zt 0 50 
Mittel 3 3.7 2u2 3.2 
Schlüssel für die Witterungsbemerkungen: 
a= klar. f = fast ganz bedeckt. k == böig. 
b = heiter. g = ganz bedeckt. l = gewitterig. 
c = meist heiter. h = Wolkentreiben. m = abnehmende Bewölkung. 
d = wechselnd bewölkt. i = regnerisch. n = zunehmende > 


e —= größtenteils bewölkt. 
Der erste Buchstabe gilt für morgens, der zweite für vormittags, der dritte für nachmittags. 
der vierte für abends, der fünfte für nachts, 
Zeichenerklärung: 
Sonnenschein ©, Regen e, Schnee x, Hagel a, Graupeln A, Nebel =, Bodennebel 3; 
Nebelreißen =:, Tau a, Reif —, Rauhreif vy, Glatteis vv, Sturm #, Gewitter R, Wetter- 
‚leuchten <, Schneedecke X, Schneegestöber #, Dunst oo, Halo um Sonne ®&, Kranz 
; um Sonne (), Halo um Mond ID, Kranz um Mond W, Regenbogen N. 
- ©  eTr. = Regentropfen, xFl. = Schneeflocken, Schneeflimmerchen. 


\ ! Die Angabe der Bewölkung ohne Index wurde aufgelassen, da sie sich für den Vergleich mit 
der Index-Bewölkung als wenig brauchbar erwies. 


1 Anzeiger Nr. 23. 36 


Beobachtungen an der Zentralanstalt für Meteorologie 
Windmessumgen mittels Pilotballonen 


Seehöhe: | 230 | 500 1000 | 1500 2000 2500 3000 3500 
Pan BE: El, 0, Ba BD un ED. ad 
üm ESS SU an. 55 Sn ee 
a a En a2 gm R- RU) Sr 
M.E:Zu. 1. 9-8 88 DR IR DE BR u ER 
Er fe & [a2 Bi jez BR & 
Wr | 
1 
1. = — a - en _ = — 
” _ — 2.2 = — — — 
3. 84| SE 2| SSE 9| SSE 11] SSE ı3| S 8| SSE 8| SSE 6| ESE 1 
At 856 | ESE 1| ©S 3,55W 5| S- 7| S A SE 3 -N 2| Nasa 
5. 85|WNW7|INNW 4 N 5|NNE 3| NNE 3| NNE 3 NNE 4 — 
B.. SI NNWALPN 1" N 3|NNE A BNE 2 mE 2 Eu No 
7.. 926| ENE 1} .SE .21.SSE 3| SSE 4 5 "A| SSE 5. SE, Are 
8. 4 — rn = nn — — = 
9. 822| NW INNE 3 N 7INNW 6|NNW 7INNW 7) .N 7 8 
10. 8411| NW 5) NNW 7| NW 9) NW 17|NNW14 — — n 
EN N 1 N 1NNE 6| NE 7| NE 8| NE 8 NE 9} 
{2.. 8566| "SE 1| SSE 10|.S ı6| S 11| S .9| 5, ‚zIuSsSE di uskues 
13. di| SE 6) SSE 9| SS ı6 S .1il S ‚el SSWw 6 Su oe 
14. g00 | ESE 3) 'SSE 8 Ss 14 — —— = — zn; 
15.1006 | ENE 2|WNw 2) nw 3|wnNw3Innw5| N. 5 N 3 — 
i6.. HA|NNW2| N. 3) NE 5) NNE ANNE 6 —_ = — 
17..94|,N 1 N 3) NE 6| N 1|NNW 2| nw AINNW A4|NNW 3 
18. 85| — 0 N 1) NE 3 NNE 3| NE 2| NE’ 4 ENE 4 nNBos 
19.) 81. SE 3°SSE 6) 8 12) S 12] S 10) °S TI SSw 7. Sa 
20. er ee a 2 zu al _ ur 
21:.2,.96 | "SSH 6,8 Mal, Sy Us AS. DONSSWw.3L I - = 
2 — — en ss — & =: = 
239.33 5SSE 2) "5 Al Sssw zı Sw ss — =, = = 
24. — _ = =. en = er 
25.. 982| sSsw 2|wsw 7| w 2) w 17) — = — ei 
ED: DE | 0 OLSSW, ICSNW 3) WSW 9 SW... 7 WwswLi, ww. zz 
127,882) ENE'3| SSE“ 11. Su 73 8: „ass = = 
‚28. 1134| SE4 S 7 S ı4 SW 12) SW 12) Sw 11] SW 18] SW 201: 
;29.. 94| W 61WNW 6| NW 8| N 5/WNW 6| NW 8|wsw 7|WSW.9 
a —_— — a = mn = — — 
Seehöhe: 8000 | 8500 | 9000 |' 9500 | 10000 | 10500 
2; September 856 NNW 10| NNW 12| NW’ 11) NW 9|'0NW. 9 NW’ 6 
6. en! E 8 E 12 E 12 .E 183) ENE 14 ENE ff 
ae 830 NNE 10| NNE 10) 8... .8'NNW\9|, — — 
12, » 856 ENE 3| ENE 4| ENE, 5. E 6| ENE 6) ENE 5 
tz > gu ESE 10) ESE 8) SE, 8 SE 8| ESE 8| SE -2 


|—— 


und Geodynamik, Wien, XIX., Hohe Warte (2025 Meter). 
im Monate September 1919. 


> 
{>} 
[@) 
(>) 


(es) 
© 


oO 
oO 


[er] 
{=} 
oO 
oO 


=] 
[®) 
(=) 
je») 


| Größte Höhe 


l 


m!sek. 


Richtung | 


misek. 


Richtung | oı 


m/sek. 


Richtung 


11500 | 12000 | 


ENE 10) NE 3 


SSE 
SW 


le 
6| WSW 6 


12500 | 13000 


N 2| NNW:7 


2 hr Ru ae 


Richtung 


NE 4 
NNW 10 


Richtung 


m/sek. 


m/sek. 


Richtung 


Hektom. 


Richtung 


NNE 7 
E 5,8 
ESE 10 


71 
111 
34 
135 
46 
59 
21 


96 
113 
154 


NNW 13 


NNW 
SE 


9 
121 


WSW 13 


SSW 29 


SW 


W 
SW 


9 


17 
10 


WSW 7 


SW 


23 


\SW 10 


32 


Beobachtungen an der Zentralanstalt für Meteorologie und 
Geodynamik, Wien, XIX., Hohe Warte (202°5 Meter), 
im Monate September 1919. 


[&%) 


| Dauer Bodentemperatur in der Tiefe von 


‘ >) 
Verdun- | des #328 EEE RESET STR 
Tag ang | Sehnen. =a8 ; 0.50» 1.00m 2.00m 3.00m 4.00.m 
| schei n —TE WE LOWER IR ee vor Ra 
| sc ns hs &0 en ee 14h 14h 14h 
j 74 | Stunden |O se mitte mitte 
1 1.5 4.8 9.3 1822 18.1 14.9 12.6 oil 
2 0.6 3.7 9.3 17.3 17088 14.9 12.6 le! 
3 0287 9.8 0.7 No 17.4 14.9 12.6 11.2 
4 0.7 10.9 2.3 17.W N 14.8 12.6 11,2 
5 1. ee 18.2 7.0 14.8 12.6 1102 
6 1.0 11.6. || 10.3 18.3 17.0 14.8 12.7 11.2 
7 0.9 11.5 BR 18.2 17.0 14.7 12.7 1122 
8 1.0 9.0 et 18.3 17.0 14.7 1287 11.2 
9 1.3 10.1 10.3 18.4 17.0 14.7 1257 11.3 
10 2.4 9.5 NOT 18.4 Dee! 14.6 12.8 11.89 
11 Wo al 9.3 18.4 gt 14.6 12.8 11.4 
12 2, 3a 11.4 3.0 18.2 ie! 14.6 12.8 11.4 
13 ka) e.0 6.0 18.2 17,0 14.6 12r8®, aD 
14 0.8 1 De 18.4 17.0 14.6 12.8 11.4 
15 1.4 9.7 9.8 18.5 17.0 14.6 12.8 11.4 
16 1.9 10.1 8.3 18.6 17.0 14.6 12.8 11.5 
17 1.8 11:1 a) 18.5 17.0 14.6 12.8 11.5 
18 0.8 10.4 4.3 18.0 1770 14.6 12.8 11.5 
18 1.8 10.0 9.8 18.2 17.0 14.6 12.8 11.5 
20 0.5 0.1 8.7 7.6 16.8 14.6 2.8 11.5 
21 0.9 5.0 9.3 16.2 16.7 14.6 12.8 11.6 
22 0.4 0.0 12.0 13.7 16.4 14.6 12.9 11.6 
23 0.5 11.0 5.0 12.6 15.6 14.5 12.9 11.6 
24 0.3 5.8 0.0 12.5 15.0 14.5 12.9 11.6 
25 10 9.0 2.0 12.8 14.5 14.5 12.9 11.6 
26 0.6 10.7 0.7 13.5 14.3 14.4 12.9 11.6 
27 0.1 9.3 0.3 14.0 14,2 14.3 12.9 115% 
28 1.0 4.8 1.3 14.4 14.2 14.2 12.9 1155 
29 1.5 3.8 9.3 15.3 14.3 14.1 12.9 11.7 
30 0.3 3.9 6.3 15.4 14.4 14.0 12.9 117 
Mittel 1.0 8.3 5.7 16.8 16.4 14.6 12.8 11.4 
Summe 31.3 247.5 


Größte Verdunstung: 2.4 mm am 10. 

Größter Ozongehalt der Luft: 12.0 am 22. 

Größte Sonnenscheindauer: 11.6 Stunden am 6. 

Prozente der monatlichen Sonnenscheindauer von der möglichen: 66°/,, von der 
mittleren: 140 0/,. 


Aus der Staatsdruckerei in \Vien. 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr. 24 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 20. November 1919 


erai.„Dr. OÖ. Richter, dankt fur die Bewillieuns einer 
Subvention zu Studien über ernährungsphysiologisch inter- 
essante Algen. 


Das k.M. Hofrat G. Jäger übersendet eine Abhandlung 
mit ‚dem; Titel: »Zur.„Theorie,,desr Brown’schen .Bewe- 
gung.« 


Das k.M. H. Benndorf übersendet eine im Physikalischen 
Institut der Universität Graz ausgeführte Arbeit von Dr. Angelika 
Szekely: »Beobachtungen an elektrolytischen Detek- 
toren.« 

Es wird eine Methode beschrieben, die Wirkung der ge- 
bräuchlichen elektrolytischen Detektoren bei Verwendung einer 
Hilfsspannung so zu untersuchen, daß man vergleichbare, von 
den subjektiven Fehlern der Telephonbeobachtung freie Resultate 
erhält. Nach dieser Methode werden die von Jegou- und 
Schloemilch-Detektor mit verschiedenen Hilfsspannungen beim 
Durchgang von niederfrequentem Wechselstrom gelieferten 
Gleichströme verglichen; es läßt sich folgern, daß die statischen 
Charakteristiken der elektrolytischen Detektoren ihre Wirkung 
bestimmen. 


co 
ID 
HB 


Das k. M. Hofrat Ph. Forchheimer übersendet eine Ab- 
handlung von Dr. Ernst Melan in Charlottenburg mit dem 
Titei: »Die Berechnung von senkrecht zu ihrer Ebene 
belasteten rostförmigen Tragwerken.« 


Prof. Dr. Felix M. Exner übersendet eine Arbeit, betitelt: 
»Zur Theorie der Flußmäander.« 

Es wird versucht, die Mäander der Flüsse als Erosions- 
wirkungen von Schwingungen quer zu deren Längsrichtung zu 
erklären. Die Schwingungen werden als Eigenschwingungen 
des Wassers angesehen, die durch Unregelmäßigkeiten im 
Flußlaufe eingeleitet werden und sich für jede herabströmende 
Wassermasse an derselben Stelle wiederfinden. 

Die Formel für die stehende Schwingung liefert eine 
bestimmte von Breite und Tiefe des Beckens abhängige 
Schwingungsdauer. Als Breite kommt hier aber nicht die Fluß- 
breite, sondern die Breite des Mäandergürtels in Frage. Die 
Wassermassen werden nun während ihrer Querschwingung 
zugleich flußabwärts getragen. Die Abstände der Mäander in 
der Längsrichtung, die Wellenlänge der Mäander wächst also 
mit der Schwingungsdauer. Man erhält somit eine Beziehung 
zwischen der Flußgeschwindigkeit, der Breite des Mäander- 
Pürtels, seiner #\Wellenlänge!? und Tiefe, Ihre Prüfung an 
mehreren natürlichen Flußläufen liefert der Größenordnung 
nach keine schlechten Resultate, doch fällt fast stets die be- 
rechnete Flußgeschwindigkeit zu groß aus. Dies wird auf die 
turbulente Bewegung des fließenden Wassers zurückgeführt, 
welche die Querschwingung verzögert und dämpft. 

Eine andere Folgerung aus der Theorie verlangt die all- 
mähliche Abwärtsbewegung der Mäander mit zunehmender 
Verbreiterung der Gürtel. Um dieses Verhalten und die Ent- 
stehung der Mäander selbst näher zu studieren, wurden einige 
Laboratoriumsversuche in Sand gemacht, welche die Entwick- 
lung der Windungen durch schiefen Einfluß des Wassers in 
eine gerade Rinne, die Bildung von Sandbänken, die Abwärts- 
bewegung derselben usw. deutlich erkennen ließen. 


u} 
[8s) 
or 


Ing. Franz Wimbersky in Wien übersendet eine Ab- 
handlung, betitelt: Ȇber den freien Fall im luftleeren 
Raume.« 


Selbständige Werke oder neue, der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Harms, Wilh.: Drüsenähnliche Sinnesorgane und. Giftdrüsen 
in den Öhrwülsten der Kröte. (Sonderabdruck aus dem 
»Zoologischen Anzeiger«, Bd. XLV, Nr. 10.) — Leipzig, 
1918; 8°. 

— Ergänzende Mitteilung über die Bedeutung des Bidder- 
schen Organs (Sonderabdruck aus dem »Zoologischen 
Anzeiger«, Bd. XLV, Nr. 13.) — Leipzig, 1915; 8°. 

— Über die innere Sekretion des Hodens und Bidder’schen 
Organs von Bufo vulgaris Laur. (Sonderabdruck aus den 
»Sitzungsberichten der Gesellschaft zur Beförderung der 
gesamten Naturwissenschaften« zu Marburg, Nr. 5, 13. Mai 
1914). Marburg, 1914; 8°. 


Aus der Staatsdruckerei. 53110. 


; inbelanit Rt. 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 | Nr. 25 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 27. November 1919 


——— — 


Die Naturhistorische Gesellschaft des Österlandes 
zu Altenburg i. S.-A. übersendet eine Einladung zu der am 
29. und 30. November 1919 stattfindenden Feier ihres hundert- 
jährigen Bestehens. 


Das w. M. Hofrat R. Wettstein legt eine Arbeit von 
Prof. Karl Schnarf in Wien vor mit dem Titel: »Beob- 
achtungen über die Endospermentwicklung von 
Hieracium aurantiacum.« 


Selbständige Werke oder neue, der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Schmid, Theodor: Darstellende Geometrie. I]. Band. Zweite 
Auflage. (Sammlung Schubert, LXV). Berlin und Leipzig, 
19195 8% 


39 


1919 Nr. 10 


Monatliche Mitteilungen 


Zentralanstalt für Meteorologie und Geodynamik 


Wien, Hohe Warte 


48° 14°9' N-Br., 16° 21°7' E v. Gr., Seehöhe 202-5 m 


Zeitangaben, wo nicht anders angemerkt, in mittlerer Ortszeit; Stundenzählung bis 24 
beginnend von Mitternacht = Oh 


Oktober 1919 


330 


Beobachtungen an der Zentralanstalt für Meteorologie 


48° 14-9' N-Breite. 


zu 14h 


on 
> 
[6%) 
en 
Iv} 


40.6 +40 42 
10 | 42.8. 40 39 
m Pas Bern 38 
12, Mo An 
es |: 05 
147 39,2 7742 6723 
Ks Hans. BASE 37 
16° | 21.0. 740,72 543 
I2 48.0 51.40, 53 
184.1 54230 054.,8 56 
19: 87.8 57002 57 
20) 1 54.9. .54.80 56 
21: | 56.8 SBL056 
22 5 53.6 Si 
23 | 48.4 5. 44 
DA Herz 300 42 
> ea ae 
56 40.5 39.9. 39 
»7 .372.9 38.6 39 
232 35000 MAG. dr 
29... 38.3 38.6 39 
302123958, 39:2, 7238 
DU. 198,8, Ag A, 

83 745. 


Mittel 745.00 744. 


Höchster Luftdruck : 
Tiefster Luftdruck: 

Höchste Temperatur: 19.5° C am 5. u. 6. 
Niederste Temperatur: —1.8° C am 3l. 


Temperaturmittel?: 


Ay, (7, 14, 21). 
217, (7. 11021, 


vwoa-mo 
> 
Y> 


Luftdruck in Millimetern 


21h 


2 %19) 

GE Io 
0 46 
O2 
6 53 
0 49 


1). 


im Monate 


Temperatur in Celsiusgraden 


> 0 


[6 


co 
.ın 


wo 
@p) 


Sc 


eo 
Io 2 


m co we 00 


r 


ER 


en 


[0 0 | 
0.2) 


+++ tt ln) 


= 


a oleiget 
Be FENDER 


oo rar o 


UN: 8 Dt 
na u 


= u 


QD+H+- om 
-ÄI- on) w-I 


Pe 
Do 
(oserler) 
u 


%) 
en 
[11 


Worms! 


| 
m 


Io —=ı 


NINO oO ww W 


KT) 
naen 
SOSE NER ES) 


= 


> DD 
[6%] 


oma 


NONE Smowın am 
aoeN 


oaFWwıH 


JS 


ID co 


on H= =] 


Bier) 
= 


( >) 


\ 
vDvQamm DH 0 WW 
m ıIv 


FNOOoO Darm 


(Seiler) 
[oj1 
u | 
ep) 


oO 


SODWwOaNDGDd num am 


em ID I DO 


Duowvev- 
aawworm 
op) SOoORaaNn1w oOw 


[org u 
DR A 


m 
rs 


(op) 


‚Ss mm am 19. 


17154.6 mm am 28. 


und Geodynamik, Wien, XIX., Hohe Warte (202:5 Meter), 


Oktober 1919. 16°21°7" E-Länge v. Gr. 
ı I 

Temperatur in Celsiusgraden | Dampfdruck in mm Feuchtigkeit in Prozenten 
Schwarz- Blank- | Aus- Tao Tage 

Max. Mi kugelt kugejt | Strah- | 71 1 941 ne ZH h 24h S- 

Max. Min. ugel®  kuge mg? 1 14h 21h mittel |‘ 14 LM] a 

Nax. Max. | Yin, | | 
L Il 
| 

3%8, 210).7 42 27 8 1. 10497 11257 1 dass. 12.4 98 83 93 91 
1or7 710,8 39 2 Lamm 12.0 20 97 70 [639] S4 
DIEA 8:62,49. 33 9 Fl WE Tl. 1.9 33 79 Te 80 
laser 7 10-9 se Ta 10 9.0 ER no 10278 94 87 96 92 
19.8 213.1 25 20. PlIzEInDN 5 12.07 187 rs 97 70 92 86 
BB Tl. As 31 1081,10.4. 12.7) 1250M fir 96, 74 y9s 88 
ao, Tr 30 | 114,10. R6 8.9 9.6 309 0 E00 RX 
Dr N .0 Aa |, 5 2.0 ON = Br oa > a Abu 66 
eo 740x043 25 3 7.0 6.4 5.4 6.3 Sara 7a 08 76 
9.8 3.9 3l 29 0) 4.5 4.7 4.7 4.7 82 52 69 68 
SS 2.6 37 19 9) 5.2 Se 9.6 5.9 Ss6 61 TG 6) 
9.6 3.0 31 20 2. |. 4.9 4.6 9.9 4,9 Yart 51 Sl Ti 
ed #150 -1137, 0 20 14 4.7 6.0 8.1 6.3 95 7 69 90 83 
Oral 24 16 BE i.& TS) 6.8 1.2, SON 74 98 sl 
12.0 7.4 27 18 6 6.1 9.6 7.4 6.4 02 56 1625) 7] 
SEE Fa 17 4 Se 4.0 4,8 4.6 Gay DE are dall 68 
Vz Ball 1 4.4 4.0 SI +.0 al SB) 61 
mes arzselets. 11 0 5.2 9.6 6.3 5% SO? 12° 282 78 
10.3 5.9 28) 18 4 9.080) Tala..9) 5.7 54 95 sl 73 
(8 4.9 26 19 3 6.7 +.9 9.8 9.6 s6 62 77 79 
8.1 3.1 40 21 er >29 4.7 ara 4.9 Ss6 98 so 79 
9.0 1.6 3 19 |-1 5.1 Du 2 5.1 9.1 sg 63 76 76 
Salt 78,.23-1. 21 12 1 5.4 61 6.8 6.1 SO 92 36 
Baar man 6.9 7.8 Al 720 97 295 95 
moe2.1 1836 u 0 326 0) 7.3 6.8 97 84 93 91 
al) BEN SZ 20 ) 6.5 6.9 6.5 (0) 83 66 s0 76 
wo, 4.8) 24 16 4 6.3 6.1 959 6.2 837..81 84 S4 
(3) ) Ö 3 5.6 4.9 4.3 4.9 Glen 83 215 83 
Ä DR2# 2,2" 129, -I8 2 4.6 4.6 4.4 4.5 SA 052 78 
x Kost | #8:.0001.5 3/-1 3.9 4.3 4.5 4.2 IE 15090) 82 
f 1.0 -1.8 5 ZU 4.5 4.3 3.6 4.1 BEL ER DB sy 
1026 75.3 |30.4 49.071 4.0 6.6 67 6.8 6.7 S6ER0902 833 79 


Höchster Stand des Schwarzkugelthermometers: 49° C am 3. 

Größter Unterschied zwischen Schwarz- und Blankkugelthermometer (stärkste 
Strahlung): 19° C am 21. 
Tiefster Stand des Ausstrablungsthermometers: —1° C am 13,, 22. u. 30. 


Höchster Dampfdruck: 13.5 mm am 1. 
Geringster Dampfdruck: 3.6 mm am 31. 
Geringste relative Feuchtigkeit: 460/, am 8. 


! In luftleerer Glashülle. h 
°Blankes Alkoholthermometer mit gegabeltem Gefäß, 0:06 m über einer freien Rasenlläche. 


_ 


332 
Beobachtungen an der Zentralanstalt für Meteorologie 


48° 14°9' N-Breite. im Monate 
Windrichtung und Stärke | Windgeschwindigkeit Niederschlag 2 
n. d. 12-stufigen Skala in Met. in d. Sekunde inmm gemessen & 
Tag GT ET er = 
zh h h | i i h h 9 E 
7 14 21 ‚ Mittel} Maximum 4 ü 14 21% Zee 
— | — —— >= = 

1 SETISERB RAN 5 SE 10.6 — — 0.la 
2 — 550 .NNBE2E N 22.7 Ww 23.9 0.20 _ .0Oe | — 

3 W DW SA "Wo. 21,206 WM - 24% 3.90 1.9e -- 

4 — „ON EST, U 0,8 w 3) 0.la = = — 
b) 10 .SSE.84 8 122,8 SSE- 211.5 0.1a = _ — 
6 S 1 NNEI1 ESE il 0.9 S 6.7 Oske = _ — 
7 |WNW3 NW 3 NNW3| 4.1 NWs 518.1 0.1la _ _ _ 
3 NV a 2 N 9.8 — — 0.1a| — 
I HNyENWVdE 2 N 72V a NW . 212.6 ri — 1.7e | — 
10 WNW3 W 3 WNW2| 4.5 NW 10.8 0.22 = 0.le | — 
il SV 12SS WEISE SWE 25224 WISIVEELOEET — 0.0® 0.08 || — 
12 N nl WISE 312,28 0.02 = = — 
13 — 40 SE), 3% 8 21.2.8 SSE 210.2 — — 1.6e | — 
14 NV SATZWER2T ZW 1359 W 15.6 0.5e 0.2e 0.08 || — 
15 NW — 30 2A ENENW Ten 01.12 — 0. Qi 
16 WNW3.NNW 3 WNW3I 55.2 | WNW 119.2 1.le 0.0e 0.08 | — 
17 NNW;3 # N .245 NW 455.32 | .NNW 711.3 = 0.55 = _ 
18 1SWNW.A WI 233. NW 31.6.5: WNW 18.8 0.1e 0.0e 0.08 || — 
bs) NW 2 NINZENW 1.3.0 NW 9.3 — — Ze 7 
20 N eta ENDE Se 2 ENE 6.4 0.8e 0.08 - — 
21 = 0 NI2LENW I 20 POENNE 4.8 0.1a — — == 
22 — 0025 5077 1010.0.x65 EININIIWE 2 40 _ = = Tr 
23 ISIW 2 NW. 1 NW, Amel oe NNW 2 %6.2 — 0.0e 4.08 | — 
24 — 0 ESE 1 — 01 0.7 SSE 4.7 t.50 0.1e 0.1... — 
25 — 0 ESE| — O0 1.1 AVINDWEIE 22 VR2n: —_ _ = 
26 DV aVENVS eva ll 52 76 NVINNV ESS 0.00 —_ — = 
27 — 40,0 Was 13 ya 22. N NW 8 0.0® 0.1e — — 
28 NNE 1 WNW3 WNWA4| A.1 | WNW 14.2 0.la 14.4e 0.00 | — 
29 NW 3 SW 2WNWil 3.1 | WNW 8.4 || 0.38 _ _ — 
30 NW .3.WNW3 W 3| 6.2 W.. „15.6. 0.00 0,08. 7 n.0sız= 
31 W 3 -- O0 WNWIl 4.0 W 15.2 8,28 0.9% 1x 

Mittel 1.8 20 1.6 | 3.0 11.2 17.6 18.1 14.8 


Ergebnisse der Windaufzeichnungen: 
N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW 


Häufigkeit (Stunden) 

39 19 9 Sa 12 Tore SO BSR EU ET 25. 89 204 104 46 
Gesamtweg in Kilometern 

307 113 , 84, 17 61. 113 193 8368: 174 98 43: ..262 - 1258034851187 481 


Mittlere Geschwindigkeit, Meter in der Sekunde 
2:2. 1,6 1.1 089° TE 20 2187259 2541.09, Al 2,9 Sn or] 


Maximum der Geschwindigkeit, Meter in der Sekunde 
4,4 4,7 8.1 2.2 2.5 5.0.5.0 5.3.4.2 4.2 3.1.6.4 713.8 19.6 Es 
Anzahl der Windstillen (Stunden): 81. 
Größter Niederschlag binnen 24 Stunden: 14.7 mm am 28. u. 29. 
Niederschlagshöhe: 50.5 mm. 
Zahl der Tage mit e (x): 17 (4); Zahl der Tage mit =: 3; Zahl der Tage mit R: 1. 


! Den Angaben des Dines'schen Druckrohr-Anemometers entnommen, 
. 


333 


und Geodynamik, Wien, XIX., Hohe Warte (202:5 Meter), 


Oktober 1919. 


167 21 TIVER-Längeiv!.Gr. 


| 


5 # Bewölkung in Zehnteln des 

= | sichtbaren Himmelsgewölbes 

5 = Bemerkungen ee 

=& | 7a id 21h |$ 

ä | 2 ge 
&gmde | a?, =! mgns. 01=1 30-1 401 157 
efggg |-a!,=0 mgns., <in NW 20; 0 1630, e172 2240 — 80-1 8071 10lel | 8.7 
geggg | 172-630, 071 825 — 945, | Int 101 101 10.0 
fgfgf | =0 abends. | al 101 971-9,3 
embaa | a! mgns. | g071 41 0 4.3 
Bened | al mens; []J" 20. 30 79 40 4.7 
feded | al mens. | 100-1 70-1 101 9.0 
bbban | A071 mens. Igeall 2071 0 1.0 
tdffm | el 1425 — 1720, 90-1 10172 901717973 
bbbbh | eTr. 14%. il 21 21 107 
neefd | e071 1215, e0 2]; al mens. 8071 qı 10160 | 8.3 
cbbba | .al mgns. 6071 gl 10 3.9 
bengg |! mgns. ; 6071 1825 — |, 3071 10180 | 4.7 
gefgg | E01 —72, 00 12— 1415. | 10180 90-180 101 9,7 
ffdgg | el 2215 — | ap 101 OEL 1967 

| 

gädem | e!— 1, eT'r. 1215, 1619. | 101 Soil 9uZ179E0 
cedmce | eTr. 9, x1 924730, eTr. 12. | SO 70-1 20 9% 
ffgeb | eTr. 5, 0 830, 14—16 zeitw. | 101 101 80-1 | 9,3 
endbn | .a.! mgns. | 4071 80-1 30 5.0 
ggegg | el 120 —2, e0 715 — 10 zeitw.; (D114— 15. 101 ALT 9.0 
eedde | (D? 14. 00-1 30-1 60 5.3 
fmece | al, 0 mens. | 100 69 80 8.0 
ffggg | eTr. 1230, 1440, el 15 — 3072, TO 101e0 | 9.7 
ggfme | e!71—7, e0 110730, 12—13 zeitw.; =" abends. 101 90-1 0) 6.3 
ggeee | -n2?,=!mgns. u. vorm. 101=1 8071 So=t || 87 
fefgg | al mgns. 9071 40=1 90 7.3 
fgggg | 0 52040, 1140 — 13; al mens. 9071 101 101 IT 
gggfg | el 750 — 1435, eTr. 15; -0?, =! mens. 101=1 10180 10071 [10,0 
fdfma | x0 025—2, x0 e) 4—5. 101 10071 0 bez 

ggggg | x! el 1350 — 101 10lelx1 10181x1110.0 
gggmd | x1 0071-730, „II S—19;R 2. 101e0x1 101x1 6071 178.7 
Mittel 8.1 7.8 027 7.4 

Schlüssel für die Witterungsbemerkungen: 

= klar. f = fast ganz bedeckt. k = böig. 
= heiter. g = ganz bedeckt. l = gewitterig. 
= meist heiter. h = Wolkentreiben. m = abnehmende Bewölkung. 
= wechselnd bewölkt. i = regnerisch. n = zunehmende » 


größtenteils bewölkt. 


Der erste Buchstabe gilt für morgens, der zweite für vormittags, der dritte für nachmittags; 
der vierte für abends, der fünfte für nachts. 


F 


Aelcenemenkläarung: 


} Sonnenschein &, Regen e, Schnee x, Hagel a, Graupeln A, Nebel = 


‚ Nebelreißen =‘, 


ua, Reif —, Rauhreif V, Glatteis ro, Sturm m Gewitter R, Wettertenehten <, Schnee- 


 gestöber $, Dunst oo, Halb um Sonne &, 
um Mond W, Regenbogen ®. 
eTr. — Regentropfen, Fl. = Schneeflocken, Schneeflimmerchen, 


I 


Kranz um Sonne @, 


Halo um Mond [(]J, Kranz 


334 


Beobachtungen an der Zentralanstalt für Meteorologie und 
Geodynamik, Wien, XIX., Hohe Warte (2025 Meter) 
Windmessungen mittels Pilotballonen im Monate Oktober 1919. 


Seehöhe: 230 500 | 1000 1500 2000 2500 Größte Höhe 
en on bp &n on 60 Keen 
Datum Eu En Ei Es Se =. Je 
22 on | ea 22 22 En ee 
ME. Zu | SS | Sa] Be) Sara Mey a, Se 
E E Te e E B u. e 
2... 9 WSW 4 W 5IWNW11|WSW 1| NNE 4 NE 6| 61 |’SW 35 
5.. 9% SSE 3] SSE 6| SSE 14 — — = 13:|,5SE 14 
6. 847 Se | S 6 8 8| SSW 6| SW 31 E 11 921 7 SBERE 
7. 1000 WwNW 5| NW 13| NW 20| NW 15| NNW 10) WNW13[ 25 | WNW13 
8. 829 NNW 4| NNE 7 N 7\ NNE 7| NE 2| NNE 51 68 |. NE 715 
10. 848 W. 7\WNW12| NNW 8| NW 10| NW 10) NNW 61 65 W 80 
la Set SSW 11 SW 4A W 7 w 9 W 6 WSW SI 23 WSW 6 
12. 1003 W zw 11) W 9 WNW 1LWNW LOWNW 17730 EANvEERE 
13. 914 SE 2| SSE 4 SSE 5) SSE 3|WSW 4 SW 81 55 |\WSW 21 
15. 1001 NVSIWE 3 NV SI DV 3] SVEN VE TEL DVVENDVVLT, — 24 | WSW 10 
16. 1128 WNW 8S| NW 16|WNW17|WNW13|WNW14| NW 141 53 |. WW 29 
17. 839 WNW 8| NW 10| NNW 11| NNW 14| NNW 10| NNW 13] 87 | NNW 6 
21. 9% N | NNE 6| NNE 3) ESE 5| ESE 6| SE 5125|. SE 5 
22.1055 NE 1| ESE 4 SE 4 SE 8| SE 8.SE 10177 S 16 
29. 855 WNW 3 NW 7 NW 3/WSW 4. 8 4| SSE 7| 32 S 5 
Seehöhe: | 3000 | 3500 4000 | 4500 5000 8900 6000 
2. gel E 3) 'S8W. 7| SSW:. 9| SW 13| SW 20] “Bw 29: aSVers 
6. SH E 2| ENE 1|NNE 2| NE 3 E 3| ESE 4 E 5 
8. 829 NNE 6| NNE 7| ENE 3| NNE 8| NNE 9| NNE 7 | NNE IA 
10. 845 NNW 8| NW 10| NW 8S|WNW12|WSW 13 | WSW 20 | W. 29 
12. 1003 Nu — — — — — — 
13. 914 WSW 10| WSW 13 | WSW 16 | WSW 17 |WSW 19 | WSW 21 — 
16. 1123 NW 16.| NW 12| NW 12/|WNW1l5| W 23 — = 
17. 839 NNW 14| NNW 8 — _ — = — 
22. 1055 SE 6| SSE S| SSE 4 D 7|SSE 3| SSE 10| SSE il 
29. 855 S ü — — — — — — 
Seehöhe: 6500 7000 7500 | 8000 | 8500 9000 
6. SE ESE 24 | ESE. 25.882726 2ESE 227.2 2SEN2282 72SE 29 
8. 829 NE 15 — — — = — 
10. 845 W 30 — _ — = — 
22. 1055 Sell 5 lo ST — — — 


330 


Beobachtungen an der Zentralanstalt für Meteorologie und 
Geodynamik, Wien, XIX., Hohe Warte (202°5 Meter), 


im Monate Oktober 1919. 


Ver- Dauer |> _ E = Bodentemperatur in der Tiefe von 
dun- des +5 =2|0.50m 1.00m 2.0m 3.00m 4.00 m 
Tag stung Sonnen- gagrS E a —— ee 
in mm en 5 5 &o Tages- Tages- 14h 14h 14h 
Zh Stunden | 6 Se: mittel mittel 
l 0.3 1.8 0.3 15.1 14.7 14.0 12.9 ja u.) 
2 el 3.6 RT 15.3 14.6 13.9 12.9 11.8 
3 0.6 0.0 11.3 14.9 14.6 13.9 12.9 11.8 
4 0.2 0.0 3.3 14.1 14.5 13.9 12.9 11.8 
5) 0.4 8.9 3.3 14.5 14.4 13.8 12.8 11.8 
6 0.4 7.4 0.0 14.8 14.4 13.8 12.8 11.8 
7 1.3 2.5 8.0 14.8 14.4 13.8 12.8 11.8 
8 0.9 10.4 10.3 14.2 14.4 13-7 12.8 11.8 
9 0.0 0.6 N) 12.9 14.2 IB 12.8 11.8 
10 0.8 8.9 KOT. 12.9 14.0 age 12.8 11.8 
11 0.5 3.5 5.0 10.8 13.5 13.6 1228 11,8 
12 0.6 dat 7.0 10.2 13.1 13.6 12.8 11.8 
13 0.5 7.8 2.0 9.4 12.2 13.6 12.8 118 
14 0.6 0.0 81 On 12.2 13.5 12.7 11.8 
15 0-7 0.5 5.0 KOT ee) 13.4 127 ale, 
16 0.9 1.2 9.0 DE ee 13.3 12.7 le) 
17 1.3 6.6 10.7 9.1 1726 13.2 NT 15159 
18 0.6 an 8.7 8.2 11.3 13.1 12.7 11.9 
19 Vo 3.0 LE) 8.4 10 13.1 12.7 119 
20 0.4 2.9 7.0 8.6 10.8 12.9 or 11.9 
21 0.5 3.5 4.7 8.4 10.5 12.8 12.6 219 
22 0.4 3.9 3.0 8.2 10.5 12.7 12.6 I 
23 0.2 0.3 4.3 7.9 10.83 12.6 12.6 ikıbaR, 
24 0.1 0.1 ot 8.2 10.2 12.5 12.5 1129 
25 0.1 Ze 0.0 8.0 1021 12.4 12.5 118 
26 0.5 3.1 4.7 s.4 10.0 12.3 12.4 Da 
27 0.4 0.4 8.3 8.5 10.0 12.2 12.4 lat 
28 0.4 0.0 6.7 8.1 9.9 12.2 12.4 158 
29 0.5 Set RO 7.9 928 ee 12.3 11.8 
30 0.4 0.0 6.3 6.7 9.6 12.0 12.3 11.8 
31 0.3 0.0 10.0 5.6 9.3 ala 12.3 11.8 
Mittel 0.5 3.0 6.0 10.4 12.0 13.1 1257 11.8 
Monats-| 16.6 93.2 
summe 


Größte Verdunstung: 1.3mm am 7. u. 17. 

Größte Sonnenscheindauer : 10.4 Stunden am 8. 

Prozente der monatl. Sonnenscheindauer von der möglichen: 280/,, von d. mittleren: 870,9. 
Größter Ozongehalt der Luft: 11.3 am 3. 


Aus der Staatsdruckerei. 
Anzeiger Nr. 25. 39 


‘ 


'E 


> 16 ER ee 3 
, Hr ers 7 > 
. “ Ar a J 
Pia ta ? 
Crhäkr 
5 . Pr ee 
’ Pr Br y fi x 
Ion: ads erfi 8 ER rare 
At SI IE: N ri as KBPLRE Gi Er Sk 
= + % “ - x 7 re 
n et nd 3 
Aa 3 a8 Ir BASE 4 „Al at 
i Lu 2° 
Aarıı a Y 
nr % 
> DUr% an « 4 
az ip nen PT RRFEL TE TEN! . an 
f% . n - 
} ° 5 L 2 5 iD 
\ Er ” De 
J 57 e . 
f' " R F % 
3 © aa 
} Er m ! . } 
AR, Fi 1 | 
1 \ H ' ‚A ee 
. 
N 
j 2 I} 
y \ 1 ‘ E i \ Gs 
7 ı 
l D B 7 1 
| \ % 1 5 ı A 
‘ ö ’ H 
3 5 } . j j \ 
; fi n | 
BY h 
h n a | 


| 
3 n 
r Bi! 
J 3 " 
‚) f er j R i 
; “ q j fi . 
2 5 7 En i 
4 € R 1 
£ £ iu F . 
F f | A \ j \ 
' x 
? 
H 1 y 
I r bi j 
’ u. € 
i . =! A - 
B- 11 3 / | 
Ä \ 
an i h 
Bi v. A 2 
f a ‚ r f n 
2 bei, I 
2 3 r 
© } E L dl 
! 4 * 
£ 4 M Pr 
x Ä L JS 7 
. . w n 
Be ee 
u 22 ... ’ 7 ei H 
A \ a0 » = 
Pr a 
.. Ka Y 2 N 
De muB [ \ n 
r Ki r t I 
“ u 
: 5 x Ä 
% . f 
| er 
\ + fi 2 Fi a r 
| 2. 
| = TE 
\ b. I: h je 
4 . r, . « n) N 
i 4 M. N in “ } ur 
| 1;  $ rg y F a 
° B.B: Y.58 u, 2 in» 
i {I 
ö en 
i "yH Pi TEE zür mul 
Ai :.os T.8l 270% 129. 
. j ; . 
T 
A TER re 4 
>. Er e N 
| - y £ SI vautger 
.5 mE ‚aba 4 BREI 1 2 25 
G 
{ 2 “ PERL | 
sıy10 ON tal: dmmakAdV: apazpı 
Kralliım 4 N tasld u no Bunt 
\ - n 
. 
nf J x 
. 
N 
\ 
. 
P7 u = ? 
% Mn r 


ö “ 


Bi > 


u Er f Q 
PORERHE AI sh 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr. 26 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 4. Dezember 1919 


Erschienen: Sitzungsberichte, Bd. 128, Abt. lla, Heft 3; Bd. 127 und 128, 
Abt. II, Heft 1 bis 3. — Menatshefte für Chemie, Bd. 40, Heft 6 


und 7. 


Ing. Franz Rogel in Klagenfurt übersendet eine Abhand- 
lung mit dem Titel: »Darstellung einer Strecke im 
Raume.« 


Ing. Philipp Biach in Wien übersendet ein versiegeltes 
Schreiben zur Wahrung der Priorität mit der Aufschrift: 
»Beweis des sogenannten großen Fermat’schen 
Satzes.« 


Selbständige Werke oder neue, der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Fischer, Emil: Untersuchungen über Depside und Gerbstoffe 
(1908— 1919). Berlin, 1919; 8°. 

Gurley, Revere Randolph: Extra-individual reality: its exi- 
stence. New York, 19]5; 8°. 

— Överleap of the intermediate zone. New York, 1916; 8, 


x 4) 


Pte ak re 5: MN 7% w 


N a EEE ZA LA a a a a nn ee m 


1 Nude Ye J h 
ze IX2 } Ah EN: 
x f ; & er wo x A 


Sr a ER) all 7 u daran ineranusake N 
PEREER fl „het Amel Hit ledasanu ; 


a N ie Sr 


Wiraridk Sal ahead TUN. # fe iR 
mi age Haie EG Han. au E 


ee ® a yes 


Ef ET PR u RR PER 


VE IRERN nis WEHR aa hi Fa int 
Mindastira. Db Hi Nino" nn, goal Just, 
uauioattamıar. nalen: Be I ac 1 A 


Ki 

: N 
« ar j “ 
ee 

a) 


Haalogn Don die ; 
nces bau a! wi i 


Akademie der Wissenschaften in Wien 


Jahrg. 1919 Nr.*27 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 11. Dezember 1919 


Der Vorsitzende macht Mitteilung von dem Verluste, 
welchen die Akademie der Wissenschaften durch das am 
10. Dezember 1. J. erfolgte Ableben des wirklichen Mitgliedes 
der mathematisch-naturwissenschaftlichen Klasse, Hofrates 
Dr. Franz Steindachner, Intendanten des Naturhistorischen 
Hofmuseums in Wien, sowie durch das Hinscheiden des 
korrespondierenden Mitgliedes dieser Klasse im Auslande, 
Prof. Dr. Ernst Stahl in Jena, erlitten hat. 

Die anwesenden Mitglieder geben ihrem Beileide durch 
Erheben von den Sitzen Ausdruck. 


Prof. R. Schumann in Wien übersendet eine vorläufige 
Mitteilung: »Einige vorläufige Ergebnisse mit Schwere- 
wagen-Messungen im Zillingsdorfer Kohlengebiet.« 


Dr. Marta Furlani in Wien übersendet eine vorläufige 
Mitteilung: »Stratigraphische Studien in Nordtirol 
(Jura-Neokom).« 


4] 


34) 


K. M. Prof. Anton Skrabal und Eleonore Flach in 


Graz übersenden eine Abhandlung mit dem Titel: »Über 
Polyjodidverbindungen der Oxalsäureester.« 


Das w. M. R. Wegscheider überreicht eine Arbeit aus 
dem Laboratorium für anorganische Chemie an der Technischen 
Hochschule in Wien: »Wasserstoffsuperoxyd als Lö- 
sungsmittel (vorläufige Mitteilung)«, von Max. Bamberger 
und Josef Nussbaum. 


Weescheider überreicht ferner eine Abhandlung aus dem 
I. Chemischen Laboratorium der Universität Wien: »Über 
Trimethylsulfoniumverbindungen«, von Hildegard 
Blättler. | 

Es wurden folgende neue Verbindungen dargestellt: 
(&K:=HCH, 5; SIR, Cu Ch, 1 HC LACH SUR 
XEeCli} BEeCl,, "XSnQ4% Zub hc X,BiBr,: 
X,ZnJ,, XBiJ,. Die Vereinigung von Chlormethyl mit Methyl- 
sulfid wird durch Zusatz von ZnCl, oder CdCl, (im Gegen- 
satz zu der bei anderen Sulfoniumverbindungen öfter gemachten 
Beobachtung, daß sich Doppelsalze leichter bilden als einfache 
Sulfoniumverbindungen) nicht erheblich befördert. 


TE Me 


Aus der Staatsdruckerei in Wien. 


Anzeiger 


57. Jahrgang — 1920 — Nr. 1 bis 27 


oflen 
SI En 


zung 2 ee 
% 37 ih Am SE { 
tab 7 i >39 9715. | bog EX | 


Wien, 1920 
Österreichische Staatsdruckerei 


A Kommission bei Alfred Hölder . 
Uniyersirätsbuchhändler E 
E Buchhändler der Akademie der Wissenschaften 


Akademie der Wissenschaften in Wien 
Mathematisch-naturwissenschaftliche Klasse 


Anzeiger 


57. Jahrgang — 1920 — Nr. 1 bis 27 


Wien, 1920 


Österreichische Staatsdruckerei 


In Kommission bei Alfred Hölder 
Universitätsbuchhändler 


Buchhändler der Akademie der Wissenschaften 


3 al en 


II 


A. 


Abel, E.: Bewilligung einer Subvention zur Fortsetzung seiner Arbeit über 
Reaktionskinetik. Nr. 5, p. 55. 

— Dankschreiben für die Bewilligung dieser Subvention. Nr. 5, p. 51. 
— Abhandlung »Zur Jodjodionenkatalyse des Wasserstoffsuperoxydes«. 
Nr. 16, p. 180. 

Aigner F. und A. Smekal: Bewilligung einer Subvention für Spektral- 
untersuchungen der Röntgenstrahlung. Nr. 7, p. 78. 

— Dankschreiben für die Bewilligung dieser Subvention. Nr. 7, p. 71. 

Almanach: 

— Vorlage von Jahrgang 69, 1919. Nr. 10, p. 101. 

Andres, L.: Druckwerk »Ein astronomisches Nivellement im Meridian von 
Laibach«. Nr. 10, p. 113. 

Angström, A.: Druckwerke »Die Konvektion der Lufte. — »Über die 
Schätzung der Bewölkung«. Nr. 15, p. 177. 

‚Association des Ingenieurs electriciens in Lüttich: Übersendung der Bedin- 
gungen für die Bewerbung um den Preis im Jahre 1921 aus der 
Fondation George Montefiore. Nr. 18, p. 216. 

Axer, Ph.: Abhandlung »Untersuchungen über die Veresterung unsym- 
metrischer zwei- und mehrbasischer Säuren. NXXII. Abhandlung: Über 
4-Nitro-i-phtalsäure und die Reduktion ihrer Estersäuren zu 4-Amino- 
i-phtalestersäuren«. Nr. 2, p. 30. 


B. 


Baumgarlnerpreis: Übersendung einer Bewerbungsschrift für denselben. 

Nealzupris 
— Ausschreibung der Preisaufgabe für 1922. Nr. 14, p. 167. 

Bayer, E.: Abhandlung »Über eine neue Rubidium (Cäsium) - Silber - Gold- 
verbindung und ihre Verwendung zum mikrochemischen Nachweis 
von Gold, Silber, Rubidium und Cäsium«. Nr. 7, p. 73. 

Becker, Th.: Abhandlung »Wissenschaftliche Ergebnisse der zoologischen 
Expedition Prof. Werner’s nach dem angloägyptischen Sudan (Kordofan) 
1914. VI. Diptera«. Nr. 26, p. 281. 

Bersa, E.: Abhandlung Ȇber das Vorkommen von kohlensaurem Kalk in 
einer Gruppe der Schwefelbakterien«. Nr. 10, p. 108. 


IV 


Bierens de Haan, J.A.: »Mitteilungen aus der Biologischen Versuchs- 


anstalt. Nr. 47. Die Körpertemperatur junger Wanderratten (Mus 
decumanus) und ihre Beeinflussung durch die Temperatur der Außen- 
welt. (Die Umwelt des Keimplasmas. VIIL.)«. Nr. 14, p. 155. “ 

und H. Przibram: »Mitteilungen aus der Biologischen Versuchs- 
anstalt. Nr. 48. Erniedrigung der Körpertemperatur junger Wander- 
ratten (Mus decumanus) durch chemische Mittel und ihr Einfluß auf 
die Schwanzlänge. (Die Umwelt des Keimplasmas. IX)«. Nr. 14, p. 156. 


Billiter, J.: Abhandlung »Löslichkeitsbeeinflussung von Chlorat durch 


Chlorid und ihre Abhängigkeit von der Temperatur«. Nr. 9, p. 94. 


Biologische Versuchsanstalt der Akademie: 


Bewilligung einer Subvention als Ersatz der Sturmschäden. Nr. 7, p. 79. 
Mitteilungen: 


— Vorlage von Nr. 47. Nr. 14, p. 155. 
— Vorlage von Nr. 48. Nr. 14, p. 156. 
— Vorlage von Nr. 49. Nr. 14, p. 157. 
— Vorlage von Nr. 50. Nr. 14, p. 158. 
— Vorlage von Nr. 51. Nr. 14, p. 162. 
— Vorlage von Nr. 52. Nr. 14, p. 164. 
— Vorlage von Nr. 53. Nr. 16, p. 179. 
— Vorlage von Nr. 54. Nr. 22, p. 249. 


Blaas, J.: Versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 


schrift: »Töne sprechen«. Nr. 14, p. 169. 


Bloch, N.: Abhandlung Ȇber Gesamtschwankung von Funktionen mehrerer 


Veränderlichen«. Nr. 12, p. 141. 


Borak,J.: Abhandlung »Zur Physiologie der Gewichtsempfindung auf Grund 


von Versuchen an Amputierten«. Nr. 13, p. 147. 


Braun, R.: Versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 


schrift: »Zusammensetzung der Minerale«. Nr. 5, p. 52. 


Brecher, L.: Bewilligung einer Subvention für Untersuchungen über das 


Eierfärbungsproblem. Nr. 5, p. 55. 

»Mitteilungen aus der Biologischen Versuchsanstalt. Nr. 49. Die 
Puppenfärbungen des Kohlweißlings, Pieris brassicae L. VI. Teil: 
Wirksamkeit reflektierten und durchgehenden Lichtes«. Nr. 14, p. 157. 
und H. Przibram: »Mitteilungen aus der Biologischen Versuchsanstalt. 
Nr. 52. Die Farbmodifikation der Stabheuschrecke Dixippus morosus Br. 
und Redt. (zugleich: Ursachen tierischer Farbkleidung. VI.)«. Nr. 14, 
.p. 164. 


Breisky, W., Vizekanzler: Mitteilung von der Übernahme der Leitung des 


Unterrichts- und Kultusamtes. Nr. 24, p. 263. 


Brössler, F.: Abhandlung »Mitteilungen aus dem Institut für Radium- 


forschung. Nr. 125. Über die Erreichung des Sättigungsstromes in 
Zylinderkondensatoren bei lonisation durch Ra-Emanation im Gleich- 
gewichte mit ihren Zerfallsprodukten«. Nr. 1, p. 10. 


ee 


\ 


Brunswik, H.: Abhandlung Ȇber das Vorkommen von Gipskrystallen bei 
den Tamariceae«. Nr. 9, p. 95. 


Bucura, C.: Druckwerke »Die Eigenart des Weibes«. — »Geschlechsunter- 
schiede beim Menschen«. — »Über Hämophilie beim Weibe«. Nr. 14, 
p- 168. ; 


Bütschli, O., k.M.i. A.: Mitteilung von seinem am 2. Februar 1. J. erfolgten 
Ableben. Nr. 5, p. 51. 
Burgerstein, A.: Bewilligung einer Subvention für die Herausgabe des 
II. Bandes seiner Monographie der Transpiration der Pflanzen. 
Nr. 18, p. 220. 
— Dankschreiben für die Bewilligung dieser Subvention. Nr. 18, p. 216. 
— Übersendung der Pflichtexemplare. Nr. 23, p. 257. 


C. 


Camera Agrumaria in Messina: Druckwerk »Bollettino, anno Ill, Marzo 
1917, num. 4«. Nr. 18, p. 221. 


2: 


Defant, A.: »Untersuchungen über die Gezeitenerscheinungen in Mittel- und 
Randmeeren, in Buchten und Kanälen. VI. Teil: Die Gezeiten und 
Gezeitenströmungen im Irischen Kanal«. Nr. 7, p. 74. 

Denkschriften: 

— Vorlage von Band 96, 1919, Nr. 22, p. 249. 

Diener, C., w.M.: Bewilligung «einer Subvention für die Herstellung von 
9 Tafeln zu seiner Arbeit »Neue Tropiloidea aus den Hallstätter 
Kalken des Salzkammergutes«. Nr. 9, p. 95. 

— Abhandlung »Neue Ceratiloidea aus der karnisch-norischen Mischfauna 
des Feuerkogels bei Aussee«. Nr. 16, p. 181. 

— Abhändlung »Neue Ceraliloidea aus den Hallstätter Kalken des Salz- 
kammergutes«. Nr. 19, p. 236. 

— Bewilligung einer Subvention zur Ausführung von 4 Tafeln zu diesen 
beiden Arbeiten. Nr. 24, p. 264. 

Diet, L.: Versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schritt: »Dreiteilung des Winkels und grundlegende goniometrische 
Gleichungen«. Nr. 14, p. 165. 

Dimmer, G.: Abhandlung »Versuche zur Bestimmung des Längenunter- 
schiedes eines metallenen Meterstabes in horizontaler und vertikal 
hängender oder unterstützter Lage«. Nr. 10, p. 101. 

Doelter, C., k. M.: Abhandlung »Neue Untersuchungen über die Farben- 
veränderungen von Mineralien durch Strahlungen«. Nr. 16, p. 180. 

— Bewilligung einer Subvention für Untersuchungen über die Einwirkung 
von Strahlungen auf Mineralfarben. Nr. 17, p. 214. 


VI 


Donau, J.: Bewilligung einer Subvention für mikrochemische Arbeiten, ins- 
besondere für Herstellung einer Mikrowage. Nr. 5, p. 55. 

Dzrimal,J. und A. Zinke: Abhandlung »Zur Kenntnis von Harzbestand- 
teilen. 7. Mitteilung«. Nr. 15, p. 170. 


E. 


Easiman Kodak Company in Rochester: Druckwerk »Abridget Scientific 
Publications from the Research Laboratory of the Eastman Kodak 
Company, vol. III<. Nr. 6, p. 70. 

Ebner, R.: Einleitung zu der Arbeit von A. v. Schulthess: »Wissenschaft- 
liche Ergebnisse der zoologischen Expedition Prof. Werner's nach 
dem angloägyptischen Sudan (Kordofan) 1914. VII. Hymenoptera. 
I. Formicidae«. Nr. 26, p. 281. 

Ebner, V., w. M.: Abhandlung Ȇber den feineren Bau der Herzmuskelfasern 
mit besonderer Rücksicht auf die Glanzstreifen. 1. Teil<e. Nr. 3, p. 40. 

— Abhandlung »Über den feineren Bau der Herzmuskelfasern mit be- 
sonderer Rücksicht auf die Glanzstreifen. II. Teil<. Nr. 20, p. 245. 

Eder, J. M., w.M.: Abhandlung »Das Bogenspektrum des Terbiums«. Nr. 14, 
p- 166. 

— Inhalt dieser Abhandlung Nr. 19, p. 236. 

Ehrenhaft, F. und K. Konstantinowsky: Vorläufige Mitteilung »Trans- 
versaleffekt des Lichtes auf die Materie bei der Photophorese«. Nr. 9, 
p. 91. 

Eisler, M. und L. Portheim: Mitteilung aus dem serotherapeutischen In- 
stitut und aus der Biologischen Versuchsanstalt. Nr. 54. Über die 
Biologie des Bacillus carolovorus (Jones)«. Nr. 22, p. 249. 

Emich, F., k. M.: Abhandlung »Bemerkungen zur Arbeit von E. Bayer: 
Über eine neue Rubidium (Cäsium)-Silber-Goldverbindung zum mikro- 
chemischen Nachweis von Gold, Silber, Rubidium und Cäsium«. Nr. 7, 
p. 73. 


Encvklopädie der malhemalischen Wissenschaflen mit Einschluß ihrer An- 
mwendungen: 
— Vorlage von Heft 3, Band 1I3. Nr. 18, p. 216. 
— Vorlage von Heft 7, Band VI2. Nr. 22, p. 252. 


Erdbebenkommission: 


— Mitteilungen: 

— ._— Vorlage von Nr. 55. Nr. 14, p.. 155. 
— — Vorlage von Nr. 56. Nr. 14, p. 155. 
— .—— ., Vorlage von Nr. 57. Nr. 17, p..199: 


Exner, F,, w. M.: Abhandlung »Zur Kenntnis der Grundempfindungen im 
Helmholtz’schen Farbensystem«. Nr. 5, p. 52. 
Exner, F. M.: Abhandlung »Zur Physik der Dünen«. Nr. 27, p. 284. 


Vu 


F: 


Federhofer, K: Abhandlung »Zur Bewegung der veränderlichen Masse«. 
Nr. 9, p. 94. 

Ficker, H.: Abhandlung »Beziehungen zwischen Änderungen des Luft- 
druckes und der Temperatur in den unteren Schichten der Troposphäre 
(Zusammensetzung der Depressionen)«. Nr. 7, p. 71. 

Fischer, A.: Abhandlung »Beitrag zur graphischen Auflösung algebraischer 
Gleichungen nach Lille. Nr. 5, p. öl. 

— Abhandlung »Über einige Anwendungen der Approximationsrechnung 
in der Theorie der Differentialgleichungen«. Nr. 10, p. 102. 

Friedjung, H., w. M. der philos.-histor. Klasse: Mitteilung von seinem 
am 14. Juli 1. J. erfolgten Ableben. Nr. 18, p. 215. 

Friedl, K.: Vorläufiger Bericht »Stratigraphie und Tektonik der Flyschzone 
des östlichen Wiener Waldes«. NntlasR.6: 

Friedmann, E.: Versiegeltes Schreiben zur Wahrung der Priorität mit 
der Aufschrift: »Akustisches Probleme. Nr. 1, p. 4. 

Friedrich, A., A. Zinke und A. Rollett: Abhandlung »Zur Kenntnis von 
Harzbestandteilen. VI. Mitteilung«. Nr. 9, p. 94. 

Fritsch, J. und R. Kremann: Abhandlung »Über den Einfluß von Substitu- 
tion in den Komponenten binärer Lösungsgleichgewichte. XXX. Mit- 
teilung: Die binären Systeme von Diphenylmethan mit Phenolen und 
Aminen«. Nr. 27, p. 284. 

Fröschels, E.: Abhandlung »Untersuchungen über den harten und den 
weichen Stimmeinsatz bei Natur- und Kunststimmen«. Nr. 13, p. 148. 

Früchtl, F.: Abhandlung »Planktoneopepoden aus der nördlichen Adria«. 
Nr. 16, p. 184. 

Fuchs W. und M. Hönig: Abhandlung »Untersuchungen über Lignin. 
Ill. Gewinnung einer Gerbsäure aus Lignosulfosäuren«. Nr. 6, p. 69. 

Fürth, P.: Abhandlung »Zur Biologie und Mikrochemie einiger Pirola- 
Arten. Nr. 22, p. 251. 

Furlani, M.: Bewilligung einer Subvention für stratigraphische Arbeiten über 
die Jura-Neokom-Formation in den Nordtiroler Kalkalpen. Nr. 17, p. 213. 

Furtwängler, Ph., k. M.: Abhandlung »Über die Ringklassenkörper für 
imaginäre quadratische Körper«. Nr. 10, p. 102. 


G. 


Gabler, A.: Abhandlung »Mitteilungen aus dem Institut für Radiumforschung. 
Nr. 126. Über die Ausbeute an aktivem Niederschlag des Radiums im 
elektrischen Felde«. Nr. 10, p. 110. 

Gartner, E.: Abhandlung »Über das Mitwägen des Fällungsgefäßes bei 
quantitativen Mikroanalysen. Zwei auf diesem Prinzip beruhende 
Methoden«. Nr. 17, p. 201. 


VIH 


Gay, F. und E. Claypole: Druckwerk »The ‚Typhoid-Carrier‘ State in 
-Rabbits as a Methode of Determining the Comparativ Immunizing 
Value of the Preparations of the Typhoid Baeillus. Studies in Typhoid 
Immunization, I«. Nr. 14, p. 168. 

-— und Force, J. N.: Druckwerk »A Skin Reaction Indicative of Im- 
munity Against Typhoid Fever. Studies in Typhoid Immunization, Ill«. 
Nr. 14, p. 168. 

Gebauer, A.K.: Bericht über seine Forschungsreise in das Stromgebiet des 
Saluen, des Mekong und des Yangtze. Nr. 1, p. 11. 

Gerhardt, O.; Abhandlung »Zur Kenntnis der Hydrazone und Azine«. 
Nr. 3, p. &0. 

Giekelhorn, J.: Abhandlung »Studien an Eisenorganismen. ]. Mitteilung«. 
NM 10, 2pm 106: 

Gmachl-Pammer, J.: Abhandlung »Notizen über das Erweichen des 
Kohlenstoffs«. Nr. 17, p. 201. 

Gmeiner, A.: Abhandlung »Über die Ketten der reduzierten binären 
quadratischen Formen mit positiver nichtquadratischer Determinante«. 
Nez pP: 

Göhring,R. und E. Späth: Abhandlung »Die Synthesen des Ephedrins, des. 
Pseudoephedrins, ihrer optischen Antipoden und Razemkörper«. Nr. 12, 
p- 136. 

Günther, G.: Versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schrift: »Bericht über eine spezifische Behandlungsärt der Kaninchen- 
coceidiose und eine neue Behandlungsart von Zahnwurzeleiterungen«. 
Nr.'18, p. 218, 


H. 


Halpern, ©.: Vorläufige Mitteilung »Über Radiometerkräfte und den 2. Haupt- 
satz der Thermodynamik«. Nr. 19, p. 235. 

Handel-Mazzetti, H.: Berichtigungen zu seiner vorläufigen Übersicht über 
die Vegetationsstufen und -Formationen von Yünnan und Südwest- 
Setschuan. Nr. 3, p. 31. 

— Mitteilung »Plantae novae sinenses«. Nr. 4, p. 46. 

— Mitteilung »Plantae novae sinenses« (1. Fortsetzung). Nr. 5, p. 52. 
— „Mitteilung »Plantae novae sinenses« (2. Fortsetzung). Nr. 8, p. 86. 
— Mitteilung »Plantae novae sinenses« (3. Fortsetzung). Nr. 10, p. 102. 
— Mitteilung »Plantae novae sinenses« (4. Fortsetzung). Nr. 12, p. 142. 
— Mitteilung »Plantae novae sinenses« (5. Fortsetzung). Nr. 15, p. 173. 
— Mitteilung »Plantae novae sinenses« (6. Fortsetzung). Nr. 19, p. 237. 
— Mitteilung »Plantae novae sinenses« (7. Fortsetzung). Nr. 25, p. 265. 
— Mitteilung »Plantae novae sinenses« (8. Fortsetzung). Nr. 27 

Handlirsch, A., k.M.: Abhandlung »Beiträge zur Kenntnis der paläo- 
zoischen Blattarien«. Nr. 17, p. 209. 


RE 


B 


IX 


Hartmann, F.: Bewilligung einer Subvention für vergleichend-psychophysio- 
logische Forschungen zur Erkenntnis des tierischen und menschlichen 
Nervensystems. Nr. 5, p. 55. 

Hauser, E. und E. Rie: Abhandlung »Versuche mit einer Flamme besonders 
hoher Temperatur«. Nr. 17, p. 206. 

Herran, H.: Abhandlung »Das Vakuumflugproblem und der Luftverkehr«. 
Nr 18,0 p2 2. 

Hertzka,J.: Abhandlung »Wachstumskurven von Säuglingen unter normalen 
und pathologischen Verhältnissen«. Nr. 18, p. 217. 


Herzfeld, St.: Abhandlung »Zphedra campylopoda Mey. I. Morphologie der 
weiblichen Blüte und Befruchtungsvorgang«. Nr. 17, p. 210. 

Hess, V. F.: Abhandlung »Mitteilungen aus dem Institut für Radium- 
forschung. Nr. 133. Über Konvektionserscheinungen in ionisierten 
Gasen«. Nr. 15, p. 171. 

— und M.Hornyak: Abhandlung »Mitteilungen aus dem Institut für 
Radiumforschung. Nr. 134. Über die relative lonisation von «-Strahlen 
in verschiedenen Gasen«. Nr. 18, p. 219. 


Hevesy, G.: Abhandlung »Mitteilungen aus dem Institut für Radium- 
forschung. Nr. 132. Elektrizitätsleitung und Diffusion in festen Salzen«. 
Nr. 14, p. 169. 

Hibsch, J. E, k. M.: Bewilligung einer Subvention als Erhöhung des 
Druckkostenbeitrages zur Herstellung seiner geologischen Karte des 
Pyropengebietes. Nr. 7, p. 78. 

— Dankschreiben für die Bewilligung dieser Subvention. Nr. 7, p. 71. 
— Vorlage der Pflichtexemplare dieses Werkes. Nr. 10, p. 101. 


Hochstetter, F., w. M.: Übersendung der Pflichtexemplare seines Werkes: 
»Beiträge zur Entwicklungsgeschichte des menschlichen Gehirnes. 
FrReils NE les pale 

Höhnel, F., k. M.: Abhandlung »Fragmente zur Mykologie (XXIV. Mit- 
teilung, Nr. 1189 bis 1214)«. Nr. 8, p. 85. 

— Mitteilung von seinem am 11. November 1920 erfolgten Ableben. 
Nr.'23,’P. 257. 

Hönig, M. und W. Fuchs: Abhandlung »Untersuchungen über Lignin. 
III.. Gewinnung einer Gerbsäure aus Lignosulfosäuren«. Nr. 6, p. 69. 

Hohl.H. und R. Kremann: Abhandlung »Über den Einfluß von Substitution 
in den Komponenten binärer Lösungsgleichgewichte. XXIX. Mitteilung: 
Die binären Systeme von m-Aminophenol mit Aminen«. Nr. 27, p. 384. 

Holluta, J. und J. Obrist: Abhandlung Ȇber die oxydimetrische Bestim- 
mung des Mangans in flußsaurer Lösung. I. Mitteilung«. Nr. 15, p. 170. 

Hornyak, M. und V.F.Hess: Abhandlung »Mitteilungen aus dem Institut 
für Radiumforschung. Nr. 134. Über die relative Ionisation von «-Strahlen 
in verschiedenen Gasen«. Nr. 18, p. 219. 

Hosseus, €. C.: Druckwerk »Veröffentlichungen aus den Jahren 1903 bis 
1913&4.Nr. 18,.p%221. 


Inslitut, interakademisches, für Hirnforschung. 


— Vorlage des Berichtes über seine Tätigkeit für 1919. Nr. 3, p. 31. 
— Druckwerk »Arbeiten aus dem neurologischen Institut der Wiener 
Universität. Band XXIII, Heft I«. Nr. 24, p. 264. 


Institut für Radiumforschung: 

— Mitteilungen: 

—...= ‚,Vorlage'von Nr. 125. Nr. 1,.p..10. 
— .— Vorlage von.Nr. 126. Nr. 10, p 

—, ,— ‚Vorlage 'von.Nr..127. Nr..10,.p 

—  — Vorlage von Nr. 128. Nr. 10,.p. 

— ı — ‚Notlage von Nr..129. Nr; 10, »p:112: 
— — Vorlage von Nr. 130. Nr. 11, p 

— — Vorlage von Nr. 131. Nr. 12, p 

— ,— Vorlage'von Nr. 132. Nr- 14, p 

— 7 Vorlage von Nr. 133..Nr. 19,.p. La: 
=, .— ı. Vorlage von Nr. 134..Nr. 18, pn. 21% 


Jüptner, H.: Versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schrift: » Verbesserungen in Eisenhütten«. Nr. 4, p. 43. 

Jung, J.: Abhandlung Ȇber den Nachweis und die Verbreitung des Chlors 
im Pflanzenreiche«. Nr. 17, p. 206. 


K. 


Kailan, A.: Abhandlung »Mitteilungen aus dem Institut für Radiumforschung, 
Nr. 131. Über die chemischen Wirkungen der durchdringenden 
Radiumstrahlung. 12. Über die Lage des Fumar-Maleinsäuregleich- 
gewichtes in der durchdringenden Radiumstrahlung und über die 
Wirkung von letzterer und von ultraviolettem Lichte auf wässerige 


Lösungen von Harnstoff, Benzoesäure und Ameisensäure«. Nr. 12, 


Palo: 

Kammerer, P.: »Mitteilungen aus der Biologischen Versuchsanstalt. Nr. 50. 
Die Zeichnung von Salamandra maculosa im durchfallenden farbigen 
Lichtes. Nr. 14, p. 158. 

Karny, H.: Vorläufige Mitteilung über die Thysanopteren, die auf der von 
F.*Werner unternommenen zoologischen Expedition nach dem anglo- 
ägyptischen Sudan 1914 von R. Ebner gesammelt wurden. Nr. 2, 
BP. 27. 

Kerner-Marilaun, F., k. M.: Abhandlung »Geographische Analysis der 
ozeanischen Temperaturen am 45. Parallel<. Nr. 13, p. 148. 


N 


Kirsch, G.: Abhandlung »Mitteilungen aus dem Institut für Radiumforschung. 
Nr. 127. Über die Konstanz des Verhältnisses zwischen UX und UY 
in Uran verschiedener Herkunft«. Nr. 10, p. 111. 


Klebelsberg, R.: Bewilligung eines Druckkostenbeitrages für die Herausgabe 
seiner geomorphologischen Karte der Lessinischen Alpen. Nr. 18, 
pP. 220. 
Klein, G.: Abhandlung »Studien über das Anthochlor«. Nr. 16, p. 189. 
Klug, L.: Abhandlung Ȇber die einem Kegelschnitte einbeschriebenen und 
umschriebenen Dreiecke, die einen gegebenen Höhenpunkt haben«. 
Nr. 23, p. 258. 
Kneucker, A.: Versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schrift: »Anaesthesie«. Nr. 18, p. 218. 
Knöpfer, G.: Abhandlung »Über die Einwirkung von Hydrazin auf Chloral- 
hydrat<. Nr. 17, p. 209. 
Kober, L.: Abhandlung »Das östliche Tauernfenster. I. Teil: Allgemeine Er- 
gebnisse«. Nr. 7, p. 75. 
— Bewilligung einer Subvention für geologische Untersuchungen - in 
den Zentralgneismassen der Ankogel- und Hochalmmasse. Nr. 18, 
p. 220. | 
Kofend, L.: Abhandlung »Wissenschaftliche Ergebnisse der zoologischen 
Expedition Prof. Werner’s nach dem angloägyptischen Sudan (Kordofan) 
1914. V. Cestoden aus Säugetieren und aus Agama colonorum« 
Nr. 26, p. 281. 
Kohlrausch, K.W.F.: Abhandlung »UÜber die sphärische Korrektion von 
photographischen Objektiven«. Nr. 15, p. 169. 
Konstantinowsky,K. und F. Ehrenhaft: Vorläufige Mitteilung »Trans- 
versaleffekt des Lichtes auf die Materie bei der Photophorese«. Nr. 9, 
p. 91. 
Kottler, F.: Abhandlung »Zur Theorie der Beugung. Emissionstheorie des 
Lichtes und Quantenhypothese«. Nr. 1, p. 3. 
Krasser, F.: Abhandlung »Die Doggerflora von Sardinien«. Nr. 2. p. 30. 
— Inhalt dieser Abhandlung. Nr. 3, p- 40. 
Kreidl, A.,k. M.: Bewilligung einer Subvention für Untersuchungen über den | 
ultramikroskopischen Nachweis von Fetteilchen im Blute maritimer 
Tiere nach Fütterung mit Drüsen innerer Sekretion. Nr. 18, p. 221. 
— Dankschreiben für die Bewilligung dieser Subvention. Nr. 18, p. 216. 
Kremann,R. und J. Fritsch: Abhandlung. »Über den Einfluß von Substitution 
in den Komponenten binärer Lösungsgleichgewichte. XXX. Mitteilung: 
Die binären Systeme von Diphenylmethan mit Phenolen und Aminen«. 
Nr. 27, p. 384, 
— und H. Hohl: Abhandlung »Über den Einfluß von Substitution in den 
Komponenten binärer Lösungsgleichgewichte. XXIX. Mitteilung: Die 
binären Systeme von m-Aminophenol mit Aminen«. Nr. 27, p. 384. 


NII 


KremannR,E. Lupfer und ©. Zawodsky: Abhandlung »Über den Einfluß 
‚von Substitution in den Komponenten binärer Lösungsgleichgewichte. 
NXXVI. Mitteilung: Die binären Systeme von - und »-Amidophenolt 
mit Phenolen, beziehungsweise Nitrokörpern«. Nr. 17, p..206. 

— und H.Marktl: Abhandlung »Über den Einfluß von Substitution 
in den Komponenten binärer Lösungsgleichgewichte. XXIII. Mitteilung: 
Die binären Systeme Antipyrin-Benzoesäure«. Nr. 1, p. 4. 

— — Abhandlung »Über den Einfluß von Substitution in den Kom- 
ponenten binärer Lösungsgleichgewichte. XXVI. Mitteilung: Die beiden 
Systeme von Acetophenon mit Phenolen und ihren Derivaten«. Nr. 1, 
p- 9. 

— und F. Slovak: Abhandlung» Über den Einfluß von Substitution in den 
Komponenten binärer Lösungsgleichgewichte. XXIV. Mitteilung: Die 
binären Systeme von Akridin mit Phenolen«. Nr. 1, p. 4. 

— — Abhandlung »Über den Einfluß von Substitution in den Kom- 
ponenten binärer Lösungsgleichgewichte. XXV. Mitteilung: Die binären 
Systeme von Carbazol mit Phenolen«. Nr. 1, p. 5. 

— und ©. Zawodsky: Abhandlung »Über den Einfluß von Substitution 
in den Komponenten binärer Lösungsgleichgewichte. .XXVII. Mit- 
teilung: Das binäre System von -Phenylendiamin mit 1, 2, 4-Dinitro- 
phenol«. Nr. 17, p. 206. 

Kruppa,E.: Abhandlung »Graphische Kurven (I. Mitteilung)«. Nr. 1, p. 9. 

Kuratorium der Schwestern Fröhlich-Stiftung: Kundmachung über die Ver- 
leihung von Stipendien und Pensionen aus dieser Stiftung. Nr. 1, p. 1. 

Kurtenacker, A.: Abhandlung »Kinetische Untersuchung von Reaktionen 
der salpetrigen Säure, insbesondere mit Halogensauerstoffsäuren«. 
Nr. 2, p. 30. 

Kurz, O©.: »Mitteillungen aus der Biologischen Versuchsanstalt. Nr. 53. Ver- . 
suche über Polaritätsumkehr am Tritonenbein«. Nr. 16, p. 179. 


L. 


Larson, A.: Druckwerk »La decouverte de l’&lectromagnctisme faite en 1820 
par J. C. Oersted«. Nr. 20, p. 246. 

Lehmann O.: Bewilligung einer Subvention zur Untersuchung des Berg- 
‚sturzes am Sandling im Salzkammergut. Nr. 20, p. 246. 

— Bericht über die Rutschung und den Bergsturz am Sandling im Salz- 
kammergute. Nr. 23, p. 259. 

Lichtenfels, ©.: Hinterlegung zweier offener Schreiben seines verstorbenen 
Bruders Viktor Freiherrn v. Lichtenfels: »Ideen über die Mechanik 
der Atome (gefunden in den Jahren 1868—1874)« und »Fragmente 
akustischer Untersuchungen« behufs Aufbewahrung und zur Einsicht- 
nahme durch Interessenten. Nr. 11, p. 1383. 

Lieb, H. und G. Schwarzer: Abhandlung Ȇber Kondensationen von aro- 
matischen Diaminen mit Phtalsäureanhydrid«. Nr. 23, p. 258. 


Xıl 


Lindner, J.: Bewilligung einer Subvention zur Fortsetzung seiner Arbeit 
über das Convallarin. Nr. 7, p. 78. 
— Dankschreiben für die Bewilligung dieser Subvention. Nr. 9, p. 91. 
Linsbauer, K.: Abhandlung »Bemerkungen über Alfred Fischer’s Gefäß- 
glykose«, Nr. 10, p. 106. 

. Lupfer, E., R. Kremann und O. Zawodsky: Abhandlung Ȇber den Ein- 
fluß von Substitution in ‘den Komponenten binärer Lösungsgleich- 
gewichte XXVII. Mitteilung: Die binären Systeme von m- und p-Amido- 
phenol mit Phenolen, beziehungsweise Nitrokörpern«. Nr. 17, p. 206. 


M. 


Mager, A.: Druckwerk »Münchener Studien zur Psychologie und Philo- 
sophie. 5. Heft. Die Enge des Bewußtseins«. Nr. 18, p. 221. 

Marchet, A.: Bewilligung einer Subvention für eine Studienreise nach Stock- 
holm zur Ausführung chemischer Mineralanalysen unter sachkundiger 
Leitung. Nr. 17, p. 214. 

Marktl, H. und R.Kremann: Abhandlung »Über den Einfluß von Sub- 
stitution in den Komponenten binärer Lösungsgleichgewichte. 
XXIII. Mitteilung: Die binären Systeme  Antipyrin-Benzoesäure«. 
Nr. 1, p. #. 

— — Abhandlung »Über den Einfluß von Substitution in den Kom- 
ponenten binärer Lösunsgleichgewichte. XXVI. Mitteilung: Die beiden 
Systeme von Acetophenon mit Phenolen und ihren Derivaten«. Nr. 1, 
p- 3. 

Mathematisch-naturwissenschaftliche Klasse: Bewilligung einer Dotation für 
dieselbe als Druckkostenbeitrag. Nr. 7, p. 79. 

Mattauch, J.: Abhandlung »Neue Versuche zur Photophorese«. Nr. 17, 
p- 203. 

Meinong, A., w. M. der philos.-histor. Klasse: - Mitteilung von seinem am 
27. November 1920 erfolgten Ableben. Nr. 25, p. 265. 

Mertens, F., w. M.: Abhandlung »Die Gestalt der Wurzeln einer irredu- 
ziblen Galois’schen Gleichung 8. Grades eines gegebenen Rationalitäts- 
bereiches, deren Affektgruppe nur Permutationen mit ein- und zwei- 
gliederigen Zykeln enthalten«. Nr. 23, p. 259. = 

Meleorologisches Observatorium in Tartus (Dorpat): Druckwerk »Fünfzigjährige 
Mittelwerte aus den meteorologischen Beobachtungen 1866—1915 für 
Dorpate. Nr. 6, p. 70. 


Meyer, H. H., w. M.: Begrüßung durch den Vorsitzenden bei seinem Eintritte 
in die Reihe der wirklichen Mitglieder. Nr. 18, p. 215. 
Meyer, H.: Abhandlung »Untersuchungen über die Veresterung unsym- 


metrischer zwei- und mehrbasischer Säuren. XXX. Abhandlung: Über 
die Veresterung der 4-Acetamino-i-phtalsäure«. Nr. 2, p. 29. 


XIV 


Meyer, St.: Abhandlung »Mitteilungen aus dem Institut für Radium- 
forschung. Nr. 130. Zur Kenntnis der Zerfallskonstante des Actiniums 
und des Abzweigungsverhältnisses der Actiniumreihe«. Nr. 1i, p. 133. 
— Druckwerk »Das erste Jahrzent des Wiener Instituts für Radium- 
forschung. Zum 28. Oktober 1920«. Nr. 21, p. 247. 
—  Dankschreiben für seine Ernennung zum wissenschaftlichen Leiter des 
Radiuminstituts. Nr. 25, p- 265. 
Mohr, H.: Abhandlung »Lößstudien an der Wolga«. Nr. 1, p. 9. 
— Abhandlung »Das Gebirge um Vöstenhof bei Ternitz (N.-Ö.)«. Nr. 18, 
PB. 217. 
Molisch, H., w. M.: Abhandlung »>Aschenbild und Pflanzenverwandtschaft«. 
Nr. 16,0p.1181. 


Monalshefte für Chemie: 


— Band 40: 

— — Vorlage von Heft 8 bis 10. Nr. 8, p. 85. 
— Band 41: 

— — Vorlage von Heft 1. Nr. 14, p. 155. 

— — Vorlage von Heft 2. Nr. 18, p. 215. 

— — Vorlage von Heft 3. Nr. 18, p. 215. 

— — Vorlage von Heft 4. Nr. 22, p. 249. 


— — Vorlage von Heft 5. Nr. 24, p. 263. 

Mrazek, J.: Druckwerk »Die Windverhältnisse in Prag nach den Pilotierungen 
in der Zeit vom November 1916 bis November 1917«, Nr. 18, p. 221. 

Müller, E., w.M.: Abhandlung »Zyklographische Abbildung von Flächen 
und die Geometrie von Kurvenscharen in der Ebene«. Nr. 10, p. 109. 

Müller, E.: Abhandlung »Periodizitätseigenschaften arithmetischer Reihen in 
bezug auf gegebene Moduln im Zusammenhange mit der Theorie der 
Sternvielecke und den Simony’schen Knotenverbindungen«. Nr. 7, p. 74. 

Museum fir Volkskunde in Wien: Einladung zur Feier seines 25-jährigen 
Bestandes. Nr. 1, p. 1. 


N. 
Natuurkundige Vereeniging, Kon., in Batavia-Weltevreden: Druckwerk 
? »Het Idjen-Hoogland. Monografie. V. Aflevering I. Het Klimat van den 


Idjen«. Nr. 9, p. 96. 

Nela Research Laboratory (National Lamp Works of General Electric Com- 
pany) in Cleveland (Obio): Druckwerk »Abstract-Bulletin No 2. 
January 1917<. Nr. 18, p. 221. 

Nemethy, E. v.: Druckwerk »Das Fermat-Problem. Eine mathematische 
Abhandlung«. Nr. 10, p. 113. 

Norst, E.: Abhandlung »Zur optischen Größenbestimmung Ehrenhaft'scher 
Probekörperchen«. Nr. 12, p. 139. 


O. 


Oberlin College in Oberlin: Druckwerk »Laboratory Bulletin Nr. 16. The 
Relation of the Body Temperature of Certain Cold-blooded Animals 
to that of their Environment«. Nr. 9, p. 96. 

Obrist, J. und J. Holluta: Abhandlung Ȇber die oxydimetrische Bestim- 
mung des Mangans in flußsaurer Lösung. I. Mitteilung«. Nr. 15, p. 170. 

Ohara Institut für landwirlschaftliche Forschungen in Kuraschiki: Druck- 
werk »Berichte, Band I, Heft 1, 2, 3<. Nr. 14, p. 168. 


P: 


Pauli, W.: Mitteilung »Komplexionisation und Kolloidbildunge. Nr. 16, 
p- 185. 

Pesta, O.: Bewilligung einer Subvention zur Fortsetzung seiner Unter- 
| suchungen über das Zooplankton der Gebirgsseen. Nr. 18, p. 220. 
Pfaundler, L., w. M.: Mitteilung von seinem am 6. Mai 1920 erfolgten 

Ableben. Nr. 12, p. 135. 
Pfeiffer, H.: Bewilligung einer Subvention zum Studium der proteolytischen 
Fermente. Nr. 5, p. 56. 

—  Versiegeltes Schreiben zur Wahrung der Priorität mit der Aufschrift: 
»Zur Ursache und ursächlichen Bekämpfung der Eiweißzerfalls- 
toxikosen«. Nr. 17, p. 205. 

Pfeffer, W.,k. M.i. A.: Mitteilung von seinem am 31. Jänner 1920 erfolgten 
Ableben. Nr. 5, p. 51. 

Phonogrammarchiv: Bewilligung einer Dotation für dasselbe. Nr. 7, p. 79. 

Pia, J.: Bericht über die im Sommer 1919 ausgeführten geologischen Auf- 
nahmen. Nr. 5, p. 51. 

— Inhalt dieses Berichtes. Nr. 17, p. 19. 

— Bewilligung einer Subvention für die Fortsetzung seiner tektonischen 
Studien im Gebiete der unteren Lammer. Nr. 17, p. 213. 

Pintner, Th.; Abhandlung »Topographie des Genitalapparates von Zufetra- 
rhynchus ruficollis (Eysenhardt)«. Nr. 12, p. 141. 

Portheim, L. und M. Eisler: Mitteilung aus dem staatlichen serotherapeu- .' 
tischen Institut und aus der Biologischen Versuchsanstalt. Nr. 54. Über, 
die Biologie des Bacillus carolovorus (Jones). Nr. 22, p. 249. 


Prähistorische Kommission: Bewilligung einer Dotation für dieselbe. Nr. 5, 
p. 56. | 

Preisaufgabe für den A. Freiherrn v. Baumgartner-Preis. Nr. 14, p. 167. 

Prey, A.: Druckwerk »Über die Laplace’'sche Theorie der Planetenbildung«. 
Nr.,.18,.D8221. 

Priesner, H.: Abhandlung »Kurze Beschreibungen neuer Thysanopteren aus 
Österreich«, Nr. 3, p. 38. 


XVl 


Przibram H.: »Mitteilungen aus der Biologischen Versuchsanstalt. Nr. 51. 
. Der Einfluß gelber und schwarzer Umgebung der Larven auf die 
Fleckenzeichnung des Vollmolches von Salamandra macniosa \.aur. 
forma typica, zugleich: Ursachen tierischer Farbkleidung V«. Nr. 14, 

p- 162. 

— und J.A. Bierens de Haan:. »Mitteilungen aus der Biologischen 
Versuchsanstalt. Nr. 48. Erniedrigung der Körpertemperatur junger 
Wanderratten (Mus decumanus) durch chemische Mittel und ihr Einfluß 
auf die Schwanzlänge. (Die Umwelt des Keimplasmas IX.)«. Nr. 14, 
p- 156. 

— und L. Brecher: »Mitteilungen aus der Biologischen Versuchsanstalt 
Nr. 52. Die Farbmodifikationen der Stabheuschrecke Dixippus morosus 
Br. und Redt. (zugleich: Ursachen tierischer Farbkleidung VI.)«. 
Nr. 14, p. 164. 

Przibram, RK.: Abhandlung »Der Vorsprung der negativen Entladung vor 
der positiven«. Nr. 10, p. 110. 

Pühringer, K.: Abhandlung »Über Nervenkanäle des Schlüsselbeins«. Nr. 8, 
p- 35. 


R. 


Reich, A.: Versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schrift: »Elektrische Insolation und Cyclone«. Nr. 12, p. 135. 
Reichel, K.: Versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schrift: »Kritik der mechanischen Lokomotion«. Nr. 12, p. 135. 
Reinisch, L., w.M. der philos.-histor. Klasse: Mitteilung von seinem am 

24. Dezember 1919 erfolgten Ableben. Nr. 1, p. 1. 

Reitz, W.: Versiegeltes Schreiben zur Wahrung der Priorität mit der Aufschrift: 
»Elektrische Sonden a) zwecks Bestimmung der jährlichen Nieder- 
schlagshöhe, D) zur Bestimmung der Verdampfungshöhen über See«., 
Nr. 18, p. 218: 

Rie,E.: Vorläufige Mitteilung »Einfluß der Oberflächenspannung auf Schmelzen 
und 'Gefrieren«, Nr. 12, p. 137. 

— nnd E. Hauser: Abhandlung »Versuche mit einer Flamme besonders 
hoher Temperatur«. Nr. 17, p. 206. 

Röder, F.: Versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schrift: »Kausale Therapie«. Nr. 18, p. 218. 

Roth, P.: Abhandlung »Über Flächen, die die Punktepaare zweier und einer 
algebraischen Kurven abbilden«. Nr. 10 p. 102. 

Rollett, A., A. Zinke und A. Friedrich: Abhandlung »Zur Kenntnis von 
Harzbestandteilen. VI. Mitteilung«. Nr. 9, p. 94. 

Ruths, Ch.: Druckwerk »Ein neues Gebiet der Astronomie«. Nr. 9, p. 96. 


NVI 


S. 


Scheiber, R.: Versiegeltes Schreiben zur Wahrung der Priorität mit der 
Aufschrift: »Bewegungsvorgänge in planetarischen Nebeln«. Nr. 8, 
pP. 89. 

—  Versiegeltes Schreiben zur Wahrung der Priorität mit der Aufschrift: 
»Planetare Nebel«. Nr. 11, p. 133. 

Schloß, H.: Bewilligung einer Subvention für die Bearbeitung der Pflanzen- 
familie der Bignoniaceen in der Münchener Sammlung. Nr. 5, p. 56. 

Schmid, E.: Abhandlung »Über Brown’sche Bewegung in Gasen. I«. Nr. 17, 
p- 204. 

Schmidt, W.: Abhandlung »Zur Oberflächengestaltung der Umgebung 
Leobens«<. Nr. 18, p. 219. 

Schoklitsch, A.: Abhandlung Ȇber die Bewegungsweise des Wassers in 
offenen Gerinnen«. Nr. 18, p. 217. 

Scholl, R, k.M. i.A., Chr. Seer und ‘A. Zinke: Abhandlung »Unter- 
suchungen in der Reihe der Methyl-1, 2-benzanthrachinone (III. Mit- 
teilung)«. Nr. 18, p. 217. 

Schroeder, L., w. M. der philos.-histor. Klasse: Mitteilung von seinem am 
8. Februar 1920 erfolgten Ableben. Nr. 5, p. 51. 

Schrödinger, E.: Dankschreiben für die Verleihung des Haitinger-Preises. 
Nr:s18,fp. 216. 

Schulthess, A.v.: Abhandlung »Wissenschaftliche Ergebnisse der zoo- 
logischen Expedition Prof. Werner’s nach dem angloägyptischen Sudan 
(Kordofan) 1914. VIII. Hymenoptera. II. Vespidae«. Nr. 26, p. 281. 

— Inhalt dieser Abhandlung. Nr. 27, p. 285. 

Schumann, R.: Inhalt seiner in der Sitzung vom 11. Dezember 1919 vor- 
gelegten vorläufigen Mitteilung über einige vorläufige Ergebnisse mit 
Schwerewagenmessungen im Zillingdorfer Kohlengebiet. Nr. 1, p. 15. 

— Bewilligung einer Subvention zur Ausführung von Messungen mit der 
Eötvös’schen Schwerewage im südlichen Wiener Becken. Nr. 18, p. 220. 
—  Dankschreiben für die Bewilligung dieser Subvention. Nr. 18, p. 216. 

Schwarzer, G. und H. Lieb: Abhandlung Ȇber Kondensationen von aro- 
matischen Diaminen mit Phtalsäureanhydrid«. Nr. 23, p. 258. 

Schweidler, E.: Bewilligung einer Subvention zur Fortsetzung und Aus- 
gestaltung seiner luftelektrischen Untersuchungen. Nr. 9, p. 95. 

— Dankschreiben für die Bewilligung dieser Subvention. Nr. 12, p. 135. 

— Abhandlung »Beiträge zur Kenntnis der atmosphärischen Elektrizität. 
Nr. 62. Zusammenfassender Bericht über die Beobachtungen an der 
luftelektrischen Station Seeham in den Sommern 1916 bis 1920«. 
Nr. 27, p. 285. 

Secrelaria de Agricultura v Formento: Druckwerke »Programa de la direccion 
de antropologia para el estudio y mejoramiento de las publaciones 
regionales de la republica«. — »Apuntes acerca de un nuevo manual 
de arqueologia Mexicana«. Nr. 16, p. 193. 


XVIM 


See, T.J. J.: Druckwerk »New Theory of the Aether«. Nr. 18, p. 221. 

Seemüller, J., w. M. der philos.-histor. Klasse: Mitteilung von seinem am 
20. Jänner 1920 erfolgten Ableben. Nr. 4, p. 43. 

Seer, Chr., k.M.i. A.R. Scholl und A. Zinke: Abhandlung » Untersuchungen 
in der Reihe der Methyl-1, 2-benzanthrachinone (III. Mitteilung)«. 
Nepl8 sp. ln: 

Singer, E. und k.M. A. Skrabal: Abhandlung Ȇber die alkalische Ver- 
seifung der Ester der symmetrischen Oxalsäurehomologen«. Nr. 9, 
p- 94. 


Sitzungsberichte: 
— Band 128: 
— — Abteilung I: 


— — - Vorlage von Heft 1. Nr. 2, p. 27. 
2 eVorlasesvon)Bleft 2Sund 3. Nr Ip.9% 
— — -— Vorlage von Heft Nr. 13, p. 147. 


— — -— Vorlage von Heft 5 und 6. Nr. 18, p. 215. 
und 8. Nr. 24, p. 263 


und 10. Nr. 18,:p.'215. 


SIOAD- 


— —- — Vorlage von Heft 


cD 


—  — -— Vorlage von Heft 


— — Abteilung IIa. 


— — -— Vorlage von Heft 4. Nr. 13, p. 147. 
— — — Vorlage von Heft 5. Nr. 13, p. 147. 
— , — _-— Vorlage von Heft 6. Nr. 18, p. 215. 
— — — Vorlage von Heft 7. Nr. 18, p. 215. 
— .—, —ı Vorlage von Heft 8. Nr. 18, p. 215. 


8 
— — — Vorlage von Heft 9. Nr. 18, p. 215. 
1 


— — — Vorlage von Heft 10. Nr. 24, p. 263. 


— — Abteilung IIb: 


— — -— Vorlage von Heft 1 und 2. Nr. 2, p. 27. 
— — — Vorlage von Heft 3 und 4. Nr. 9, p. 91. 
— — -— Vorlage von Heft 5 bis 7. Nr. 13, p. 147. 
— — — Vorlage von Heft 8 bis 10. Nr. 14, p. 155. 


— Band 127 und 128: 


— — Abteilung III: 
— — — Vorlage von Heft 7 bis 10. Nr. 18, p. 215. 


— Band 129: 


— — Abteilung I: 


— — -— Vorlage von Heft 1 und 2. Nr. 24, p. 263. 
— — -— Vorlage von Heft 3 und 4. Nr. 24, p. 263. 


Sılzungsberichle: 
— Band 129: 


— — Abteilung Ila: 


— -—- -— Vorlage von Heft 1. Nr. 18, p. 215. 
— — -— Vorlage von Heft 2. Nr. 24, p. 269. 
— — -— Vorlage von Heft 3. Nr. 24, p. 263. 
— — -— Vorlage von Heft 4. Nr. 25, p. 265. 


— —  Ableilung IIb: 


— — -— Vorlage von Heft 1. Nr. 18, p. 215. 
— — — Vorlage von Heft 2. Nr. 18, p. 215 
— — -— Vorlage von Heft p. 245. 


Sg” 
2 
[IS 
oo 


Skrabal,A.,k.M., und E. Singer: Abhandlung Ȇber die alkalische Ver- 
seifung der Ester der symmetrischen Oxalsäurehomologen«. Nr. 9, p. 94. 
Slovak, F. und R. Kremann: Abhandlung »Über den Einfluß von Sub- 
stitution in den Komponenten binärer Lösungsgleichgewichte. XXIV. Mit- 
teilung: Die binären Systeme von Akridin mit Phenolen«. Nr. 1, p. 4. 
— — Abhandlung »Über den Einfluß von Substitution in den Kom- 
ponenten binärer Lösungsgleichgewichte. XXV. Mitteilung: Die binären 
Systeme von Carbazol mit Phenolen«. Nr. I, p. 5. 

Smekal, A.: Abhandlung »Mitteilungen aus dem Institut für Radium- 
forschung. Nr. 129. Über die Dimensionen der «-Partikel und die 
Abweichungen vom Coulomb’schen Gesetze in großer Nähe elektrischer 
Ladungen«. Nr. 10, p. 112. 

— Abhandlung »Zur Theorie der Röntgenspektren. (Zur Frage der Elek- 
tronenanordnung im Atom). (II. Mitteilung)«. Nr. 12, p. 140. 

— und F. Aigner: Bewilligung einer Subvention für Spektralunter- 
suchungen der Röntgenstrahlung. Nr. 7, p. 78. 

— Dankschreiben für die Bewilligung dieser Subvention. Nr. 7, p. 71. 

Smodlaka, N.: Abhandlung »Untersuchungen über die Veresterung unsym- 
metrischer zwei und mehrbasischer Säuren. XXIX. Abhandlung: Über 
die Veresterung der 4-Dimethylaminoisophtalsäure«. Nr. 2, p. 29. 

Sobel, Ph. und E. Späth: Abhandlung »Über neue Synthesen des Horde- 
nins«. Nr. 1, p. 6. 

Späth, E.: Abhandlung »Über das Loturin«. Nr. 9, p. 94. 

— Abhandlung »Die Synthese des Sinapins«. Nr. 12, p. 135. 

— Abhandlung »Die Konstitution des Laudanins«. Nr. 15, p. 170. 

—  Dankschreiben für die Verleihung des Lieben-Preises. Nr. 16, p. 179. 

— und R. Göhring: Abhandlung »Die Synthesen des Ephedrins, des 
Pseudoephedrins, ihrer optischen Antipoden und Razemkörper«. Nr. 12, 
p- 136. 

— und Ph. Sobel: Abhandlung «Über neue Synthesen des Hordenins«. 
Ne, 4P96: 


NN 


Sterneck, R.: Abhandlung »Die Gezeiten der Ozeane. (I. Mitteilung)«. Nr. 9, 
P32. 

— Bewilligung einer Subvention zur Ausführung der Tafeln zu seiner 
Arbeit »Die Gezeiten der Ozeane, I«. Nr. 13, p. 149. 

— Bewilligung einer Subvention als teilweiser Ersatz seiner Auslagen 
für die Beschaffung von Beobachtungsmaterial der italienischen Flut- 
stationen. Nr. 24, p. 263. 

— Dankschreiben für die Bewilligung dieser Subvention. Nr. 23, p. 257. 

Subventionen: 

— aus der Boue-Stiftung: Nr. 9, p. 95; — Nr. 17, p. 213. 

— aus der Erbschaft Czermak: Nr. 18, p. 220; —.Nr. 20, p. 246; — 
Nr. 24, p. 264, 

— aus der Erbschaft Strohmayer: .Nr. 9, p. 9. 

— aus derErbschaft Treitl: Nr. 7, pP. 78 und 79; — Nr. 18, p.220. 

— aus der Goldschmiedt-Widmung: Nr. 5, p. 55. 

— ausdem Legate Scholz: Nr. 5,.p. 55; — Nr. 7, p. 78; — Nr. 9, p. 95 

— aus dem Legate Wedi: Nr. 5, p. 55. 

— aus der Nowak-Stiftung: Nr. 5, p. 59. 

— ‚aus der v. Zepharovich-Stiftung: Nr. 17, p. 214. 

— aus dem Gezeitenfonds: Nr. 13, p. 149; — Nr. 24, p. 263. 

— . ‚aus Klassenmitteln: Nr. 5, p. 55. San 

— aus Rücklässen der brasilianischen Expedition: Nr. d, p. 39. 

Szeparowicz, M.: Abhandlung »Mitteilungen aus dem Institut für Radium- 
forschung. Nr. 128. Untersuchungen über die Verteilung von Radium- 
emanation in verschiedenen Phasen«. Nr. 10, p. 111. 

Szombathy, J.: Bericht über die Ausgrabungen auf dem prähistorischen 


Flachgräberfelde bei Gemeinlebarn in Niederösterreich. Nr. 27, p. 283, 


1% 


Tagger, J.:  Versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schrift: »Prometheus Nr. 2—5«. Nr. 1, p, #. 

—  Versiegeltes Schreiben zur Wahrung der Priorität mit der Aufschrift: 
»Prometheus Nr. 3. Versuche über Reibungselektrizität«. Nr. 17, p. 205. 

Taub, H.: Abhandlung Ȇber Zahlenbeziehungen zwischen Atomgewichts- 
zahlen und Schwingungszuständen«. Nr. 18, p. 217: 

Taub, J.: Abhandlung » Untersuchungen über die Veresterung unsymmetrischer 
zwei- und mehrbasischer Säuren. XXXI. Abhandlung: Über die Ver- 
esterung der 4-Methylamino-i-phtalsäure«. Nr. 2, p. 29. 

Tauber, A.: Mitteilung Ȇber eine Beziehung zwischen Gleichungen und 
linearen Differentialgleichungen«. Nr. 6, p. 69. 

—  Versiegeltes Schreiben zur Wahrung der Priorität mit der Aufschrift: 
»Zur Integration der linearen Differentialgleichungen«. Nr. 16, p. 180. 

Technische Hochschule »Fridericiana« in Karlsruhe: Akademische Dis- 

sertationen 1919. Nr. 12, p. 145. 


NXI 


Technische Hochschule in München: Akademische Dissertationen des Jahres 
LIL9 NT. 10, pP. 18: 

Ternetz, F.: Versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schrift: »Über den großen Fermat'schen Satz (IT. Teil)«. Nr. 26, p. 282. 

Terres, E.: Abhandlung »Über einige Nitramine der Anthrachinonreihe«. 
News, pr 2m. 

Tertsch, H.: Abhandlung »Krystallographische Bemerkungen zum Atombaue«., 
Nr. 4, p. 43. 


Todesanzeigen: 


— Bus chi ka Mana, NT DD: 

— Friedjung, w.M.d. phil.-hist. Kl., Nr. 18, p. 215. 
— Höhnel, k.M., Nr. 23, p. 257. 

— Meinong, w.M. d. phil.-hist. Kl., Nr. 25, p. 269. 
— 'Pfaundler, w. M., Nr. 12, p. 185. 

— Pfeffer, KM. 1. A., 'Nw. 5, p.Jol. 

— Reinisch, w.M. d. phil.-hist. Kl., Nr. 1, p. 1. 

— Schroeder, w. M. d. phil.-hist. Kl., Nr. 5,:». 51. 
— Seemüller, w.M.d. phil.-hist. Kl., Nr. 4, p. 43. 
—. Toldt, w.M., Nr. 23, p. 297. 

— Weichselbaum, k.M., Nr. 21, p. 247. 

— Wundt, E.M.1. A.d. phil.-hist. Kl., Nr! 18, px 219. 


Toldt, RK, w. M.: Mitteilung von seinem am 13. November 1920 erfolgten 
Ableben. Nr. 23, p. 257. 
— Danksagung seiner beiden Söhne für die Beileidskundgebung der 
Akademie. Nr. 24, p. 263. 
Toldt, K., jun.: Bewilligung einer Subvention zum Studium über den Wechsel 
des Haarkleides der Säugetiere. Nr. 5, p. 56. 
— Dankschreiben für die Bewilligung dieser Subvention. Nr. 8, p. 85. 


D. 


Ufficio idrografico di Pola: Druckwerk »Rapporto annuale delle osservazioni 
meteorologiche, magnetiche e sismiche«. Nr. 9, p. 96. 


Universität in Basel: Akademische Publikationen für 1920. Nr. 26, p. 282. 

Universität in Freiburg (Schweiz): Akademische Publikationen für 1919 und 
1920. Nr. 18, p. 221. 

Universilät in Stockholm: Übersendung der akademischen Veröffentlichungen 
für das, Jahr 1920. Nr. 18, p..216. 

University of Akron: Druckwerk »Faculty Studies No 1. A special library 
for the rubber industry. Nr. 14, p. 168. 


RU 


Versiegelte Schreiben: 
— Blaas, Nr. 14, p. 165. 
— Braun, Nr.5, p. 52, 
— Diet, Nr. 14, p. 165. 
— Friedmann, Nr. 1, p. 4. 
— Günther, Neslssap-22ill8: 
— Jüptner, Nr. 4, p. 43. 
— Kneucker, Nr. 18, p. 218. 
—ebreitker, Ne 17,29.2209: 
— Reich, Nr. 12, p. 135. 
— Reichel, Nr. 12, p. 135. 
— Reitz, Nr. 18, p. 218. 
— Röder, Nr. 18, p. 218. 
—. Scheiber, Nr. 8, p. 85; — Nr. 11, p. 133. 
— Tagger, Nr. 1, p.4; — Nr. 17, p. 205. 
— Tauber, Nr. 16, p. 180. 
— Ternetz, Nr. 26, p. 282. 
— Wallner, Nr. 20, p. 246. 
— Weiss, Nr. 18, p. 218. 
— Zlamal, Nr. 18, p. 218. 


Verzeichnis der von Anfang April 1919 bis Anfang April 1920 an die 
mathematisch-nalurwissenschaflliche Klasse gelangten periodischen 
Druckschrifien. Nr. 10, p. 115. 


Viciu, J.: Druckwerk »Das Problem der Gravitation«. 'Nr. 25, p. 275. 

Viehmeyer, H.: Abhandlung »Wissenschaftliche Ergebnisse der zoologischen 
Expedition Prof. Werner’s nach dem angloägyptischen Sudan (Kordofan) 
1914. VII. Hymenoptera. I. Formieidae«. Nr. 26, p. 281. 


W. 


Wagner, R.: Vorläufige Mitteilung »Vorkommen von Ap-Sympodien bei ' 
Lasiopetaleen«. Nr. 1, p. 2. 
— Mitteilung »Über die Existenz alternierender I'-Sympodien (bei Chrozo- 
phora sabulosa Kar. et Kir.)«. Nr. 13, p. 149. 
— Inhalt dieser Mitteilung. Nr. 16, p. 190. 
— Mitteilung »Über ebene Gabelsysteme von Ba, p-Charakter bei einigen 
Calypthranthes-Arten«. Nr. 26, p. 281. 

Wallner, F.: Versiegeltes Schreiben zur Wahrung der Priorität mit der 
Aufschrift: »Rutenproblem und Erdmagnetismus«. Nr. 20, p. 246. 
Walter, H.: Abhandlung »Messungen der Zähigkeit und Oberflächenspannung 

eines Emulsionskolloids«. Nr. 18, p. 218. 


XXIII 


Wegscheider, R., w. M.: Abhandlung Untersuchungen über die Veresterung 
unsymmetrischer zwei- und mehrbasischer Säuren. XXXIII. Abhand- 
lung: Die Veresterung der Aminodicarbonsäuren«. Nr. 3, p. 39. 

— Abhandlung »Untersuchungen über die Veresterung unsymmetrischer 
zwei- und mehrbasischer Säuren. XXXIV. Abhandlung: Über Affinitäts- 
konstanten und Veresterung der Pyridincarbonsäuren«. Nr. 3, p. 39. 

Weichselbaum, A.,, w. M.: Mitteilung von seinem am 22. Oktober 1920 
erfolgten Ableben. Nr. 21, p. 247. 

— Danksagung seiner Gemahlin für die Beileidskundgebung der Akademie. 
Nr. 24, p. 263. 

Weiss, Th.: Versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schrift: »Ein neues Verfahren zur chemischen Analyse, speziell für 
anorganische Substanzen. (Quantitative Analyse)«. Nr. 18, p. 218. 

Weitzenböck,R.: Abhandlung »Über die Wirkungsfunktion in der Weyl- 
schen Physik. I«. Nr. 20, p. 245 

— Abhandlung »Über die Wirkungsfunktion in der Weyl’schen Physik. 
Il«. Nr. 21, p. 247. 

Wettstein, R., Vizepräsident: Begrüßung der Klasse bei Wiederaufnahme 
der Sitzungen nach den akademischen Ferien. Nr. 18, p. 215. 
Widder, F.J.: Abhandlung »Die Arten der Gattung Xanthium. Beiträge zu 

einer Monographie«. Nr. 17, p. 212. 

Wilkens, A.: Druckwerke »Die absolute Bewegung des Trojaners 884 Pria- 
mus«. — »Eine Methode der Bahnbestimmung für die Exzentrizitäten«. 
Nr. 12, p. 145. 

Winkler, A.: Bewilligung einer Subvention zu geologischen Studien an den 
Tertiärablagerungen am zentralalpinen Ostsaum. Nr. 17, p. 213. 

—  Vorläufiger Bericht über die geologischen Untersuchungen im Tertiär- 
gebiet von Südweststeiermark. Nr. 27, p. 283. 

Wolfer, A.: Druckwerk »Astronomische Mitteilungen, gegründet von Wolf. 
NrJ@VIIleeNT 70P-79: 

Wundt, W., E.M. i. A. d. phil.-hist. Klasse: Mitteilung von seinem Ableben. 
Nr.ul87pa219. 


Z. 


Zawodsky, O. und R. Kremann: Abhandlung »Über den Einfluß von Sub- 
stitution in den Komponenten binärer Lösungsgleichgewichte. 
XXVIII. Mitteilung: Das binäre System von z-Phenylendiamin mit 
1, 2, 4-Dinitrophenol«. Nr. 17, p. 206. 

— — und E. Lupfer: Abhandlung »Über den Einfluß von Substitution 
in den Komponenten binärer Lösungsgleichgewichte. XXVII. Mitteilung: 
Die binären Systeme von m- und p-Amidophenol mit Phenolen, be- 
ziehungsweise Nitrokörpern«. Nr. 17, p. 206. 

Zellner, J.: Abhandlung »Zur Chemie der höheren Pilze. 14. Mitteilung: 
Über Lactarius rufus Scop., Lactarius pallidus Pers. und Poly- 
porus hispidus Fr.<. Nr. 17, p. 209. 


XXIV 


Zentralanstalt für Meteorologie und Geodvynamik: 
— Monatliche Mitteilungen: 
—  — Jahr 1919: 


DT NV orlageryone Ne. JS (Noyempen) Nil pl. 
—. 2 eVorlage voneNr. 12=(Dezember)" Ne79, pr 97: 
— — Jahr 1920: 

— .— -— Vorlage von Nr. 1 (Jänner). Nr. 7, p. 31. 

— 7 —’ 'Vorlage'von Nr. 2 (Pebruar).‘Nr.'9, p. 97. 

— —  —- Vorlage von Nr. 3 (März). Nr. 10, p. 129. 

— — —, Vorlage von Nr. 4 (April). Nr. 18, p. 151. 

— 7 —. Vorlage von Nr. 5’(Mai). Nr.''16, p. 195: 

— '— .— Vorlage von Nr. 6 (Juni). Nr. 18,%p.223. 

— — — ' Vorlage von Nr. 7 (Juli). Nr. 18, p. 227. 

— — — Vorlage von Nr. 8 (August). Nr. 18, p. 231. 

=, — WW Vorlage von Nr. 9 (September). Nr. 22, p."253: 
— — -— Vorlage von Nr. 10 (Oktober). Nr. 25, p. 277. 


Zentralinstitut für Hirnforschung, österr. interakademisches: 
— Vorlage des Berichtes über seine Tätigkeit für 1919. Nr. 3, p. 31. 
— Druckwerk »Arbeiten aus dem Neurologischen Institut an der Wiener 
Universität. Band XXI, Heft 1«. Nr. 24, p. 264. 
Zinke, A. und J. Dzrimal: Abhandlung »Zur Kenntnis von Harzbestand- 
teilen. 7. Mitteilung«. Nr. 15, p. 170. 
— A.Friedrich und A. Rollett: Abhandlung »Zur Kenntnis von Harz- 
bestandteilen. Vl. Mitteilung)«. Nr. 9, p. 94. 
— k.M.i.A. R. Scholl und Chr. Seer: Abhandlung »Untersuchungen 
in der Reihe der Methyl-1, 2-benzanthrachinone (IM. Mitteilung)«. 
Nr. 18, p. 217. 
Zlamal, H.: Versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schrift: »Resultate über Relativitätstheorie«. Nr. 18, p. 218. 
Zlatarovic, R.: Abhandlung »Beiträge zur Kenntnis der atmosphärischen 
Elektrizität. Nr. 61. Messungen des Ra-Emanationsgehaltes in der Luft 
von Innsbruck«. Nr. 7, p. 75. 
Zwaardemaker, H.: Übersendung von neun Separatabdrucken seiner Arbeiten 
über die physiologischen Wirkungen der Radiumstrahlung. Nr. 18, 
BE210. 


13479 20 


Du 7 re 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 NET 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 8. Jänner 1920 


Der Vorsitzende macht Mitteilung von dem Verluste, 
welchen die Akademie durch das am 24. Dezember 1919 in 
Lankowitz erfolgte Ableben des wirklichen Mitgliedes der 
philosophisch-historischen Klasse, Hofrates Prof. Dr. Leo 
Reinisch, erlitten hat. 

Die anwesenden Mitglieder geben ihrem Beileide durch 
Erheben von den Sitzen Ausdruck. 


Das Museum für Volkskunde in Wien übersendet 
eine Einladung zu der am 11. Jänner stattfindenden Feier 
seines 25jährigen Bestandes. 


Das Kuratorium der Schwestern Fröhlich-Stiftung 
übersendet eine Kundmachung über die Verleihung von . 
Stipendien und Pensionen aus dieser Stiftung. 


Das w. M. Prof. F. Hochstetter übersendet die Pflicht- 
exemplare seines mit Subvention aus der Erbschaft Czermak 
gedruckten Werkes: »Beiträge zur Entwicklungs- 
geschichte des menschlichen Gehirns, I. Teil.« 


Für die in der Feierlichen Sitzung vom 30. Mai 1919 
ausgeschriebene Preisaufgabe zur Erlangung des A. Freiherr 
v!. Baumgartner-Preises (siehe Anzeiger Nr. 15, p. 214, 
Jahrgang 1919) ist eine Bewerbungsschrift mit dem Motto: 
»Niemand soll Versuche ausführen, um seine Gedanken zu 
bestätigen, sondern bloß, um sie zu kontrollieren« (P. Duhem), 
eingelangt. 


Dr. Rudolf Wagner (Wien) übersendet folgende Mit- 
teilung: »Vorkommnisse von A,-Sympodien bei Lasio- 
petaleen.« 


In einem »Über die Existenz von A,-Sympodien« be- 
titelten Artikel (dieser Anzeiger vom 28. Mai 1919) wurde 
auf die Dürftigkeit unserer Kenntnisse hinsichtlich der- in 
einer Ebene entwickelten Sympodien hingewiesen, die sich 
naturgemäß meist bei dekussierter Blattstellung finden, wofür 
Staphylea pinnata L. und Cercidiphyllum japonicum S. & Z. 
als Vertreter der nach ihnen benannten Familien erwähnt 
wurden. Dazu kommen noch die Sichelzweige von Crossandra 
undulifolia Salisb. und die Gattung Scolosanthus Vahl, 
erstere Acanthacee, letztere Rubiacee, der sich noch Damn- 
acanthus Gaertn. fil. anschließt, sowie die Apocynaceen- 
gattung Carissa L. 

Bei zerstreuter Blattstellung kommt zunächst die 
1/,-Stellung in Betracht, mit zahlreichen Beispielen aus der 
Familie der Anonaceen, und bisher nur in zwei Fällen die 
?/,-Stellung, die bei Opisthodromie Fächelsympodien aus ö, 
ermöglicht, bei der weit selteneren Emprosthodromie Sichel- 
sympodien aus ö.. Für den letzteren Fall sind bisher gar 
keine Beispiele bekannt, für den ersteren die zwei Fälle, die 
in der eingangs zitierten Arbeit kurz besprochen wurden, 
nämlich Polygala glaucoides Hook. fil. aus Südindien und 
P. Thwaitesii Hassk. aus Ceylon. 

Nun haben sich in der Gruppe der Lasiopetaleen, die 
als Sträucher oder Halbsträucher fast ganz auf Westaustralien 
beschränkt ist und sich nur in Gestalt eines mächtigen Baumes 


auf den Fidschiinseln findet und in Madagaskar einen Reprä- 
sentanten besitzt, zwei Fälle gefunden, und zwar bei habituell 
insofern ausgezeichneten Gewächsen, als sie scheinbar drei- 
zählige Quirle aufweisen, was innerhalb der Sterculiaceen 
wohl ein Unikum darstellen würde. Auf die Irrtümer in der 
Beurteilung dieser Fälle einzugehen, verbietet der Raum, der 
Hinweis mag genügen, daß verschiedene Autoren sich dabei 
täuschten. 

Die Gattung Guichenotia wurde von dem Schweizer 
J. Gay 1821 aufgestellt, und zwar mit einer einzigen Art, 
der @. ledifolia J. Gay, die im Gebiete des Schwanenflusses 
in Südwestaustralien wächst. Als Beispiel mag hier ein Haupt- 
sympodium erwähnt sein von der Formel 


Y I Y Al 
Vs I adz Ar 4,5 l ade Ba 7 Ar 8,9 Zaıo 


und ein Nebensympodium 4, Ay3l’aaı Ay; Sowie ein weiteres 
v, Vs ABER 2» en 

Von der inzwischen auf etwa sechs Arten angewachsenen 
Gattung hat Nikolaus Turczaninow 1846 eine zweite, habi- 
tuell ähnliche Art beschrieben, die G. macrantha aus dem 
nämlichen Gebiete. Bei ihr konnte ein Hauptsympodium 
v, A,3_, festgestellt werden, als Nebensympodium mag hier 
9, Ba3 Ayı 6 lası Aps,» Erwähnung finden. Da sich die letztere 
Art in Kultur befindet — wenigstens in England —, so wird 
vielleicht diese Anregung genügen, eine genauere, auf lebendes 
Material und vor allem auch auf das Experirnent gestützte 
Analyse zu veranlassen. Die schon Eichler bekannte Apo- 
tropie des «a-Vorblattes innerhalb der Lasiopetaleen tritt 
namentlich bei den etwa achtblütigen «-Wickeln der ersteren 
Art deutlich hervor. 


Das k. M. Hofrat G. Jäger übersendet eine Abhandlung 
von Dr. Friedrich Kottler in Wien mit dem Titel: »Zur 
Theorie der Beugung. Emissionstheorie des Lichtes 
und Quantenhypothese.« 


Folgende versiegelte Schreiben zur Wahrung der 
Priorität wurden übersendet: 

1. von Dr. Joseph Tagger in Innsbruck mit der Auf- 
schrift: »Prometheus Nr. 2-—5«; 

2. von Ernst Friedmann in Wien mit der Aufschrift: 
»Akustisches Problem«. 


Das w.M. R. Wegscheider legt die XXII. bis XXVI. Mit- 
teilung »Über den Einfluß von Substitution in den 
Komponenten binärer Lösungsgleichgewichte« von 
R. Kremann mit H. Marktl, beziehungsweise F. Slovak 
aus dem Physikalisch-Chemischen Laboratorium der Uhni- 
versität Graz vor. 

In der XXII. Mitteilung mit H. Marktl wird gezeigt, 
daß Antipyrin und Benzoesäure eine äquimolekulare Ver- 
bindung liefern. Man darf daher bei der Verbindung von 
Salicylsäure-Antipyrin, dem Salipyrin, nicht, wie in einer 
früheren Mitteilung vermutet, als den primären Träger der 
Verbindungsfähigkeit die OH-Gruppe ansprechen, sondern die 
Carboxylgruppe. 

Immerhin wirkt die OH-Gruppe insofern mit, als die Ver- 
bindung von Salicylsäure mit Antipyrin cet. paribus sich 
durch einen geringeren Dissoziationsgrad im Schmelzfluß 
auszeichnet. 

In der XXIV. Mitteilung wird mit Herrn Ferd. Slovak 
die Verbindungsfähigkeit des Akridins Phenolen gegenüber 
durch Aufnahme der diesbezüglichen Zustandsdiagramme unter- 
sucht. Phenol gegenüber verhält sich Akridin wie Chinolia 
und liegen hier die beiden Verbindungen: 


2 Phenol.3 Akridin und 
2 Phenol.1 Akridin 
vor. 
Auch mit den beiden Naphtholen bildet Akridin je zwei 
Verbindungen, doch ist die Zusammensetzung der akridin- 
ärmeren Verbindung eine andere. 


ol 


Außer den Verbindungen 2 Mol «-, beziehungsweise 
8-Naphtol.1 Akridin existieren die Verbindungen: 


3 Mol ß-Naphthol.2 Akridin 
1 Mol »-Naphthol.1 Akridin. 


Hydrochinon und Resorein nehmen 2 Mol Akridin auf, 
während Brenzkatechin nur I Mol Akridin zu binden vermag. 

In der XXV. Mitteilung wurden mit Herrn F. Slovak 
die Systeme von Phenolen mit Carbazol untersucht. Carbazol 
verhält sich ganz analog wie Diphenylamin, indem es mit 
den beiden Naphtholen, den drei isomeren Dioxybenzolen, 
mit Pyrogallol, den drei isomeren Nitrophenolen und 1, 2, 4- 
Dinitrophenol keine Verbindungen, sondern nur einfache Eu- 
tektika liefert. 

Erst mit Trinitrophenol (Pikrinsäure) beobachtet man das 
Auftreten einer Verbindung. 

In der XXVI. Mitteilung mit Herrn H. Marktl, die 
binären Systeme von Acetophenon, beziehungsweise Benzo- 
phenon und ihrer Derivate betreffend, wird durch Aufnahme 
von Zustandsdiagrammen gezeigt, daß Acetophenon in bezug 
auf seine Verbindungsfähigkeit Phenolen gegenüber im all- 
gemeinen in der Mitte steht zwischen Benzophenon und 
Aceton. 

Es gibt nämlich nicht wie das Benzophenon nur mit 
»-Naphthol, sondern auch mit %-Naphthol, Brenzkatechin, 
Resorein, Hydrochinon und Pyrogallol äquimolekulare Ver- 
bindungen, während andrerseits von Aceton z. B. durch Pyro- 
gallol drei, durch Resorcin zwei Naphthole aufgenommen 
werden. 

Eine Ausnahmestellung nimmt nur das System Phenol- . 
Acetophenon ein, indem hier ein einer Verbindung ent- 
sprechender Ast des Schmelzdiagramms sich nicht realisieren 
ließ, obschon dies sowohl bei den Systemen von Phenol 
mit Aceton, als mit Benzophenon der Fall ist. 

Durch Einführung von Nitrogruppen verschwindet die 
Fähigkeit des Phenols sowohl mit Acetophenon als mit Benzo- 
phenon in Verbindungen zusammenzutreten. Erst durch Ein- 
führung von drei Nitrogruppen, also bei Anwendung von 


Pikrinsäure, treten in den Zustandsdiagrammen mit Aceto- 
phenon und Benzophenon Schmelziinien von Verbindungen 
der Komponenten auf. 

In Übereinstimmung mit dem oben Gesagten ist die Ver- 
bindung von Pikrinsäure mit Benzophenon im Schmelzfluß 
weitaus in erheblicherem Maße dissoziiert als die mit Aceto- 
phenon. | 


Wegscheider überreicht ferner eine Abhandlung aus 
dem I. chemischen Laboratorium der Universität Wien: »Über 
neue Synthesen des Hordenins«, von Ernst Späth und 
Philipp Sobel. 

Verfasser berichten über zwei neue Methoden zur Ge- 
winnung von Hordenin. Nach der einen Synthese wird das 
aus Brommethyläther und Anisylbromid mittels Natrium leicht 
erhältliche «-[ p-Methoxyphenyl], 8-Methoxyäthan durch Brom- 
wasserstoff in «-| p-Methoxyphenyl|, ß-Bromäthan übergeführt, 
welches dann mit wasserfreiem Dimethylamin glatt Hordenin 
gibt. Nach dem anderen Verfahren wird das aus p-Methoxy- 
o-Bromstyrol durch Einwirkung von Natriummethylat ge- 
wonnene p, o-Dimethoxystyrol katalytisch zu »-| p-Methoxy- 
phenyl], 8-Methoxyäthan reduziert. 


Das w. M. Prof. F. E. Suess legt vor: »Stratigraphie 
und Tektonik der Flyschzone des öÖstl. Wiener 
Waldes«, (Vorläufiger Bericht) von Karl Friedl. 


Eine geologische Neuaufnahme des Wiener Waldes, die 
vom Autor 1917 bis 1919 als Fortsetzung der Arbeiten 
R. Jaegers durchgeführt wurde, ergab folgende Resultate: 

Es lassen sich im Fiysch des Wiener Waldes drei, 
durch besondere Faziesverhältnisse ausgezeichnete Komplexe 
unterscheiden, die im Verhältnis von Decken - zueinander 
stehen. 

Der untersten Decke gehört der Teil der Flyschzone 
vom Tullnerfeld bis zur Linie Kritzendorf—Kierling— Mauer- 
bach—-Gablitz an. Sie umfaßt Neokom in Flyschfazies, dann 


eine Oberkreideentwicklung, die ich Orbitoidenkreide nenne 
und schließlich Mitteleozän in der Fazies des Greifensteiner 
Sandsteins. Sie sei Greifensteiner Decke genannt. 

Die nächsthöhere Decke, die Wienerwald Decke 
heißen mag, ist längs vorgenannter Linie auf die Greifen- 
steiner Decke aufgeschoben und mit der höchsten Decke, 
der Klippendecke, in komplizierter Weise verfaltet. Sie beginnt 
mit einer Oberkreide, die eine Bildung größerer Landferne ist, 
den Inozeramenschichten; ihre Bildung reicht vom Cenoman 
bis ins Senon und ihr höchster Horizont sind bunte Schiefer. 
Konkordant folgt Mitteleozän in der Fazies von Glaukonit- 
sandsteinen und dunklen Schiefern, eine Entwicklung, die ich 
als Glaukoniteozän dem Greifensteiner Sandstein gegenüber- 
stelle. Bunte Schiefer schließen es nach oben ab. Sowohl 
Inozeramenschichten als auch Glaukoniteozän zeigen nach 
Norden hin ein durchschnittliches Gröberwerden des Korns 
der Gesteine und eine leichte Annäherung an die Fazies der 
Greifensteiner Decke, so daß Wienerwald- und Greifensteiner 
Decke wohl nur Teildecken eınes höheren Systems darstellen, 
das mit den beskidischen Decken der Karpaten parallelisiert 
werden muß. In den ganzen Karpaten und auch noch am 
Waschberg liegen aber vor und unter den beskidischen 
Decken die subbeskidischen mit reichentwickeltem Neokom 
und einem bis in Oligozän reichenden, an Erdöl reichen 
Flysch. Das ganze Bild spricht dafür, daß auch im Wiener- 
wald jene subbeskidischen Decken vorhanden sind und bloß 
von den beskidischen völlig überwältigt wurden. Ich kann 
daher die Gieifensteiner Serie nicht als autochthonen Flysch 
betrachten und muß also auch sie als Decke ansprechen, 
die über die subbeskidischen hinaus auch noch die Molasse 
weit überfahren hat. | 

Die höchste Decke, die Klippendecke, besteht der 
Hauptsache nach aus einer Seichtwasserkreide mit zahlreichen 
bunten Schiefern. Sie ist derart auf die Wienerwalddecke 
aufgeschoben und mit ihr verfaltet, daß sie in drei Zügen 
aus deren Glaukoniteozän emportaucht. Der äußerste Zug 
beginnt mit dem Nußberg und streicht über Neuberg und 
Kolbeterberg gegen Hadersdorf, der mittlere zieht sich von 


8 


Dornbach über Hütteldorf in den Tiergarten hinein und der 
innerste begleitet bei Mauer die Kalkalpengrenze. 

An der Grenze dieser Seichtwasserkreide gegen die 
bunten Schiefer des Glaukoniteozäns treten nun die viel- 
genannten Klippen, aus älteren mesozoischen Gesteinen 
bestehend, auf, und zwar gehören dem äußersten Zuge der 
Seichtwasserkreide die Klippen von Neuwaldegg und Salmanns- 
dorf, dem mittleren Zuge die des Tiergartens und die 
St. Veiter Klippe an, während dem innersten die Klippen von 
Mauer zuzurechnen sind. 

Aus dieser Lage der Klippen geht hervor, -daß sie 
Schubfetzen an. der Basis der aus Seichtwasserkreide 
bestehenden Klippendecke darstellen und also wurzellos sind. 
Eozän fehlt der Klippendecke und daraus, wie aus der Fazies 
ihres in den Klippen vorliegenden übrigen Mesozoikums folgt, 
daß sie bereits einem anderen Deckensystem angehört wie 
der übrige Flysch. Die Klippendecke ist bereits die unterste 
ostalpine Teildecke. 

Sie ist wieder verfaltet mit der nächsthöheren Teildecke, 
mit der die eigentlichen Kalkalpen beginnen, nämlich mit der 
Frankenfelser Decke im Sinne Kober’s, zu der ich auch die 
Kieselkalkzone Spitz’ ziehe. Auch die Frankenfelser Decke 
besitzt Oberkreide in äußerst flyschähnlicher Fazies, die sie 
von der darauffolgenden Lunzer Decke trennt. Diese Ober- 
kreide wurde früher für Lias angesehen, ein Umstand, der 
dazu beitrug, daß der Bau des ganzen Höllensteinzuges 
so lange verkannt wurde; denn es kann keinem Zweifel 
unterliegen, daß, wie Kober zuerst erkannte, auch der 
Höllensteinzug Deckenbau zeigt und daß die noch viele Züge 
des Flysches besitzende Brühler Gosau die Oberkreide der 
Lunzer Decke darstellt, die dann unter die Werfener Schiefer 
der Ötscher Decke des Anningers untertaucht, auf deren 
Rücken erst echte, Hippuriten führende Gosau auftritt. 

So sehen wir, daß in der Oberkreide der einzelnen 
kalkalpinen Teildecken ein ganz allmählicher Übergang von 
Flysch in Gosau stattfindet und auf diese Weise sind auch 
die seit langem erkannten Beziehungen dieser beiden Ober- 
kreideentwicklungen zu erklären. Eine überaus scharfe Trennung 


muß aber vorgenommen werden zwischen der noch von 
Eozän überlagerten Kreide der beskidischen Decken und der 
der kalkalpinen Decken, deren unterste eben die Klippendecke 
darstellt und denen das Eozän fehlt. Erstere sind helvetisch 
und letztere ostalpin. 

Die Bildung der einzelnen kalkalpinen Teildecken muß 
mindest nachgosauisch, die Überschiebung des ostalpinen 
auf die beskidischen Decken mindest nacheozän und die 
dieser auf das subbeskidische und auf die Molasse nach- 
oligozän sein. 

So fügt sich der Bau der Flyschzone des Wiener 
Waldes in den gigantischen Deckenbau der Ostalpen ein. 


Weiters legt Prof. F. E. Suess eine Abhandlung von 
Dr. Hans Mohr in Graz vor, betitelt: »Lößstudien an der 
Wolga.« 


Das w. M. Hofrat E. Müller legt eine Arbeit von Erwin 
Kruppa in Graz vor mit dem Titel: »Graphische Kurven«. 
(1. Mitteilung.) - 

In dieser Arbeit werden die graphischen Kurven, das 
sind die mit einer bestimmten endlichen und konstanten Strich- 
breite »d« gezeichneten Kurven, zum Gegenstand einer geo- 
metrischen Untersuchung gemacht. 

Für diesen Zweck sind zunächst gewisse Idealisierungen 
nötig: Zunächst wird ein gr. Punkt als Kreisscheibe mit dem 
Durchmesser d aufgefaßt, dann wird eine gr. Kurve als eine 
Aufeinanderfolge von einander berührenden gr. Punkten erklärt, 
von denen i. a. jeder bloß die ihm in der Folge benachbarten 
berührt. Durch weitere präzise Definitionen lassen sich 
dann die »graphischen Vorstufen« der Begriffe: »Tangente«, 
»Krümmung« u. a., die auf mathematische, reguläre Kurven 
Bezug haben, erklären. So entsteht eine Theorie der gr. Kurven, 
aus der sich durch den Grenzübergang lim D=0 die Theorie 
der regulären Kurven ergibt. 

Da nur gr. Kurven der sinnlichen Anschauung zugänglich 
sind und die mathematischen (regulären) Idealkurven durch 


10 


einen Abstraktionsprozeß aus ihnen entstehen, ist es sicher 
ein natürlicherer Vorgang, die Theorie der regulären Kurven 
aus jener der gr. Kurven dadurch abzuleiten, daß man die 
Strichbreite gegen Null konvergieren läßt, statt, wie man es 
gewöhnlich macht, die gr. Kurve als Approximation einer 
(nicht näher erklärten) regulären Kurve aufzufassen und deren 
Theorie einfach auf die gr. Kurven zu übertragen (was übrigens 
oft auch zu Unstimmigkeiten führt). 

Es ist hervorzuheben, daß die Theorie gr. Kurven keine 
Grenzprozesse benötigt, da die Strichbreite eine nicht unter- 
schreitbare untere Grenze für die Streckenlänge ist. 

Der Verfasser glaubt, daß es besonders die Aufgabe der 
darstellenden Geometrie ist, in die mathematische Kurven- 
theorie von der Seite der graphischen Kurven einzudringen. 
Die obige Arbeit stellt einen Versuch für dieses Unter- 
nehmen vor. 


Das w. M. Hofrat Franz Exner legt vor: »Mitteilungen 
aus dem Institut für Radiumforschung Nr. 125. Über 
die Erreichung des Sättigungsstromes in?Zylınder 
kondensatoren bei lonisation durch Ra-Emanation 
im Gleichgewichte mit ihren Zerfallsprodukten«, von 
Franz Brössler. 

Die aus theoretischen Überlegungen abgeleiteten Ansätze 
für die Abhängigkeit des Stromes von der Spannung bei 
lonisation durch „-Strahlen erwiesen sich in der Praxis als 
nicht gut brauchbar. Da es jedoch in vielen Fällen von 
Wichtigkeit ist, den Grenzwert des Stromes, den ein gewisses 
radioaktives Präparat zu liefern imstande ist, zu kennen, 
wurde ein Netz von Stromspannungskurven experimentell 
ermittelt, wodurch es möglich wird, durch Messung eines 
einzelnen Stromwertes und der dazu gehörigen Spannung — 
gleiche Versuchsanordnung und Ra-Emanation vorausgesetzt — 
innerhalb der Grenzen, für die das Netz aufgenommen wurde, 
den Grenzwert mit hinreichender Genauigkeit zu bestimmen. 
Die Messung wurde mit einem Zylinderkondensator durch- 
geführt, da diese Kondensatorform in der Praxis der Messungen 


Iel 


die am meisten verwendete ist. Das übliche Extrapolations- 
verfahren auf den Sattwert konnte bei den Stromspannungs- 
kurven für Ra-Emanation im Gleichgewichte mit ihren Zer- 
fallsprodukten (Ra-A bis Ra-C) wegen der sehr schwer 
zu erreichenden Sättigung nicht angewendet werden. Es 
wird gezeigt, daß eine Exponentialfunktion von der Form 
i = J(l—e”*F) die Stromspannungskurven mit hinreichender 
Genauigkeit darstellt. Hierbei ist 7 der jeweilige Strom, J der 
Grenzwert des Stromes (Sattwert), z eine Konstante, E die 
Spannung. Nach Ph. Furtwängler besteht zwischen dem 
Grenzwert des Stromes J und der Konstanten %# folgende 
einfache Beziehung: J?’x? = Const. Diese beiden Ansätze 
gestatten aus einer. einzelnen Messung eines Stromwertes 
und der dazu gehörigen Spannung den Grenzwert J rech- 
nerisch zu bestimmen. Aus dem auf Grund vieler gemessener 
Stromspannungskurven gezeichneten Netze von Stromspan- 
nungskurven und Trajektorien (Orte gleichen Sättigungsgrades) 
kann mittels des üblichen Interpolationsverfahrens der Satt- 
wert innerhalb der Grenzen 10 bis 210 E.S.E. auch graphisch 
ermittelt werden. 

Es wird auch eine Methode diskutiert, mittels der genaue 
Stromspannungskurven für den aktiven Beschlag allein als 
auch für Ra-Emanation allein zu ermitteln wären. 


Das w.M. E. Brückner legt im Auszug einen Bericht 
des Forschungsreisenden Anton K. Gebauer über seine 
mit Beihilfe der Akademie unternommene Forschungs- 
reise in as Strommgebiet des: Saluen,'des’’Mekong 
und des Yangtze vor, die durch den Ausbruch des Welt- 
krieges ein vorzeitiges Ende fand. 

Gebauer drang im Frühsommer 1914 von Weihsi, von 
wo er seinen zweiten Bericht an die Akademie abgesandt 
hatte, nach Norden bis Atendse, einem Ort dicht an der 
chinesisch-tibetanischen Grenze, zwischen Mekong und Yangtze- 
kiang, vor. Hier wurde ihm von den chinesischen Behörden 
die Weiterreise und der Übertritt auf tibetanisches Gebiet 
verboten und alle Versuche, das Verbot zu umgehen, scheiterten. 


12 


Der Forscher wurde Tag und Nacht in seiner Behausung 
bewacht und konnte in keiner Weise die zur Weiterreise 
notwendigen Träger und Tragtiere auftreiben. Es stellte sich 
heraus, daß durch politische Intriguen der Engländer ein 
Konflikt zwischen China und Tibet ausgebrochen war; die 
Engländer unterstützten dabei die Tibetaner auf jede Weise. 

Gebauer beschloß nun zum Yangtzekiang zu ziehen. Er 
marschierte von Atendse zunächst nach Digu, einem kleinen 
Ort am Mekong, und von hier aus nach Osten und erreichte 
am 19. Juni das am Abhang des Scheidegebirges zwischen 
Mekong und Yangtze gelegene Lisodorf Aiualo. Hier setzte 
er seine Karawane für die Weiterreise nach Osten zusammen 
und stieg zur Wasserscheide gegen den Yangtzekiang empor. 
Am Kamm übernachtete er in zirka 3880 m Höhe. Schnee- 
wächten lagen noch auf der Ostseite. Gegen den Mekong 
fällt der Kamm in seinen oberen Teilen an vielen Stellen in 
Felswänden ab. Die Route führt über keine Einsenkung, son- 
dern über die volle Höhe des Kammes. Die Eingeborenen 
nennen die Stelle Lenago. Das ganze Scheidegebirge von hier 
bis Atendse wird Pe-ma tschang genannt. Von Lenago blickt 
man nach Osten in ein weites, offenes, nordsüd gestrecktes 
Sammelbecken von Bächen hinab, deren Wasser durch eine 
schmale Erosionsrinne nach Osten entführt wird. Dieses 
schluchtartige Tal mündet in ein Seitental des Yangtze, das 
vom Pa-sa-dschi durchflossen wird. Der Oberlauf des Pa-sa- 
dschi zieht dem Yangtze parallel von Norden nach Süden 
und -wird von diesem durch einen niederen Rücken getrennt, 
der wenig unterhalb der Stelle, wo der von Lenago kommende 
Bach in den Pa-sa-dschi mündet, von dem letzteren in einem 
westöstlich verlaufenden Quertal durchbrochen wird. Erst 
hinter diesem Rücken tauchten die Gebirge jenseits des 
Yangtze auf. 

Gebauer schreibt: »Die Pfadspur von Lenago abwärts 
führte zuerst durch Tannenwald, später durch dichten Urwald 
ganz von Bambus durchwachsen. In 3.500 m Höhe kamen 
wir auf prächtige Almwiesen. Weiter abwärts waren die 
steilen Abhänge mit Buschdschungel, später mit Föhren 
besetzt. Die enge Talsohle erreichte ich beim Lisodorf Schi-pe, 


13 


Am zweiten Tage verschwanden die Liso und machten 
Tibetanern Platz. Am Abend erreichten wir die Mündung 
unseres Gebirgsbaches in den Pa-sa-dschi, entlang dem eine 
Route flußaufwärts gegen Norden nach Atendse führt. Der 
Pa-sa-dschi hat wenig Gefälle und das Tal zeigt vielfach 
Auencharakter. Am dritten Tage erreichten wir den Yang- 
zekiang an der Stelle, wo er gerade ungangbare Schluchten 
verläßt. Stromabwärts bis zu seinem ersten Knie folgte ich 
diesem Strom, überschritt dann eine das rechte Ufer 
begrenzende Bergkette und kam auf ein kleines Hochplateau 
von ausgesprochenem Karstcharakter. Zahlreiche Dolinen, 
zum Teil mit Wasser gefüllt, zum Teil mit offenen Löchern, 
durchsetzten dasselbe. — Vom Plateau absteigend, gelangte 
ich auf die etwa 10 km lange und 5 km breite Hochebene 
von Lahsche und über einen niederen Paß schließlich auf die 
Hochebene von Likiang. Beide Hochebenen sind zwischen 
Kalkgebirge eingesenkt und haben Poljencharakter; sie werden 
unterirdisch entwässert. In Likiang trafen am nächsten Tage 
Dr! Schneider" und’ Dr” Handel:Manzetti"tein- "Hier in 
Likiang gab es erst wieder Regen. Unter Regen habe ich nur 
am Mekong zu leiden gehabt; das ganze Yangtzetal war 
sehr trocken und alle Rinnen ausgetrocknet.« 

»Am 7. Juli verließ ich Likiang, querte die Likiangebene, 
zog, die 120 m hohe Scheide überschreitend, zur Lahsche 
Ebene und wandte mich dann von hier aus nach Süden, 
um die direkte Route zu erreichen, die von Yangtzetal nach 
Talifu führt. Dort, wo mein Weg in diese Route einmündete, 
schloß ich meine kartographischen Aufnahmen, da das Gebiet 
weiterhin gut bekannt ist.« 

»Nach fünf langen Tagesmärschen, von Likiang gerechnet, 
kam ich nach Talifu, welchen Ort ich am 16. Juli verließ. 
Am 23. Juli erreichte ich Yung-tschan-fu. Nachdem ich mit 
Hilfe der chinesischen Behörden Maultiere gemietet, gelangte 
ich unter großen Schwierigkeiten — wegen der starken Regen 
waren alle Wege schlüpfrig und bodenlos — am 6. August 
nach Tengyuch. Daselbst erfuhr ich vom britischen Konsul 
von der Kriegserklärung zwischen Deutschland und England. 
Noch gab ich meinen Plan, mein Gebäck in Myitkyina (Burma) 


14 


abzustoßen und nochmals einen Vorstoß, diesmal längs 
der Quellflüsse des Irrawady, nach Tibet zu unternehmen, 
nicht auf. | 

»Mit Hilfe des britischen Konsuls und des Kommissärs 
der chinesischen Zollstation gelang es mir, Maultiere zu er- 
halten und am 16. August verließ ich Tengyuch auf der 
nördlichsten der drei Routen, die nach Myitkyina führen. 
Unter ununterbrochenen Regengüssen und einer bösen Blut- 
egelplage, hochgeschwollene Flüsse zum Teil schwimmend, 
zum Teil auf sogenannten Affenbrücken passierend, erreichte 
ich die chinesisch-burmanische Grenze und am 23. August 
das englische Fort Sadon. Hier erfuhr ich, daß es auch 
zwischen Österreich und England zur Kriegserklärung ge- 
kommen war. Der Kommissär daselbst, an den ich empfohlen 
war und der mich sehr herzlich aufnahm, erleichterte mir auf 
jede Weise die Weiterreise nach Myitkyina. Hier angekommen, 
meldete ich mich beim englischen Kommissionär, der mir 
erklärte, mich unter Parole stellen und meine Waffen ab- 
nehmen zu müssen. Meine Bewegungsfreiheit wurde auf die 
Stadt beschränkt. Meine Bitte, sofort nach China zurück- 
kehren zu dürfen, wurde nicht bewilligt; doch wurde mir 
gestattet, nach Rangoon zu gehen, wo ich am 31. August 
eintraf. Laut Ordre der indischen Regierung war es Zivil- 
personen erlaubt, zwischen dem 15. und 30. September Indien 
zu verlassen. Aber in der ganzen Zeit ging weder von 
Rangoon noch von Calcutta, wohin ich mich begab, ein 
Dampfer ab. Trotz der vielen Bemühungen des österreichi- 
schen Generalkonsuls Grafen Thurn wurde ich am 17. Sep- 
tember dem Kidderpore-house als Gefangener eingeliefert und 
am 2. Oktober als Zivilgefangener nach Katapahar bei Dar- 
jeeling gebracht. Im August 1915 sollte meine Heimsendung 
erfolgen. Aber da die Altersgrenze für den Militärdienst in 
Österreich gerade um jene Zeit auf 60 Jahre erhöht worden 
war, wurde ich als prisoner of war dem Kriegsgefangenen- 
lager in Ahmednagar (Präsidentschaft Bombay) eingeliefert, 
woselbst ich im B-Lager (mit Stacheldraht umzäunt) ein Jahr 
und im Parolelager drei Jahre zubrachte. Erst am 6. Dezember 
1919 fand die Heimsendung statt. Am 29. Dezember erreichte 
ich Wien.« 


15 


»Es gelang mir, alle meine Sammlungen und Aufzeich-- 
nungen in die Heimat mitzubringen, mit Ausnahme einiger 
tibetanischer Waffen und meiner photographischen Apparate. 

Die Ergebnisse meiner Reise bestehen aus: 

Kartographischen Routenaufnahmen von Tschautou am 
Schwehli bis eine Tagereise südlich von Likiang; 

geschlossenen meteorologischen Beobachtungen von 
Bhamo bis zurück nach Myitkyina (Burma); 

etwa 30 Höhenbestimmungen durch Siedethermometer; 

etwa 200 Höhenbestimmungen durch Aneroid; 

13 astronomischen Breiten- und Längenbestimmungen; 

12 anthropologischen Messungen unter den Lisos; r 

etwa 1000 photographischen Aufnahmen.« 

»Die Sammlungen umfassen ethnographische Objekte, 
Waffen, Moose und Flechten. Während meiner Gefangen- 
schaft habe ich Sammlungen von einigen Hundert Samen, 
Flechten, Moosen und Mineralien angelegt.« 

»6 Kisten befinden sich bereits seit September 1914 
unausgepackt im Naturhistorischen Museum, der Rest, etwa 
zehn Traglasten in Kisten, zur Zeit noch in meiner Wohnung.« 


Die in der Sitzung vom 11. Dezember 1919 (siehe Jahr- 
gang 1919, Anzeiger Nr. 27, p. 339) vorgelegte vorläufige 
Mitteilung von Hofrat Prof. R. Schumann in Wien über 
einige vorläufige Ergebnisse aus Schwerewagen- 
messungen im Zillingdorfer Kohlengebiete hat folgen- 
den Inhalt: 

In der Ebene östlich von Zillingdorf und auf dem flachen 
Rücken südlich vom Zillingdorfer Braunkohlen-Tagebau 
wurden in der Zeit von August 19 bis Oktober 20 dieses Jahres 
Messungen mit der bekannten Eötvös’'schen Schwerewage 
vorgenommen zu dem Zwecke, daraus Aufschlüsse zu ge- 
winnen über die Lagerung der unterirdischen Schichten. 

In Erkenntnis der Wichtigkeit dieses Zweckes stellte die 
Wiener Akademie der Wissenschaften den Betrag von 
10.000 Kronen zur Verfügung; sodann lieferten Beiträge: das 
Staatsamt für öffentliche Arbeiten und die Stadt Wien. 


16 


Die folgenden Zeilen enthalten im Auszug einen Bericht über 
die zurzeit vorliegenden Ergebnisse in wissenschaftlicher 
Richtung. 

Der Schwerpunkt des Gehänges der Schwerewage sei 
der Anfangspunkt eines Systems rechtwinkeliger Koordinaten 
xyz, x wachse im Horizont nach Nord, y nach Ost, z in der 
Lotlinie des Schwerpunktes nach unten; V(xvz) sei das 

oV 
Potential der Schwerkraft, mithin 65 gleich der Schwerkrafts- 
beschleunigung g. Dann folgen aus Messungen der Unter- 
schiede der Azimute des Wagebalkens gegen vorgegebene, 
gleichabständige Richtungen die vier Größen: 

02V Da, 0?V 92V gg 0°V 0g 


Ba EB Bene de ee na 


Aus ihnen lassen sich berechnen: 


Horizontale Richtkraft 


a ea 
ale. 


deren Azımut X aus 


„®»vr [ev er\ 
EERETTN ER (5: = ge) 


Gradient der Schwerkraft im Horizont 


n (ER ER BD, 
a N auda). 


dessen Azimut % aus 


RE REN 
0902  Ordz 
Krümmungsradius der Lotlinie 
a er 
Änderung der Richtung der Lotlinie auf die Streckeneinheit I cm 


&! — GrX 205264'8: 8. 


17 


Nachstehende Tabelle gibt die in 63 Tagen aus Sl maliger 
Aufstellung der Wage erhaltenen Werte; sie betreffen 49 
verschiedene Örter, da Nr. 6 und Nr. 10 wiederholt 
wurden. 


Länge | | 
| Pol- Ai | > | Ir | 
| | Rk I! | € 
W..P.\| höhe fe Daih | Ve: | 
ao STEENW.| 0% | 10%9 | 10%6 
’ 16° By SB | | 
| Il 
I! 
1 52:29 |:20'’19 | 28 83° 40 Un, "4 


5 

| 2. 1. 51"95 | 19-68 | 28 86 15 87 3 

24% 081 5 
11 s6 2-3 

5 

8 

1 


» w 
an 

er 
ww 
Sb) 
rt er 
an co 
[66] © 
[0e) oO 
[2 [66 
na 
es je 
ne) 
 —Sı 


- 
[8°] 
a 
_ 
— 
[) 
IS) 
> 
[e7) 
[>11 
[66] 
oO 
[98] 
Ne) 
[Sb] 
[802 
SI 
w 
S 


ns 
a 
(= 
1} 
= 
Jo) 
-1 
= 
& 
& 
jo? 
ja 
ur 
& 
n 
NS) 


Ebene zwischen Zillingdorf und dem Rücken 


is || 51:05 | 21°56 || 30 59 28 79 5°9 
19 || 51-28 | 21-89 | 39 60 35 89 74 
20 | 50-95 | 22-02 | 20 50 16 68 

21:50:68 | 21:83 || 24 68 23 70 S 
22 150.51 | 21-41 || 26 59 19 78 0) 
23 || 50-27 | 21:29 || 30 71 30 so 6°3 
»4 || 50-08 | 20:61 | 20 46 12 97 2-5 
25. | 49-77.| 20-35 || 23 57 21 60 4-4 
26 | 49:63 | 19-56 | 21 32 ti 51 || 2-3 
27 | 49:65 | 20-92 | 36 48 14 58 2:9 


Anzeiger Nr. 1. — 


I | 
| Länge | 
1. Bolanl Sen | Rr Gr | € 
wir none es | | 
) 7° ‚Greenw.') 10%9 | 10% | 10% 
| (2 10 | | | 
28 49"33 | 2133 57 50° 5 132 10 


49:48 | 2178 58 207 788 107 639 


Flacher Rücken südlich vom Braunkohlenwerk 


vB} 

[0') 

ID 

52) 

ID 

[667 

er) 

> 

H> 

D 

(1 

RS) 

2 
I, ER 5 >) - 

j ( J o) ( So ot < 
ui Br oa nm ıE © Ss u 
S C 7 > C & > B So) 

nn on, u nn nn nn nn wa 


39 || 50-44] 22-44 || 42 39 42 53 8:8 

40 || 50"39 | 22-56 || 13 84 14 | 300 29 

41 || 50-32.) 22-50 || 26 48 20 58 4:2 

42 3 90364 22:39) | 40 45 16 56 34 | 

a3 | 50-17 | 22:23 || 38 5m DER | Hoi 50 | 

44 "|| 50:25 "22-30, || 35 47 26 75 55 

45 © 50-230] 22-48 || 22 49 26 68 5) 

46 | 50°"14 | 22-33 | 49 49 20 95 42 

47° || 51:69 | 21-46 || 28 57 35 69 7°4 

48 | dl 41 20-40 5) SD 15 100 22 S- 

49 | 51°05 | 19-73 || "12 73 11 121 2.3 | 

508 Die ir. 19:93. 15 66 14 79 29 =, | 
aN = 


>31, Br4s,| 1972 4 58 sd 20.1.1011, 22 


Die Messungen beginnen zweckmäßigerweise im magne- 
tischen Meridian; daher wurde es zur Reduktion auf den astro- 
nomischen Meridian nötig, die magnetische Deklination genähert 
‚zu bestimmen. Auf.den Wagepunkten: W.P.1,2,4,5,8 fand ich 
für sie: $°6,5°8, 977, 598, 3-Bäwestlieh: nach HerrmLizmans 
Untersuchung! erhalte ich, zwar durch Extrapolation auf 


1 Osterreichische Zeitschrift für Vermessungswesen, Jahrgang 1909. 


19 


29 Jahre, doch in plausibler Übereinstimmung, Werte zwischen 
6-7 tınd 6°8, 

Zwischen den beiden Intensitäten R, und Gr, sowie 
zwischen den Richtungen « und X sind Beziehungen zu ei- 
kennen. Gebietweise Anordnung dieser Kräfte ist vorhanden, 
sie sind in überwiegender Zahl nach Ost gerichtet. Beziehungen 
zwischen den an der Wage beobachteten Größen und der aus 
vielen Tiefbohrungen erschlossenen Lagerung der unteren 
Schichten werden zurzeit mehrfach untersucht., 


FR R 
j 9 - " 
Te, Er We 
BE 7 arg MH 
« x , > nun u 


1919 Nie. 41 


Monatliche Mitteilungen 


der 


Zentralanstalt für Meteorologie und Geodynamik 


Wien, Hohe Warte 


48° 14-3' N-Br., 16° 21°7' E v. Gr., Seehöhe 202-5 


“Zeitangaben, wo nicht anders angemerkt, in mittlerer Ortszeit; Stundenzählung bis 2+ 
beginnend von Mitternacht = ON. 


November 1919 


Beobachtungen an der Zentralanstalt für Meteorologie 
48°14°9' N-Breite. im Monate 


u ap 


SSR oo 


Luftdruck in Millimeter | Temperatur in Celsiusgraden 
7 Abwei- | Abıei- 
as ‚Tages- chune v. Tages- chung 
Te a: 14h 21h 5 SV 
| | mittel Normal- | mittell Normal- 
| | | stand |) stand 
1 1748.91 74955 ! 749.3 | dal] 44 4,8 | 12,0 0.5 ost Dale er 
D.:| 44.5-40.5.,39.0 418 2 il 0.8 0.9 1:0| 2.58 
31.38.92 9885 3893813891. 5.6 DO 28 1 1.8 1 
2 ER ee er Er ee Ve 0.6 1.8 0.8 1.1 | 0 
Se a ee 08 5 Ba >= 8 
6.1..30.80 2552 SET. ER aus 7.5 6.9 6:1. 
226.3: 28.984832.3% 292%, 15:4 21046 „ dsl 4.2 9.422203 
8.1.34.97 3545 738:9| 35,5 SE) 4.5 3.6 2.7 
9 189,0 39.1.::39,& 139.2 125.4 1.4 3.9 D/72 ars E- 2,8 
0a Waren staae 1. Se 5.7 6.2 5.0121 058 
14920294, 317. 23731 31er 22 7.9 4.8 Be... 
j2.1 35.5. 36.1. 87.6. |HabsAdle 82 208 4.3 0.3.1 2.5 
13.1.3885. ag.2 ar aa ag 122 0.4 | 0.51 as 
14 | 44,9 43.1 40.2 Mad Don 0.6 0.2. | 0A 
152 86.4. 83.2 31.02 83.5 | 11221 "a 8 32 1.8| 0 
| 
162,28.8 734.2 209571 34.5 110.1 4.4 a 1.3 
7 | 48.1 50.3.5224. 50.3 |.:05.6 | 8.2 na BA | 
18] 48.9 417° 0A Aa | 100 oe Ze 
19 | 46.3.47.3 45.7 146.4 1. 1%6| 3.9 5 2.9. |, 009 
20.130072 nes. ee 02 1.8 0.2 0.7 | 
21 | 34.7 3490037,135 ou) = 8.3 3.0 3.4 108 27 0, 
2901598782 39:6. 405.1.-39:6: | 5.2 0.9 29 2.9 2.2. = 
2334| Bl 7A? Aaron end 0.6 5.6 4.6 3.6 ea 
341 A923. 427 3 Au ADS le Gabriel A 5.1 8.7) em 
a a 2 a 2.0 4.0 ST 3.2, 
>68 31.9 299 20.7120.8 a 6.8 5,6 3,7 5:4 | esse 
>7 \B6.82 8370 a5. sea el 2,6 5.0 4.6 4 
»8 | 30.2. 37.06. 41.5] 36.4 12-88 5.8 7 2.9 5.0 Tas 
29 Au Aorta 9 2.3 3.0 118 0.0 
30 | 45.2 45.0 49.5 | 46.6 |-+ 1.6 0, 5:5 5.2 | ea 
Mittel 1738.89 738.88 739.26.239.011 —5.69| 2.1 3.9 3.9 2.7 


Höchster Luftdruck: 752.4 mm am17. 
Tiefster Luftdruck: 724.1 mım am 6. 
Höchste Temperatur: 13.5° C am 7. 
Niederste Temperatur: —6.8°C am 18. 


fa 


Temperaturmittel 2: 2.6°C. 


u ar) 


2 1/, (7, oh 9). 


2, dy 


und Geodynamik, Wien, XIX., Hohe Warte (202'5 Meter), 
1692 AUE-Känge'v: Gr: 


November 


II 


Temperatur in Celsiusgraden 


Dampfdruck in mn | Feuchtigkeit in Prozenten 


I 


Schwarz- Blank- | Aus- 


Es weit Knpepi. | el 2 A Si lases ie. "an ges 
Max. Min. kugel kugel lung? rat 140 21h mittel | d 14! 21N mittel 
Max, Max. | Min, 
1.3 340 za N 3,60. Aa Fa 192,7 So 86 
EAN 6 3 Or 2,35 IE Kasldsh“ 951 98 92 
el 10) eh il | Re er E26 4.7 85 90° 93 90 
er oa. Maas AM Room Sag 89 
1. 3P 20.4 ee a ER Zen: 92 
SR: OPEN RT Ehe FBranl 100m 330 85 93 
Tacar ar20lr3g a az wen. li Bares 783 70 
OR a, 7 eV, le s4 
SR Bu RC Re Ye 94.7 A550 VA BR | 99a 59 88 
a ger 03a 3 10? 5.5, ee or 87 ‚96 93 
Ba 3.66 au Ne Ta et A EE 5a 968 62 
0) | ie, war or a ana. Bi. War 175 ge 73 
il ers aa Fe Are) 9 6 
Dr 1,90 185 8,3 3.105 Br zer 728 SE 79 
N een re Be Bgm 7b 198 95 
ner, er a ee "ö 73 
ln 5:0 93 FB NE HR. 7I FED PER FA NT 57 
246.68 82a real, Ban 77er 85 
5.0 99,7 30. ME El. We are ee 71 
Da.) ii ser) Are. So are | 100 9.96 95 
Be ee a eo] NER RR 57W 17 IE 7 
0, et I 4,2 W 4,9 Bi. 3 a SENT VG 79 
RR N OLE FRE Vi Mi, 5.0 Erg 798 s9 
Kira) am Na le ntd.3 9 7.5 Dri.0R Hemer am 82 
a3 19 NLonn Br | 2.05.55 N oa a 
Beh ee ale: er ss 
Se Omaleaee 17 A rn 1 EU E ga Br ar Bee et er ei s1 
an Lee 0 5.9 774.4 ma.80 Age Be 75 
32 0.6: Ne OF He Ai 9 4,005, ee 88 
Be Aare 9155 tere erg s6 
| | 
as oe elhemazr Asa na) 87er | ‚83 
| 
Höchster Stand des Schwarzkugelthermometers: 39° C am 7. 
Größter Unterschied zwischen Schwarz- und Blankkugelthermometer (stärkste 


‘Strahlung): 27°C am 19. 


Tiefster Stand des Ausstrahlungsthermometers: — 10°C am 18: 
Höchster Dampfdruck: 7.5 mm am 24, 
Geringster Dampfdruck: 


j 1 Schwarzkugelthermometer im Vakuum. 
* Blankes Alkoholthermometer mit gegabeltem Gefäß, 0:05 ım über einer freien Kasenlläche. 


9 


[4 


.Omm am 17. 
Geringste relative Feuchtigkeit: 49%/, am 17. 


24 
Beobachtungen an der Zentralanstalt für Meteorologie 


48°14°9' N-Breite. im Monate 
| nn nn nn 
Windrichtung und Stärke | Windgeschwindigkeit Niederschlag, iv 
n. d. 12stufigen Skala | in Meter in der Sekunde in mm gemessen 2 
zh jan 2jh Mittel Maximum! 7h ja 21h | 
ir | 2 
1 NA Aus Ns N li EST TB 2.0 = sale 
2 Nr pe N ul) SW ME 13 NNES L 74 _ 3. Ten Are 
3 W; 8.0 W583.) WM 131 55.0 EWNW. 16.5.1 0.68 u. 1.4e, 223% 
4° EWN WIESE Wac22 sun all 22,1 W410, 5.88 = 0.08 — 
5 IM Dir Bus Naa2ı N 202,6 8 ESE, 7 - = 0.4 
6 — 0. N..1 WSW3l 2.2 | WSW. 16.5 | 0.5=e  — 0.08 | — 
7 ıWSW3 WSW3 N 2| 49 | WSW 19.6-|| O.le ..0.0e — nz 
8 \ENINNV ALIEN Weg —  0|:1.0 | WNW 4.3 _ 0.0@ 8.5@ 
9 | 0:.,NNE1 NE 1| 1.0 N 3.6 | O0.le -0.ie — 
10 — 0 ERWlTESSE al 1.4 | SSE 1438 0.2=: . 0.2= _ _ 
14- \\WSW5..: WA. .M- 21 2:4 1uWSW 25:1: 3.30 zn m 
12 W 3, NW1...W 1,9 I, WNW 11.4: 0.08 0:08 = u 
13 N: 1,.WNWII Wa Bl, 2:3 0 „ww 41139 050% al, Dis 2002 N 
14 WW Dos Ban) ESE 3.3.9 | SE 10.6 = _ _ 5] h 
15 ESE 3. E 3 Oi TE 10.2 = _ 0.08 i 
16 Win Waadt NW Alla 783 IS WNW; 2438 1.8e : 0.5%x 0.1x 
17 |WNW5 NNW4 WNWA4|. 6.7, WNW 21.9 || 0.1« = = 
18 W ESHnBäNe Al 29 je Sn 98 = 0.7% 3.8% 
19 mM Han WessT 25 Ww Is33el 8:8% er = 
20 —_— 0 DS aE137SSE 21422 SSE 7.8 8.08 0.30 1.6e | — 
31 |WNWA.W.3 W8SwAl 4,9 | NW. 17.0 | 3.66 , 3.0e: 0.18 | 
22 | WSW2 WSW3 W 45.81 .W. 16.7. | 0.2x -0.4x _ 
23 SSW I W383 8SSW Al» 4.4 I, «W 17:5: 1 3:58 21.38, ol em 
24 W 5 2 Wus32 sw 114 3.6.0, 5 W 19.2 | S.7e 0.0e _ 
25 SE 1 Ei SE 11.2.3 | ENE 5.4 == = — 
| 
26 | SSE 2:SSE 3 W 5 4.3 | WSW 15.3 || 0-3e  0.9e 2.48 IE 
27 |WSWL-ESE 1 SE 2|:. 2.8 | WSW .,12.7 | 3:1e _ Bin. 
2 WSWA4.WSW3. N Al: 5.3 | WSW 23.5 || 2.46 — = = 
29 SW 1 Nas u le 0.7. N Se 0.0 = me 4 
30.13 SSE SENBELI SW Bl 23.4 = Wiariniake 1 1005 — = B 
5 13.3 47.6 13.6 26.6 


Mittel | 2.0 2,1 1.9 3.5 
I 


| | 
Ergebnisse der Windaufzeichnungen (nach dem Schalenkreuz): 
N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW 


Häufigkeit, Stunden 
40-432 26° 26, 88. 708 287 38 30 47 107,62,0443 si 30 11 
: Gesamtweg, Kilometer 
118 223 146 151 344 631 442 302 146 73 67-1412 2811 1531 417 68 
Mittlere Geschwindigkeit, Meter in der Sekunde 
0.8.1.4°1.8 1.62.5233 8:3 2,2 T.4 1.220 D.3, 2,53 Tl ee 
Maximum der Geschwindigkeit, Meter pro Stunde 
1.9 .3.172.8°3.12. 530: 5.6 5:4 5.6. 8.8 2.2 2,3 34.511. 1 ERS 
Anzahl der Windstillen (Stunden) — 38. 


Größter Niederschlag binnen 24 Stunden: 11.5 mım am 3.u.4. Niederschlagshöhe: 57.8 mm. 


Zahl der Tage mit e: 4; Zahl der Tage mit =; 6; Zahl der Tage mit x: 2. 


ı Den Angaben des Dines’schen Druckrohr-Anemometers entnommen. 


und Geodynamik, Wien, XIX., Hohe Warte (202'5 Meter), 


November 1919. 16°21°7" E-Länge v. Gr. 
A | Bewölkung in Zehnteln des 
23 [si sichtbaren Himmelsgewölbes 
25 Bemerkungen | Fe 
28 n 5 
es 7h 14h 91h DES 
7 | SR 

sfggg | MU) mens. 101 101 101 10.0 

geegg | xl el 104 — 1610, dann el— 101 10189 1017281 | 10.0 
ORRIER, el 1-4, x07-1 80-1 1030 — 101 10180 101807 350) 
gggBg | x) — 1030, 101%0 101 101 10.0 
ggggg | ed! = 172 1615 — 101 101 101=180 | 10.0 

gsgmge | =:0-1 6, e0 1930 — 21; =1 bis mttgs. 101=1 8071 1007180 | 9,3 

edmbn | eV 750— 10 zeitw. 10071 1071 30 4.7 

egggg | el 1330-- 101 10181 10180 | 10.0 

sfdgg | e!—5, 0071 7 —830, 10180 6071 101 8.7 

stggm | =1 gz. Tag; =:1 mgns., eI71 2339 — 101=1 101=1 101=1 | 10.0 

ddmbn | e072—-230, Föhnwetter. 792 21 72 9.3 

ggmen | x) e0 650 — 950, 101x0 90-1 40 lol 

gggme | x0 65 — 21; =0 71 vorm. 101x0 10071x0 90-140 | 9.7 

anggg | =1 16-22. 0 10071=071 101=1| 6.7 

ggggg | =:17? abds.; =1 10— nachts. 101 101=1 102=1 | 10.0 

geggg | e!14—810, x071 1125 — 1315, x0 abds. zeitw. 1018071 101 101 10.0 

geec x Fl. mgns. zeitw. 10071 7071 40 Tee) 

ngggg | x1 1150.—23;=0 mgns. 80 101%x1  101x0 2.3 

embba | nU® abds. 7071 20 sl 4.0 

ggggg | ed 2 —690, e) 12— 14, el 14— 1630; UV mens. || 101 10180 101 10.0 

egdha e0 1 430 —_ 740, 2071 80 740 815, «1 AVT1 @0 Böe 10lel 101 30-1 DET 

1815-10, 

nddeg | x0 715—8, 10201145, x Fl. 12—14 zeitw.; 91 7071 90 s.3 

rul mens. | 

sfigg | x071 310 —7, 0071 S10 — 12, el 165 — ii 101x0 go 10lel 7 

flegg e0 1705. 90-180 80-1 100-1 9.0 

ggdan | 9 mens. ; =1 7—15. 101 101=1 ) 827 

fgggm | e0 345 —5, e071 615 815, el 1715 —23. | 9180 101 101e071| 9.7 

ddffg | =!im E mens. 30-1 6071 goTı 6.0 

dddem | e0-1 210 510, sı=2 80-1 9071 8.3 

enggm | — 071 mgns. 401 100-1 101 8.0 

egeem | at mens. 90-1 101 9071 9.3 
Mittel 8.8 3.4 8.3 8.5 

3 
Schlüssel für dıe Witterungsbemerkungen: 

a= klar. f = fast ganz bedeckt. k = böig. 

b = heiter. g = ganz bedeckt. l = gewitterig. 

ce = meist heiter. h = Wolkentreiben. m = abnehmende Bewölkung. 

d = wechselnd bewölkt. i = regnerisch. | n = zunehmende EN 


e = größtenteils bewölkt. 
Der erste Buchstabe gilt für morgens, der zweite für vormittags, der dritte für nachmittags 
der vierte für abends, der fünfte für nachts. 
Zeichenerklärung 

Sonnenschein ©, Regen e, Schnee «x, Hagela, Graupeln A, Nebel =, Bodennebel 3, 
Nebelreißen =:, Tau «a, Reif —, Rauhreif v, Glatteis ru, Sturm I, Gewitter R, Wetter- 
leuchten <. Schneedecke fl, Schneegestöber #, Dunst oo, Halo um Sonne ®&, Kranz 
um Sonne (V), Halo um Mond U, Kranz um Mond W, Regenbogen N. 

eTr. = Regentropfen, xFl. = Schneeflocken, Schneeflimmerchen. 


! Die Angabe der Bewölkung ohne Index wurde aufgelassen, da sie sich für den Vergleich mit 
der Index-Bewölkung als wenig brauchbar erwies. 


Anzeiger Nr. 1. 3 


26 


nd 


Beobachtungen an der Zentralanstalt für Meteorologie und 
Geodynamik, Wien, XIX., Hohe Warte (2025 Meter), 


im Monate November 1919. 


| Dauer | o-| Bodentemperatur in der Tiefe von 
Verdun- | des 580 5 | me Se Te 
stungl || sonnen- | & 5 8 | 0.50 1.00m 2.0m 3.00m 4.00 m 
Tag in mm hei | ae me 
1.3C nes < 9 en | Tages- Tages- 14h 14h 1an 
en IKSkunden ö =3E+| mittel mittel 
| d | a 
| | 
1 0.83 O4 EL 4.9 8.9 1108 12.2 11.4 
2 0 040° a Bl Az 4.7 8.5 1 1.28 19°3 
3 0.0 020 NS W738 4.4 8,2 11.6 VE 718 
4 0.3 0.0 3 4.1 7R 11.5 1219 11.7 
5 0.1 0.0 | 0.7 4.0 7.4 11.4 10) 11.8 
6 0.0 0.6 | 0.83 AB Tel 1 12.0 17 
7 0.4 8.3 ul 5.3 7. hl 11.9 17 
8 14 8.0 7. 2720..0 5.5 7A KB 11.9 1 
9 0.1 2.3 = 10:0 5.4 74 11.0 11.8 dd 
10 | Br 0.2 2028, 5.4 7.3 10.8 11.8 1137 
11 6 6:7 110.0 58 re 10.7 1 lag 11.6 
12 58) 0.2 Ale Sa 2 10.6 al 1176 
13 0.8 Re a a) 4.6 | 10.5 1a 11.6 
14 0.4 Aa 3.9 7.0 1005. 8425 11.6 
15 W. 0.0 1.® 3.9 6.8 10.3 4.5 11.6 
16 143 ee TE Be 6.7 10.3 11.4 11.5 
17 OR 3.7 © er 47 3 6.5 10.2 11.4 11.5 
18 Qt 0.0 377 6.1 10.1 11.3 ei 
19 08 6.6 = li 163 2.4 6.0 10.0 1 11.5 
2 0.0 0.0 °|. 10:0 2.3 5.7 9.9 11.2 11.4 
> 0:57 0.0 11.0 2.3 5.5 10.8 112 ik! 
22 0.8 1..9,..1-,710.40 2.2 5.83 9.6 [ku 11.4 
23 0.3 0.5... 202 5.1 9,6 le 11.4 
24 ee: 0.3. ara 350 5.0 9.5 11.0 1.108 
25 0.0 0.0 1.0 3.8 5.0 9,4 10.9 11.3 
26 0.5 0.0 3.0 37 5.1 9.2 10.9 1182 
27 0:2 1.9 4,3 3.8 5.2 9.1 10.9 138 
28 1.1 4.7 6.7 3.9 5.3 9.1 10.7 EL 
29 0.1 0.0, ID 3.6 5.4 8.9 10.7 Le 
30 0.4 0202 0.0 3 5.4 8.8 10.6 1122 
Mittel 0.5 1.2.8 3.9 6.5 10288 11.5 11.5 
Summe 14.0 33.0Malı 


Größte Verdunstung: 1.9 mm am 24. 

Größter Ozongehalt der Luft: 11.0 am 21. 

Größte Sonnenscheindauer: 6.7 Stunden am 11. 

Prozente der monatlichen Sonnenscheindauer von der möglichen: 13° ,, von deı 


mittleren: 549, ,. 


Aus der Staatsdruckerei in Wien. 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 Nr. 2 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 15. Jänner 1920 


——— 


Erschienen: Sitzungsberichte, Bd. 128, Abt. I, Heft 1; — Abt. IIb, Heft I 


und 2. 


Dr. H. Karny übersendet eine vorläufige Mitteilung über 
die Thysanopteren, die auf der mit Unterstützung der 
Akademie aus der Erbschaft Treitl von F. Werner unter- 
nommenen zoologischen Expedition nach dem anglo- 
ägyptischen Sudan 1914 von R. Ebner gesammelt 
wurden. 


In der Ausbeute Ebner’s liegen im ganzen 17 Thysan- 
opteren-Spezies vor, von denen die Mehrzahl aus Afrika schon 
bekannt war, nämlich Melanthrips fuscus (Sulzer), Frank- 
liniella pallida (Uzel), Physothrips meruensis (Trybom), 
Ph. sjöstedti (Trybom), Thrips acaciae Trybom, Liothrips 
dampfi Karny, Haplothrips bagnalli Trybom, F. brevicauda 
Trybom, A. coloratus Trybom, FH. aculeatus (Fabricius). 

Neu für Afrika war der bisher nur aus Europa bekannte 
Haplothrips juncorum Bagnall. 

Von dem bisher nur aus Europa bekannten Thrips flavus 
Schrank fand sich die neue Varietät: 

Thrips flavus var. microchaetus nov., die sich von der 
typischen Form durch viel kürzere und schwächere Borsten 
der Vorderflügeladern. sofort unterscheidet; auch die Borsten 
des Hinterleibes und der Hinterecken des Prothorax sind 
kürzer und schwächer, aber doch dunkel wie bei flavus. 


4 


28 


Die übrigen fünf Arten waren überhaupt neu: 

Anaphothrips nubicus n. sp. Dem A. sudanensis und 
loennbergi am nächsten stehend. Orangegelb. Fühler ganz hell, 
erst gegen die Spitze zu etwas gebräunt; 1. Glied am hellsten 
von allen; 6. ohne schräge Querwand. Prothorax hinten jeder- 
seits mit einer ziemlich kurzen, schwachen Borste. Hauptader 
der Vorderflügel in der Basalhälfte mit einer ziemlich gleich- 
mäßigen Reihe von zirka 8 schwachen Borsten besetzt; in 
der Distalhälfte eine solche nahe der Mitte, sodann eine kurze 
vor der Spitze und eine ganz am Ende; Nebenader in der 
distalen Hälfte gleichmäßig mit etwa einem Dutzend kurzer, 
schwacher Borsten versehen. 

Rhynchothrips aethiops n. sp. Die erste afrikanische Art 
dieses bisher nur aus Nordamerika bekannten Genus. Von 
den bisher bekannten Spezies dem dentifer am nächsten 
stehend, aber sofort durch die unbewehrten Vordertarsen und 
die stärker getrübten Vorderflügel, die fünf eingeschaltete 
Wimpern besitzen, zu unterscheiden. 

Dolichothrips giraffa n. sp. Unterscheidet sich von der 
einzigen bisher bekannten Art der Gattung, dem javanischen 
D. longicollis, durch das schmälere, nach hinten nicht merk- 
lich verbreiterte Pronotum, den Mangel der eingeschalteten 
Fransenhaare am Hinterrand der Vorderflügel und die unbe- 
wehrten Vordertarsen des f. Von dem sonst recht ähnlichen 
Leptothrips karnyi durch den langen, scharf zugespitzten 
Mundkegel abweichend. 

Trichothrips recliceps n. sp. Dem nearktischen Tr. longi- 
tubus am nächsten verwandt. Schwarzbraun, nur die Vorder- 
tibien gelblich; die beiden ersten Fühlerglieder dunkel, bräun- 
lich. Kopfseiten gerade und parallel. Mundkegel abgerundet, 
bis zum Hinterrand des Prosternums reichend, von der scharf 
zugespitzten Oberlippe noch deutlich überragt. Vordertarsen 
unbewehrt. Vorderflügel kaum getrübt, mit 8 Schaltwimpern, 
Tubus etwas kürzer als der Kopf, mit geraden, deutlich kon- 
vergierenden Seiten. 

Gynaikothrips ebneri n. sp. Mit G. tristis und simillimus 
in naher Beziehung stehend, jedoch von diesen beiden sowie 
auch von den übrigen Gynaikothrips-Arten durch den voll- 


LO 
D 


ständigen Mangel der Fransenverdoppelung am Hinterrand 
der Vorderflügel sehr wesentlich abweichend. G. ebneri liest 
in allen Entwicklungsstadien vom Ei bis zur Imago vor und 
ist, wie die zahlreichen aus Java bekannt gewordenen Arten 
der Gattung ebenfalls Gallenbildner, und zwar an den Blättchen 
einer Acacia. 


Das w. M. R. Wegscheider überreicht folgende Ab- 
handlungen aus dem I. chemischen Laboratorium der 
Universität Wien: 

»Untersuchungen über die Veresterung unsyme- 
trischer zwei- und mehrbasischer Säuren. XXIX. Ab- 
handlung: Über die Veresterung der 4-Dimethylamino- 
isophtalsäure« von Nikola Smodlaka. 

Die 1-Methylestersäure (Schmelzpunkt 180°) entsteht 
bei der Veresterung der Säure mit Chlorwasserstoff und bei 
der Verseifung des Dimethylesters mit Wasser oder 
wässerigem Chlorwasserstoft, die 3-Methylestersäure (Schmelz- 
punkt 190°) bei der Einwirkung von Methylalkohol auf die 
Säure ohne Katalysator, bei der Einwirkung von Jodmethyl 
auf Salze und bei der Halbverseifung des Dimethylesters in 
methylalkoholischer Lösung mit Kali oder Chlorwasserstoff. 
Die Konstitution der Estersäuren ergibt sich daraus, daß nur 
die 1-Estersäure bei der Destillation ihres Silbersalzes' 
p-Dimethylaminobenzoesäureester gibt. 


»XXX. Abhandlung: Über die Veresterung der 
4-Azetamino-i-phtalsäure« von Hermann Meyer. 

Die bereits bekannte 1-Methylestersäure entsteht bei der. 
Halbverseifung des Neutralesters mit Alkalien, die 3-Ester- 
säure (Schmelzpunkt 265°) bei der Einwirkung von Jodmethyl 
auf Salze. Die Konstitution der Estersäuren wurde durch 
Überführung der 1-Estersäure in den Ester der Anhydrosäure 
nachgewiesen. 


»XXXI. Abhandlung: Über die Veresterung der 
4-Methylamino-i-phtalsäure« von Johann Taub. 

Alle untersuchten Veresterungs- und Verseifungsreaktionen 
geben als Hauptprodukt die 1-Methylestersäure. Die 3-Methyl- 


30 


estersäure (Schmelzpunkt 220°) wurde als Nebenprodukt bei 
der Halbverseifung des Neutralesters und bei der Einwirkung 
von Jodmethyl auf das Silbersalz erhalten. 


»XXXII. Abhandlung: Über 4-Nitro-i-phtalsäure und 
die Reduktion ihrer Estersäuren zu 4-Amino-i-phtal- 
estersäuren« von Philipp Axer. 

Bei der Oxydation des 4-Nitro-m-Xylols entstehen 
entgegen den Literaturangaben beide isomere Monokarbon- 
säuren nebeneinander, wenn auch in sehr ungleicher Menge. 
Der Dimethylester der 4-Nitro-i-phtalsäure schmilzt bei 
86 bis 88° und kristallisiert rhombisch (Messung von 
V.v. Lang). Die Bildung der Estersäuren entspricht durchaus 
den Wegscheider'schen Regeln. Die 1-Methylestersäure 
schmilzt bei 154°, die 3-Methylestersäure bei 193°. Durch 
Reduktion der letzteren wurde die zweite mögliche 4-Amino- 
i-phtalmethylestersäure erhalten, welche nicht aus der Amino- 
säure erhalten werden Konnte. 


Wegscheider überreicht ferner eine Arbeit aus dem 
Laboratorium für anorganische, physikalische und analytische 
Chemie der Deutschen technischen Hochschule in Brünn: 

»Kinetische Untersuchung von Reaktionen der 
salpetrigen Säure, insbesondere mit Halogensauer- 
stoffsäuren« von Albin Kurtenacker. 


Das w.M. Hofrat R. Wettstein legt eine Arbeit von 
Prof. Dr. Fridolin Krasser in Prag vor mit dem Titel: »Die 
Doggerflora von Sardinien.« 


Aus der Staatsdruckerei in Wien. 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 Nr. 3 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 22. Jänner 1920 


en nn 


Prof. Dr. Otto Marburg übersendet den Bericht über die 

„ Tätigkeit des neurologischen Instituts an der Wiener Uni- 

versität (österr. interakademisches Institut für Hirnforschung) 
für 1920. 


Dr. Heinr. Handel-Mazzetti übersendet Berichtigungen 
zu seiner »vorläufigen Übersicht über die Vegetations- 
stufen und -Formationen von Yünnan und Südwest- 
Setschuan«! und den »Ergänzungen dazu«.? 


Wie ich in der Einleitung zu meiner zitierten Arbeit hervor- 

Ä hob, konnte ich in China die Bestimmungen eines großen 
Teiles der Leitpflanzen der Formationen keineswegs sicher- 
stellen und mußte meine Übersicht daher in systematischer 
Hinsicht, die allerdings auch nicht ihr Zweck war, vielfach 
unsicher und lückenhaft bleiben. y 
Nach, Wien zurückgekehrt, konnte ich .nunmehr durch 
Einsicht von Material und Literatur die Formen soweit sicher- 
stellen, daß ich alle wirklichen Fehler ausmerzen und die Be- 
stimmungen der allerwichtigsten, schon damals im Auge 


2 u 


1 Sitzungsanzeiger der Akad. der Wissensch. in Wien, mathem.-naturw, 
Klasse, vom 6.’VII. 1916, und Österr. bot. Zeitschr., LXVI, p. 196 bis 211 (1916). 


p. 111 bis 112 und p. 174 bis 176 (1918). 


or 


2 Sitzungsanzeiger, vom 22. XI. 1917, und Österr. bot. Zeitschr., LXVIL 


ı 


gehabten Leitpflanzen hinzufügen, kurz, die Arbeit auf die 
gleiche Höhe wie meine inzwischen erschienene analoge Über- 
sicht über die Vegetation von Kweitschou und Hunan! bringen 
kann. Ich beschränke mich hier absichtlich auf solche Berichti- 
gungen, um nicht durch umfangreichere Nachträge, die erst in 
einem Neudruck des Ganzen angebracht sein werden, die 
Unübersichtlichkeit noch zu erhöhen. 


Zu A. 1. (Laubbäume): Canarium sp. Clerodendron sp., 
statt Aralia. Trevesia palmata,’ (Lianen):. Mucuna sp., 
Pneraria sp., Thumbergia grandiflora, (Stauden): Xantho- 
soma sp. kriechend Rhaphidophora sp. Streiche Colocasia 
und ähnliche Araceen. 

2. Artocarpus sp., Bischofia Javanica?, Helicteres sp., 
Sterculia sp, Duabanga grandiflora, Oxyspora paniculata, 
Mayodendron sp., Callicarpa sp., Pterostvrax sp. (Sträucher). 
Str. ‚Pıistacia vera. Statt"B Il lies 51.1. 

3.  Arundo Donax, Anthistiria gigantea ssp. caudata,? 
Thysanolaena Agrostis, das Saccharum: arundinaceum. Str. 
Phragmites, Avenea, Sporobolıus. 
| 4. Capparis sp. Pterospermum sp. Ob der ilexblättrige 
Strauch balanostreblus ilicifolia? Str. Thea sp. 


Zu B.1. 1. (Bäume) Phyllanthus Emblica, Melia Azede- 
rach, Meliacea gen., Delavaya Yünmnanensis, Solanum verbasci- 


folium, Nouelia insignis, die Ziziphus: Jnjuba und sativa, der 


' Paliurus: Sinicus, (Sträucher) Excoecaria acerifolia, Buddleia sp., 
Capparis subtenera, (Leguminosensträucher) wie Flemingia sp., 
Lespedeza Delavayi, (subsukkulent) Jatropha Curcas, (immer- 
grün) Dodonaea viscosa, die Dalbergia: stenophylla? Statt 
Mariscus Sieberidnus CUyperus niveus? Str. Canarium album, 
Sapindus sp., Blumea sp., Croton sp., Asclepiadacea gen., 
:- Thea sp. 

a) Calotropis sp., Erythrina. sp., Oroxylum Indicum. 
Kultiviert ausnahmsweise Carica Papaya. Str. Asclepias 
(urassavica, Erythrina Crista galli. 


l Sitzungsanzeiger, 12. VI. 1919 (zitiert »Vegv. Kw. Hun.«). 
> Auch Vegv. Kw. Hun. 1, 7, statt » Araliaceen-Bäumchen«. 


3. Die Art auch in Vegv. Kw. Hun., I, 9, als Andropogon sp. 


33 


f E “ . 
o. (Charakterpfl.) ZLencosceptrum canım,!  Wood- 
 Fordia fruticosa, Rourea? sp. Str. Primoidea. 


Buy 2. Pecteilis Susannae, Roettlera bifolia? 


3. Saurania sp., Sapindus Delavayi, Alangium Chinense, 
Ehretia macrophylla, (Lianen) Derris sp., Commelina obligua? 
(überhängende Gräser) Andropogon assimilis, Justicia etc. statt 
R. Strobilanthes, Petrocosmea sp. statt Saintpaulia, an be-. 

schatteten Felsen Gonatanthus sp. Str. Cordia sp., Sterculia- 
cea gen., Streptolirion sp. 


Be 


h 5. Sacharum arındinaceum, die Cassia: Thora, Tribulus: 
a terrestris. Str. Erianthus. 


’A Zu. U. 1. (Sklerophylien) Myrica sp., Myrsine Africana,  - KT. 
& Thea drupifera?, Ternstroemia Japonica, Eurya Japonica, 
90," Anmneslea sp.,? Rhododendron sp., (dünnbl. winterbl. Sträucher) 
Brandisia Hancei, (sommergr. Str.) Engelhardtia sp., Coriaria 
Nepalensis, Sophora viciifolia, Pieris formosa, ovalifolia, 
Be: Vaccintum Dumalianım (teilw. immergrün), (Lianen) Pneraria 
ir sp. div., (Steppe) Aypoxis aurea. Str. Myrica Nagi, Coriaria 
Br Nepalensis unter Skleroph., Camellia, Murrya, Rhodöodendron 
5 spinuliferum, Triosteum hirsutum, Caragana sp. Pterocarya 
sp., Phaseolus, Gagea Sp. Ser, 
2. Die Ouercus vom Robur-Typus: Griffithüi,. RER, N N, 
3. Statt. B-III lies B II 1. Selten, van 2300 m an, Ouercus, 2 
aquifolioides var. rufescens und Oı. sp.-Gebüsche. Tea Ba 
Bi 4. (Gräser) Themeda triandra,  Andropogon Nardus?, X 
MR BA. Delavayi, (kriechende Sträucher) Desmodium triflorum, die 
E; Ficus: Ti-kona,? (Halbsträucher) die Osbeckia: capitata 
Anaphalis sp., Senecio sp., (Sträucher) Rhododendron scabri- 
Ffolium, die Spiraea: virgata?, Lespedeza polyantha, Vaccinium, 
 . fragile, (Stauden) das Polygonum: paleaceum,  Boenning- 


k 


1 Einzeln auch im Yangtse-Tal zwischen Likiang und -Yungbei. 
2 Nur einmal nördlich von Lufung im W von Yünnanfu. 
3 Die von mir in der Steppe ausgegrabenen Exemplare hatten ’ keine 
Früchte; solche fand ich nur zweimal an feuchteren Stellen — das eine Mal 


_ in Hunan — aber nicht unterirdisch, sondern hart am Boden sitzend und R 
höchstens nachher von weicher Erde überschüttet. Br 


hansenia sp., Dobinea Delavayı, Plectranthus sp. div., Sperma- 

coce sp., das Leontopodium: subulatum, bletilla striata und 

ochracea, Gerbera Anandria. Str. Arundina sp, das? von 

Arundinella, Avenea gen., Lespedeza sp. Helichrysum sp., 

Rhododendron racemosum, Pieris sp., Nepeta, Asperula,, 

Conyza, das ? von Wahlenbergia gracilis, Gerbera Delavayı. 
Lycopodium clavatum statt sp., die Gleichenia: linearis. 


. 
| 


°* 9. Lithocarpus sp. statt Quercus spicata. Die Magnolia: 
Delavayi, Nothopanax Delavayi statt Panax D. Schefflera 
Delavayı,! Rhododendron spinnliferum, : Benzoin sp., Sarco- 
cocca ruscifolia var. Chinensis, Tupistra sp., Ophiopogon Sp., 
* Paris polyphylla und verw. Panax sp., Begonia sp., Crypto- 
gramme :Japonica, . die Pteris: Cretica. Str. Cornus Sp:, 
Pachysandra sp., das ? von Ainsliaea pertyoides, Haemo- 
doraceae, Trillium, Begonia Harrowiana, Asplenium sp. h 

6. Tripogon sp., Microchloa sp., Paspalum? sp., Halenia 
elliptica, Cyanotis barbata, kriechend Vigna vexillata. Str. 
Nardurus sp., Dactylis sp. 
| 7. Embelia Ribes, die »Wunderpflanze Selaginella«: in- 
volvens. 

8. Carexr microglochin? (statt S. Uncinia), Jasminum 
primulinum, das Rhododendron: Simsii, Almus sp. statt 
Nepalensis. 

9. Aystrolobus Yanmanensıs? statt Aponogeton sp. 

Monochoria plantaginea statt Pontederia sp., die Marsilia: 
quadrifolia, Azolla: pinnata, Salvinia: natans. 

(Wasserlaufränder) Vernonia cinerea, Pteris longifolia. 
Str. Senecio sp., Nephrolepis sp. 

Phtheirospermum Chinense statt Pedicularis sp., Calo- 
Whabdos Brumoniana ? statt Verbenacea gen. 

Die Cnpressus: sempervirens, die Celtis: Bumgeana, Salix 
Cavaleriei statt tetrasperma? 


1210. IS ies 2,19: Statt" 3°R2: 


1 Diese auch in Vegv. Kw. Hun. IIla)6 als Panax Delavayı. 
2 Boolha echinala W. W. Sm. | 


30 


; 
4. DieMoracea: Debregeasia longifolia, statt Laportea 
Boehmeria, Boenninghausenia sp., Calorhabdos Brumoniana?, 
Houttuynia cordata, Camptandra sp. Habenaria arietina? 
Str. Ruta sp., Verbenacea gen. 


Zu III. a) 1. Die Onercus: Griffithii. Ligularia sp. div. 
statt Senecio, Drynaria Fortunei statt Polypodium. 
2. Lithocarpus sp. statt Ouercus spicata. 
5 Elle CIE S, Statt: ©. HL ©: 
4. Ouercus aquifolioides var. rufescens statt Qu. Dex. 
dichte statt lichte. ER 
5. Der Cyperus: Sieberianus, , die Anemonen: coelestina, 
obtusiloba etc, Spenceria Ramalana, Gueldenstaedtia Yun- 
nanensis, die Scutellaria: Likiangensis, das Onosma: panicu- 
latum, Aster sp., Lignlaria sp. div, Hypoxis aurea, Iris 
Ei; Ruthenica, Satyrium Henryi, Halenia elliptica. Str. Astra- 
galus aff. coelesti, Aster Likiangensis, Senecio sp. div, Gagea 
sp., Satyrium Nepalense. 


Zu den Heidewiesen des Tschungtien-Plateaus und den 
damit zusammenhängenden Formationen (Jakweide etc.) ist 
zu bemerken, daß es sich vielleicht um Ausläufer des süd- 
ost-tibetischen Hochsteppenlandes handeln “könnte, | N 
eines eigenen Gebietes, das ich sonst nicht kenne. > 3 

6. Die weiße Sarifraga: gemmipara, ‚die gelben aus: 
Hirculus subs. Densifoliatae, das Leontopodium: subulatum. 


7. Das Leontopodium: alpinum, Iris Forrestiüi.. 


"  b)1. (Bäume) Schefflera elata?, (Sträucher) Melwingia sp., 
Meliosma cımeifolia, - Aralia sp., (Lianen) Apios carnea, 
(Stauden) Smilacina sp. div, Paris polyphylla und verw., 
Tupistra sp. div, die * Sedum: linearifolium, bupleuroides,. ER 
Sarifraga Sinensis, korr. Rubus s. Chamaemorus sp. div., ws) 
Paracaryum glochidiatum, Senecio cyclotus, ' Taliensis und 
verw. Str. Pentapanax Leschenaulti, Sarcococca sp. Aracea 
‚gen., Phaseolus sp., Maianthemum sp., Trillium sp., Saxifraga 
‚cortusaefolia, Omphalodes Forrestii,- Prenanthes sp. div. 


2. Sambucus Wightiana statt Ebulus, Scopolia Sinensis? 
. statt Mandragora caulescens, Sorbaria sorbifolia statt Astilbe sp. ER 


tar z 
TER AN 
ee 
Re 
n TR 
ER 


36 SRG: BE RER 


3. Brachypodium sp., Avenastrum 'sp., Cobresia sp., .die< 
Neillia: gracilis, die Nepeta: lamiopsis u. a, der Dipsacus: 
Sinensis, Triosteum sp. Lignlaria sp. div, die Jurinea: 
edulis etc. Str. Agropyrum sp. Avena sp. Cobresia capilli- 
folia, Senecio sp. div. 

4. Hippophaös rhammoides, Evonymus linearifolia? Myri- 
carla sp. Str. Elaeagnus sp., Evonymus acanthocarpa Sps 
Myricaria Germanica. 


Zu IV. 1. Die Sorbus: Vilmorini (), die Umbellifera: 
Pleurospermum sp., die Cardamine: macrophylla, Corydalis: 
cheirifolia, Yunnanensis, Smilacina sp. div, Paracaryum 
glochidiatum. Str. Omphalodes Forrestii. 

3. Lysimachia pumila? (auf nackter Erde). Die Carex: 
atrata, Meconopsis Delavayi und sp., Ligularia sp. div. statt 
Senecio, das Allium: Forrestii. Str. Hydrophyllacea gen. 

4. Das Rhododendron: intricatum, Piptanthus sp., die 
Meconopsis: Forrestii, Potentilla pedumcularis, Mandragora 
canlescens. : 

5. Das Polvgonum: sphaerostachyum, Oreosolen sp., Pedi- 
enlaris sp. div. das Chrysanthemum: Delavayi?, die akaule 
Komposite: Saussurea Stella, Aster sp. statt Likiangensis. 
-Str. Labiata gen. 

6. Die. Primula: Forrestii. Str. das ? 

7. Die Potentillen: fruticosa, Veitchii?, Rheum palmatum 
Statt Rn. Ribes, der Senecio: stenoglossus, 

Circaeaster sp. an Stelle von Halorrhagis micrantha. 


Zu V. 1, Die Caragana: Tibetica? - 

2. (Abweichende Typen) Tretocarya Sikkimensis, Ajuga A 
lupulina, Aletris Nepalensis. Muli statt Nuli. 

3. Dipoma iberideum, Eriophytom sp., Saussurea lencoma. 
Str. Iberis sp., Lamium sp., Saussurea gossypiphora. 

4. Das Sedum: linearifolium var. 

5. Die Sanssurae: -obvallata. 


% 
Zu D. 11. Sloanea stercnliacea Saurauia sp., (Sträucher) 
. . . rn . . c N . 
Leycesteria stipulatay die Neillia: thyrsiflora?, statt Araliaceae ' 
Schefflera sp. div. (Epiphyten) Agapetes sp. Cymbidium “2 
gigantenm, (Lianen) - Rhaphidophora sp.  Aglaonema sp, . 


37 


| ann: Sp., Inge sp., Trichosanthes palmata?, (Kräuter) 
“Procris sp., Boehmeria biloba?, Lysionotus sp., (Farne) Dipteris 
‚sp, Gleichenia glauca, Drymoglossum So der. 


Saprophyt: Galeola? sp. Str. Fagacea gen. Betula sp., Dille- 


\ niacea gen. Symphoricarpus sp., Craibiodendron sp., Pothos%p., 
Rt Aracea gen., Gesneraceae div., Tylophora sp., Cucurbitacea gen. 
Kr _ Zu Pinus excelsa: »am Übergang zu ll. 2. a)«, Alnus sp. 
‚statt Nepalensis, Betula luminifera ?. 
2. Thysanolaena Agrostis. Str. Sporobolus. 


Zu II die Angaben über das Sommerklima (in 2550 m 


‘ Höhe) von III. 


Wallichiana?, Kalopanax sp. (sehr einzeln), Chionanthus 
relusa, (Sträucher) Excoecaria acerifolia, (Lifanen) Paederia sp., 
R Porana sp., Acanthopanax sp. statt Araliacea gen. (Felsen) 
. Sarifraga candelabrum, das Dendrobium: clavatıum?, Coelo- 


Be yne sp., Sarcochilus sp Hoya sp. Str. Schoepfia sp., Croton 
BN. v 8) J B, _ P Z I D) f 
m sp, Solanacea gen. Zylophora. 

Be: - Füge ein 2a. Hygrophiler Laubwald als Mittelglied 


= zwischen Il und II 2 in. geringer Ausdehnung. Von IIl2 
- hierher Juglans regia, Magnolia denndata, dann 'Schima sp., 


cus, Lianen: Rubus sp. div, Epiphyten: Wendlandia aff. 


saema speciosum (?), Tupistra sp. div, Begomia sp. div., 
Wurzelparasit: Gleadovia sp. 58 

‘Hier anzuschließen der Satz über Taiwania crypto- 
. merioides: »In diese Formation und deren Übergang zu III 2 
fällt in 2200 .— «.- N 


‚stigma sp. Zu Amethystea: (Kraut). Str. Croton sp. 

| 4. Laubwald statt Mischwald. Str. »der folgenden Stufe«. 
03  Lithocarpüs sp. statt spicata. e 7 
| D.t Bletilla sp. und Orch. gen., Botrychium lanug sinosum ? 


‚Apios aff. Delavayi. 
ER 


be eine Pellaea. 


- Castanopsis sp. Sträucher: Ardisia sp., Damnacanthus Indi- 


stamineae??, Dendyobium sp. div, Schäattenkräuter: Ari- 


3. Die Buddleia: crispa, Excoecaria acerifolia, Cerato- 


eiyahn P .. F ‚ r 
1. Lies Londjre als, Kiu-tschu bis. Litsea? sp., Buxus‘ 


Y 


statt Virginianum, Honttuynia cordata, die Leguminosa: 


1:Die in Vegv. nn Hun. IIa) 15 als Pier ichium sp. angeführte Pflanze 


38 


In DI. 2800 statt 3400. Str. die Temperatur- und Feuch- 


tigkeitsangaben. 
1. Onercus agnifolioides var. rufescens statt On. Ilex. 
2. Torreya statt Cephalolaxus, Lauraceae div., Euptelea 


sp.?, Schefflera elata?, die Rhododendron: lacteum?, coriaceum?, 


(Epiphytensträucher) die Araliacea Pentapanax sp. das 
Vaccinum: Monpinense ?, (Strauchunterwuchs) Corylopsis SP., 


Helwingia sp., Senecio densiflorus, (Hochstauden) das Cir- 


sium: eriophoroides?, Lilium: giganteum, Arisaema sp. div., 
zu Anthriscus: ? (Schattenpflanzen) Elatostemma sp. div., 
° Beesia cordata, Sarcopyramis Nepalensis, Balanophora sp. 
statt Cynomorium, Woodwardia sp. statt radicans, (Conio- 
gramme fraxinea, das Adianthum: pedatum, (epiphytisch) 
Polypodium trichöomanoides etc. Cymbidium sp. statt grandi- 
florum. Str. Ulmacea gen. Magnolia conspicna, Pentapanax 
Leschenanultii, Cordia sp., Saxifragacea gen., Euphorbiacea 
gen, Pachysandra sp. Begonia sp., Haemodoraceae div., 
Diplazium sp. und die zu II 2a überstellten. Taiwania crypto- 
merioides ziehe dorthin. 
Dicramacea gen. statt Leucoloma. 
3. Polygonum: polystachyum und sp. div. 
Nach 4. Psendotsuga Sinensis statt Abies sp. 


ZuV. 1. Die Rhododendron: lacteum? und sp. div., 

 Sorbus reducta? statt depauperata, Schizobodon? sp. 

2. Dicranostigma sp. statt Chelidonium, das Cirsinm: 
eriophoroides?, zum Anthriscus: ?. 

4, Ganultheria sp., Pogonia sp. Str. Vaccimum sp., 
Pleione sp. ’ i 

Zu V. 1. Gaultheria trichophylla und sp., Diplarche 
multiflora, Rhododendron sp. div. Str. Vaccinium, Brucken- 
thalia sp. 

6. Braya Sinensis. Str, Eutrema Edwardsii. 


Dr. H. Priesner in Linz-Urfahr übersendet eine Abhanc- 


lung‘ mit dem Titel:.  »Kurze- Beschreibungen newer 
Thysanopteren aus Österreich.« 


39 
Das w. M. R. Wegscheider überreicht zwei Abhand- 

‚ lungen aus dem‘I. chemischen Laboratorium der Universität 

Wien: | = 


‚„„Untersuchungen über die Veresterung unsym- 
metrischer zwei- und mehrbasischer Säuren«, von 
Rudolf Wegscheider. 


|  »XXXII. Abhandlung: Über“ die Veresterung der 


8 
Br Aminodikarbonsäuren.« 


Die Aminodikarbonsäuren befolgen meist die für die 


Aminogruppe als sterisch hindernd, ferner nicht substituierte 
oder alkylierte Aminogruppen als positivierend, acylierte 
a Aminogruppen als negativierend betrachtet. Zahlreiche Unregel- 

bir mäßigkeiten zeigt nur die Halbverseifung der Neutralester. 
“ Bisweilen hängt es vom Lösungsmittel (Alkohol oder Wasser) 
©... ab, ob die eine oder die andere Estersäure als Hauptprodukt 


nn EN 
Ba x 


entsteht, während es, gleichgiltig ist, ob die Verseifung durch 
Kali oder Chlorwasserstoff bewirkt wird. Während bei 
acylierten Aminosäuren die Halbverseifung durch die An- 


1 “nahme dargestellt wird, daß der negativierende und dadurch 


reaktionsbeschleunigende Einfluß den sterischen überdeckt, 
müssen bei den nicht am Stickstoff substituierten oder 
„alkylierten Aminosäuren noch andere Umstände maßgebend 
sein. Als mögliche Erklärung bietet sich die Mitwirkung der 
- Aminogruppe an den Veresterungs- und  Verseifungs- 
reaktionen dar. N 


Ss 


-»NXXXIV. Äbhandlung: Über Affinitätskonstanten und 
‚Veresterung der Pyridinkarbonsäuren.« 


Die Affinitätskonstanten der Pyridinkarbonsäuren können - 
© mit der Ostwald’schen’ Faktorenregel ungefähr in Einklang 
gebracht werden, wenn man annimmt, daß sie durch innere 


Bildung von Estersäuren geltenden Regeln, wenn man die 


Salzbildung beeinflußt sind. Dabei können für Substituenten RRRIE 
2 (mit Ausnahme der Alkyle) dieselben Faktoren benutzt werden , ER, 
Sr wie in aromatischen Säuren. Der Ringstickstoff wirkt stark 
negativierend. Nimmt‘ man außerdem an, daß er keine \ 


ya Br 


S: le / sterische ifkung BEL. ü 
von: sEust säuren. aus  mehrbasischen. ; Pyridinkarbe onsäur T 
meist den sonst geltenden. Regeln. ; 


‘5 . von Dr. Otto en vor .mit dem Titel ar, 
‘der Hydrazone und Azine.« \ : Ei Se 


t 


. dem Mel Miber den, feineren Bau Mer 
fasern mit besonderer Rücksicht auf die Glanz- 
streifen; I. Teil.« EEE et | 
' Der Schluß der Abhandlung, welcher den Abschnitt über 
. die Glanzstreifen enthalten wird, soll später erscheinen, = 


” 


RD, ; 


Bezüglich der in der Sitzung vom 15. Jänner 1.]. (siehe 


Anzeiger Nr. 2. 0p. 30) vorgelegten Abhandlung von Pro 
»Dr“ Fridolin Krasser (Prag) mit dem Titel: »Die Dogger- 
$ ‘ flora von Sardinien« gibt der Verfasser folgende Inhalts-, 

angabe: j a: a 


Übersicht über die wichtigsten Ergebnisse: 


RR 


BE Es konnten 37 sicher unterscheidbare Arten festgestellt 
® werden, nämlich: ans columnaris Brongn.*, Lacco- 
pteris spectabilis Stur nom. mus, Laccopteris polspodioid: 

Sew. « von ‚Stamford!”, a is Pe a 


en) Bronn® a aa Es et m) en 
2 zamites. Lovisator RN Krasser, PB, a (Phi 


+1 


Matriar 2 "Zamites sp“,  Podozamites lanceolatus (L. et H)) 
hing.“ ‚ Williamsonia Leckenbyi Nath*, Williamsonia 
Sewardi F. Krasser*, Williamsonia acuminata (Zigno) 
. .F. Krasser (Synon.: Williamsonia italica Sap.), Laconiella 
'sardinica F. Krasser ng: et n. sp, Cycadeospermum Per- ' 
‚sica F. Krasser, Cycadeospermum Lovisatoi F. Krasser, 
 Nageiopsis anglica Sew.*, Pagiophyllum Williamsoni (Brongn.)-. 
Sew.*, Cheirolepis setosus (Phill) Sew.*, cf. Pityophyllum | 
\ Nordenskiöldi (Heer) Nath,, Thuites expansus Sternb., Brachy- .? 
‚phyllum mamillare Brongn.*, Araucarites sardinicus F.Kras- R | 
Sort, a (2 Arten), Sardoa Robitscheki F. Krasser, ER" 
. Von diesen 37 Arten sind 23 (mit.” bezeichnet) idene ng 
ao mit. Arten der Doggerflora von Yorkshire. er 
8. Die übrigen 14 Arten sind nur zum Teil endemisch 4 ai 
in Sardinien, nämlich 7 Arten; Otozamites Lovisatoi und. \ 
Zamites sp. (Blätter), Laconiella sardinica (Pollensäcke oder 
‚Samen tragende Achse), Cycadospermum (2 Arten von Cycado- 
phytensamen, nicht zu Nilssonia gehörig), Araucarites sardi- 
"micus (Samen in der Schuppe), Sardoa Robitscheki (vermut- 
lich Cycadophyten- Stammoberfläche). Die beiden Carpolithes- 
Br: Arten sind nicht charakteristisch. Die »Laccopteris-Arten cf. 
$. ®spectabilis und elegans zeigen Beziehungen zur Liasflora- 
5 ‚Sagenopteris Goeppertiana und Williamsonia acuminata sind se) 
ei. Vorläufer. der ..Lower. ‚Oolite: Flora, ‚von Venetien. Das als 
cf. Pityophyllum Nordenskiöldi determinierte Fossil ist etwas 
‚problematisch. 
a 4. Die aus den Juraschichten Sardiniens zutage geförderten 
Be "Pflanzen sind demnach die Repräsentanten einer typischen 
Ba Doggerflora, welche sich enge an die Flora des englischen 
Inferior Oolite der Yorkshireküste anschließt. KR ai 
8. Auffallend ist das spärliche Vorkommen ‚von Oto- 
zamites ‚(nut 2,,Arten), weil diese "Gattung sowohl in der an. 
Yorkshireflora a im Jura von Plafkreich und Norditalien A 
reich entwickelt: ist.. Von’ besonderem Interesse ist das Vor- ER, 
kommen von Williamsonia-Bl üten (3 Typen). 


“ . ” 
BR | AN $ ® 
«'ır'»Aus der Staatsdruckerei in Wien. 


> a 3 2 
33 en 


4 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 Nr. 4 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 5. Februar 1920: 


— 


Die Mitteilung von dem am 20. Jänner I. J. in St. Martin 
bei Klagenfurt erfolgten Ableben des wirklichen Mitgliedes der 
philosophisch-historischen Klasse, Hofrates Prof. Dr. Joset 
Seemüller, wurde der Akademie in ihrer Gesamtsitzung vom 
29. Jänner 1. J. zur Kenntnis gebracht. 


Hofrat Prof. Hans Jüptner in Wien übersendet ein ver- 
siegeltes Schreiben zur Wahrung der Priorität mit der 
Aufschrift: »Verbesserungen in Eisenhütten.« 


Das w. M. Hofrat F. Becke legt eine Abhandlung von 
Dr. H. Tertsch mit dem Titel vor: »Krystallographische 
Bemerkungen zum Atombau.« 

Nach einer kurzen Einleitung über die Wichtigkeit und 
den Einfluß der Bausteinsymmetrie bei der Konstruktion von 


Krystallgittern werden die derzeitigen Ansichten über den 


Atomfeinbau, ausgehend von Bohr, Kossel, Born und 
Lande, besprochen, die immer deutlicher auf eine räumliche 
Anordnung der Elektronen hinweisen. Eine ausführliche Über- 
sicht über die bisher bekannten Krystallformen der Elemente 
führt zu folgenden Feststellungen: 


-! 


44 ni 


Die tesseralen Formen zeigen Häufungsstellen, die mit 
den Zentralstellen der sogenannten »Perioden< zusammen- 
fallen. Die Minima der Atomsymmetrie liegen immer knapp 
vor den Elementen mit »Edelgas«-Typus. 

. Kein Element krystallisiert triklin. 

3, Bei Polymorphie zeigen tesserale und none Formen 
engste Beziehungen. 

4..Die schwereren Elemente zeigen ein der Kugelsym- 
metrie näher stehendes Verhalten als die leichteren. 

Die Größe der im Symmetriekurvenverlauf sichtbar 
werdenden Perioden und ihre Verteilung fallen genau mit den 
chemisch bekannten Perioden zusammen. 

Nach einer Skizzierung von Kossel’s Ansicht bezüglich 
der aus dem Periodenbau resultierenden chemischen Folge- 
rungen und der nach Kossel, Born und Lande sich 
ergebenden Notwendigkeit einer räumlichen Verteilung: der 
Elektronen wird versucht, die Zahlenverhältnisse der Derir 
oden durch eine räumliche Elektronenanordnung. zu. deuten 
(im wesentlichen das Prinzip der Kugelpackung). He gilt mit 
seinen beiden Elektronen als innerster, isotroper Kern. Die 
Elektronen beschreiben ihre Bahnen auf Kugelschalen, die 
zueinander im. gleichen Verhältnisse stehen, wie die ge- 
guantelten - Elektronenringe des Bohr’schen Modells. Die ein- 
fachste: räumliche Anordnungen der Elektronen erfolgt zu Sin 
den Ecken eines den°Kern umschließenden Würfels (1:-Peri- 
ode. Vgl. Born und Lande). 

Die 2. Periode folgt nach der gleichen Anordnung. Für 
die 3.:und #4 Periode ist in den »Lücken« zwischen den 
Elektronenbereichen der vorhergehenden Kugelschale eine 
größere Annäherung an den Kern möglich als in den Würfel- 
ecken. Das liefert 6+12 = 18 Plätze, an denen die äußersten 
Elektronenbahnen realisierbar sind, entsprechend den 18 Ele- 
menten .der 3, beziehungsweise 4. Periode. Die »Lücken« 
dieser chung (8+24 — 32) führen zur Elektronenverteilung 
der 5. Periode, wieder übereinstimmend mit den 32 Elementen 
der »Periode der seltenen Erden«., Die so gewonnene zahlen- 
mäßige Gruppierung der äußeren Elektronen-Kugelschalen, 
die Perioden im Symmetriekurvenverlauf und die chemischen 
Perioden folgen den genau gleichen Gesetzen. 


u) 


45 


'Es’ wird der Versuch gemacht, die Berechtigung dieser 
hypothetischen räumlichen Elektronenverteilüng an dem bisher 
bekannten Tatsachenmaterial zu überprüfen. Da.bei den,.hetero- 
polaren Verbindungen die lonenbildung den Aufbau, des 
Atoms w esentlich beeinflußt, kann eine derartige Überprüfung 
nur an den 'Elerienten, mit ihren elektrisch ‚neutralen Atomen 
vorgenommen werden. Es wird vorausgesetzt, dafs die eich“ 
trischen Kräfte, welche den Feinbätr des Atoms beherrschen, 
in ihrer Fernwirkung auch das Kryställgitter zusammenhalten, 
d.h“ daß zwischen "Atom- und Gitter-Symmetrie ein’ enger 

Zusammenhang bestehe. Die Verteilung der Elektronenbahnen 
in ‘der äußersten’ Schale’ (alle inneren Schalen Verhalten sich 
ihrem Aufbau nach tesseräl) und die Gittersyrmmietrie & gehorchen 
also "den gleichen Bedingungen. . OBIOH 
Nach einigen ällgemeinen Auseinandersetzungen wird" in’ 
der zweite Hälfte der Arbeit die ‚symmetrische Verteilung der 
Elektrönenbahnen für jeden einzelnen Fall (Zahl der Elektronen’ 
in der äußeren Schale)' besprochen und mit den bekännten” 
Krystallisationsangaben verglichen. In ‘der "Mehrzahl der Fälle 
herrscht ’ zwisehen der‘ wahrscheinlichen Elektrönenverteilüng' 
und der’ Rrystallsymmetrie Übereinstimmüng; nicht wenige. 
Fälle bedürfen allerdings ‘weiterer Aufklärung. Die‘ Frage der 
Polymörphie der Elemente ist neuerdings zu‘ überprüfen, in." 
| wieweit sie von der 'Gesamtlage des Atoms im Gitterbau oder 
vonder durch’ verschiedene Phasendifferenz der schwingenden 
Elektronen 'hervo rgerufenen Verminderung der Bahnsymimetrie” 
und damit des Atomfeinbaues abhängt. Auch die » Nebentypen?’ 
Kossels (Fe'usw.)” werden in ihrer Sonderstellung ünd in, 
ihrem damit -verbundenen chemischen Verhalten’ ‚gedeutet.‘ 
Fine tabellarische Übersicht gibt eine Zusäinmenstellüng 
der'g ewonnenen en Le RT, SL Rei 37 


rege 


45 


Plantae novac Sinenses, diagnosibus brevibus:des- 
criptae a Dr. Heinr. Handel-Mazzetti. 


Arenaria Schneideriana Hand.-Mzt., sp. nov.! 


Radix biennis (?), anguste napiformis, e. collo nudo 
saepe pluricaulis. Caules 4+—8 cm longi, erecti, pluries dicho- 
tomi, internodiis 1—2 cm longis, ıimis abbreviatis, stricti, 
uni- vel bifariam albopuberuli. Folia ima mox emarcida, late 
lingulata, accrescentia ad suprema lanceolato-linearia, inter- 
nodiis subaequilonga, omnia carnosula, obtusiuscula, glaber- 
rima, uninervia, in vaginas. brevissime connatas sensim 
angustata, Pedicelli alares et terminales. singuli, uniflori, 
tenuiusculi, stricti, 4—13 mm longi, ebracteolati, floriferi 
nutantes, dein patuli, fructiferi semierecti, aeque ac caules 
et plerumque sicut unifariam sepala pilis longioribus, violaceo- 
septatis, interdum glanduliferis ciliati. Flos 6 mm diam. Calyx 
campanulatus, 2—3, fructifer ad 4 mm longus, basi truncata 
paulum induratus; sepala elliptica, viridia, herbacea, late 
hyalino-marginata, apicibus saepe cucullatis et extus curvatis 
rotundata, enervia. Discus glandulis 5 transverse elliptico- 
rectangularibus staminiferis lobatus. Petala sepalis paulo 
breviora, anguste obovata, unguiculata, apicibus ad 5—6tam 
partem rotundato-biloba, alba vel pallide rosea. Stamina 5, 
episepala, petala subaequantia, antheris globosis, flavidis vel 
viridulis. Germen obovatum, 1’/, mm longum;- styli 2, duplo 
breviores. Capsula ovata, acutiuscula, 4 mm longa, quadri- 
valvis, unilocularis. Semina 8, magna, tuberculata. 

Prov. Yünnan bor.-occid.: In glareosis calceis montis 
Piepun ad austro-orient. oppidi Dschungdien (»Chungtien«), 
44-4700 m, legi 11. VII. 1914... i 

Species inter sectiones a cl. Williams acceptas ambigua, 
quae mihi Ar. napuligerae Franch. et A. ionandrae Diels 
affinis videtur, ılli foliis angustioribus basi ciliolatis, ovulis 
numerosioribus, stylis 3, huic caulibus dense glandulosis et 
sepalis glabris, utrique petalis longioribus et multo latioribus, 
levius emarginatis, sepalis purpurascentibus, disci glandulis 


! Species dendrologo Ü. Schneider dedicata, 


47- 


obsoletis, antheris 1Onis violaceis diversae, sed habitu, radice, 
ramificatione etc. simillimae. 


Arenaria reducta Hand.-Mzt., sp. nova. 


Ab Ar. Schneideriana differt notis: sequentibus: Caulis, 
tenuis, basi procumbens. Folia omnia aequalia, valde recurva,; 
lamina rhombeo-elliptica, longitudine 2 mm haud excedente 
latitudinem duplo superante, acuta, in vaginam abruptius 
eontracta. Indumentum brevissimum, totum album. Sepala 
vix 2 mm longa, glabra, versus apicem et basin marginibus 
eroso-ciliolata. Petala nulla. Styli germine sesquilongiores, 
sepala saepe superantes. 

... Eodem loco, inter speciem  praecedentem  specimen, 
unicum, quasi illius depauperatum quoddam legi, quacum. 
autem ob differentias complures conjungere mihi nondum 
licere videtur. 


Arenaria Weissiana Hand.-Mzt., sp. nova.! 


Subgen. Pentadenaria, sect. Rariflorae, subs. 3 Williams. 

Radix. perennis, crasse fusiformis, caudiculis . vaginis 
emarcidis sparse  obsitis cespitosa,  caules numerosissimos 
omnes floriferos emittens. Caulis 2—6 cm longus, strictus;: 
quadricostulatus, bilateraliter albosetulosus, internodiis ca. 
1—2 cm longis, superne dichotome ramosus et ex axillis 
pedicellos singulos emittens. Folia elliptica vel obovata, 
3—7 mm longa et subdimidio angustiora, rotundata vel apice 
obtusa, in petiolos alatos laminis aequilongos vel breviores, 
vaginis marginibus sparse longeciliatis et breviter connatis 
instructos contraeta, crassiuscula, nervis singulis et marginibus 
conspicue incrassatis. Pedicelli  stricti, apice  nutantes, 
12--30 mm longi, ebracteolati, teretes, unilateraliter et sursum 
eircumeirca pilis violaceis glanduliferis ‚dense obsiti. Flores 
singuli, 12--15: mm -diam. Calyx late campanulatus, basi 
truncatus, sepalis porrectis, ovatis, 4—D5 mmı jongis et dimidio 
angustioribus, obtusissimis, anthesi vix induratis, glaberrimis 


3 Planta dom. F, Weiss, legationis’ consiliario, consuli Germaniae pra 


suecessubus. itinerorum meorum -meritissimo yiedieata, 


48° 


el- sparse glandulosis, margintbüus’ latiuseule hyalinis, ‚nervis 
singulis planis plerumque purpüräscentibus. "Petata Alba}! 
calyce duplo longiora, ‚ orbiculari-obovata,. basi  attenuata 
breviter unguiculata, apice cordato- -emarginata vel obsolete 
tricrenata. Discus in glandulas 5 carnosas, 'profunde rotundato- 
bilobas, stamina exteriora’basi cingentes productus! Stamina’fo;‘ 
sepala subaeguantia, antheris ellipticis, brunneis vel olivaceis) 
Germen ovoideum, ad 2 mm longum; re 5, filiformes, Paulo 
longiores. m ER 

'Eodem 10oco, in glareosıs Bi he . 

"Species. Ar. glanduligerae Edgew. proxima, quae 'autem” 
differt partibus inferioribus copiose glandulosis, foliis acutis, 
obsolete 'nervosis, ‘ floribus plerumque minoribus, brevius 
pedieellätis, petalis acutis. "mager WR N 


Ai 


Ranunculus micronivalis Hand.-Mzt., sp. nova, siswil 


Sect. Marsypadenium Prtl., subs. Epirotes Prtl. 

Plantula 1-2 cm alta, caule dense et superne patenter 
albo piloso, ceterum glaberrima. Rhizoma“ breve, 'radicibus 
longis, fusiformibus: Cäulis’ unicus, 'simplex;" basi vel Versus 
flörem: “usque 'vaginis emarcidis "higris involucratus, strictus. ’ 
Foöla’ bäsalia reniformi-orbicularia, laminis erassis, 3-5 mm’ 
longis‘ et 'latis, ad dimidium usque 3- vel ‘Slobatis, "lobis” 
semiorbieularibus, integris vel obscure paueicrenulatis, bäsibüs- 
saepe invicem se tegentibüs, petiolis’ laminis aequilöngis! 
usque duplo longioribus, in 'vaginas' dilatatis; folla cäaulina 
pauca, 'vaginis ' latis auriculatis, suprema subsessilia, "ad 
basin' fere  trifida, löbis oblongis. Flos’unicus, pedicellatus, 
7-10 mm diam. “Sepala 'erecta, elliptica, 34 mm "longa, 
obtusa, "brunnea et “nonnulla ‘late albomarginata. Petala 
illis- vix- sesquilongiora, anguste obovata;  obtusissima, "Nava, 
nervosa, nectariis hippocrepiformibus in foveis oblongis‘ 
immersis. Stamina pauca, -brevia. Carpophorum anthesi” 
semiglebosum; germina pauca, 1 mm longa, ovata, in rostra 
subaequilonga, tenuia, paulum recurva sensim attenuata. 

Eodem loco, in fossis nivalibus, 44—4700 m. 

Similis: R.. nivali semper pluries . maiori, qui 'ceterum 
differt Joborum saepe angustiorum marginibus inter se remotis, 


caule et calyce brunneo-villosis. Ran. involucratus Max. et 
R. similis Hook. forsan arctius affınes differunt foliis basi 
non cordatis, superioribus auctis, flores involucrantibus, 
R. Bonatianus Ulbr. iongius distare videtur. 


Meconopsis leonticifolia Hand.-Mzt., sp. nova. 

Perennis, monocarpica, acaulis, praeter sepala, ovaria, 
eapsulas setis simplicibus, subpungentibus, flavis obsita 
glaberrima. Radix verticalis, simplex, longissima, crassa, supra 
napiformis, collo nuda. Folia numerosissima, crasse carnosa, 
facie inferiore cerino-glauca; lamina ovata usque subtriangu- 
laris, 2—4 cm longa et & dimidio angustior, pinnatisecta, sinu- 
bus rotundis, lobis 1—3jugis, arcuato-porrectis, imis interdum 
bilobis, lobo terminali maximo, omnibus anguste usque 
suborbiculari-ovatis, obtusissimis, marginibus integerrimis sicut 
alis angustis rhachidis et petioli lamina aequilongi usque 
quadruplo longioris angustissime revolutis, nervis tenuibus. 
Pedicelli numerosissimi, demum ad 30 cm longi, flexuosi, 
uniflori. Flos nutans, 4—6 cm diam. Sepala late ovata, 12 mm 
longa. Petala 4-5, intense coerulea, obovata, acutiuscula. 
Stamina numerosissima, usque ad 7 mm longa, antheris 
oblongis luteis., Germen subsessile, ovatum, 6 mm longum; 


-stylus duplo brevior; stigmata 3, patula, anguste ovata. 


Capsula longissime claviformis, flexuosa, 5—8 cm longa, 
5— 7 mm lata, disci annulo duplici suffulta, in carpophorum 
subglabrum, 3—9 mm longum et rostrum glabrum usque ad 
12 mm longum sensim attenuata, ab apice ad dimidium 
eirciter tritorosa et valvis 3 verosimiliter hucusque dissiliens, 
patule hispida. Semina (juniora) levia. 

Eodem loco, in glareosis, 43— 4500 m. 

Species, quamvis in fructibus junioribus tantum praesen- 
tibus characteres valvarum apice facile solubilium nondum 
plane pateant, propter suam cum M. bella Prain et 
M. Delavayi Franch. notis autem satis superque diversis 


‚similitudinem huic generi inserta, etsi re vera intermedia inter 


Meconopsidem et Cathcartiam, illius valvis ad dimidium 
tantum dissilientibus, huius gynoeceo trimero et fructus 
forma instructa. 


Österreichische Staatsdruckerei in Wien, 


ms 
- nr 
ar 
j Batot. 
e, ID, - 
\ 5 u -HONONSR| @ 
b 


% ...% « 
h . Sr datf-ey atänate "al. 
Ba irsbiv Mislarh ahtandl ‚„TUIU AuRblin 


7 & E 
g ae ‚ er ee ee en 
ir BEZETA IHR ER TEN BERNER 
x | , 


Yo FARM 


aaa mem ia 2 


uns ab mas 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 NrarS 


Sitzung der mathematisch-naturwissenschaftlichen R 
Klasse vom 12. Februar 1920: 


Se le 


Der Vorsitzende macht Mitteilung von dem :Verluste, 
welchen die Akademie der Wissenschaften durch das am 
8. Februar 1. J! in Wien erfolgte Ableben des wirklichen Mit- 
gliedes, Hofrates Prof. Dr. Leopold Schroeder, sowie das Ab- 
leben der korrespondierenden Mitglieder dieser Klasse, wirkk 
Geheimrates Prof. Dr. Otto Bütschli ‘in Heidelberg 'any 
2. Februar, und Geheimen Hofrates Prof. Dr. Wilhelm Pfeffer 
in Leipzig am 31. Jänner, erlitten hat. or 

Die anwesenden Mitglieder geben ihrem Beileide durch 
Erheben von den Sitzen Ausdruck. 


Prof. E. Abel in Wien spricht den Dank für die Bewilli- 
gung einer Subvention zur Fortführung seiner Untersuchungen 
über Reaktionskinetik aus. 


Dr. Julius Pia in Wien übersendet einen Bericht über 
die im Sommer 1919 mit Unterstützung der Akademie aus-- 
geführten geologischen Aufnahmen. 


Herr Alexander Fischer in Göding (Mähren) übersendet 
eine Abhandlung mit dem Titel: »Beitrag zur graphischen 
Auflösung algebraischer Gleichungen nach Lill.« 


— 


Dr. Raoul Braun in Wien übersendet ein versiegeltes 
Schreiben zur Wahrung der Priorität mit der Aufschrift: »Zu- 
sammensetzung der Minerale. 


Das w. M. Hofrat Franz Exner legt eine eigene Arbeit 
vor, betitelt: »Zur Kenntnis der Grundempfindungen im 
Helmholtz’schen Farbensystem.« 

Die Helligkeitsverhältnisse der drei Grundempfindungen, 
wenn sie, miteinander gemischt, Weiß geben, waren bisher 
nicht bekannt. Sie wurden nach einer von heterochromer 
Photometrie freien Methode bestimmt zu 


R:%.» — 1 000. 07700. 0 NEL, 


durch ‚welche Zahlen auch der tatsächliche Verlauf der Grund- 
empfindungskurven gegeben ist. Durch Addition der zu jeder 
Wellenlänge gehörenden drei Ordinaten erhält man die Hellig- 
keitsverteilung im Spektrum des weißen Lichtes, die auch mit 
der beobachteten in sehr guter Übereinstimmung steht. 


Plantae novae sinenses, diagnosibus brevibus descriptae 
a Dr. Heinr. Handel-Mazzetti (1. Fortsetzung). 


Corydalis Kokiana Hand.-Mzt., sp. nova.! 


Sect. Capnogorium Bernh. 

Perennis, gracilis, glaberrima. Rhizoma brevissimum, 
radices fasciculatas, longe napiformi-incrassatas, caules flori- 
feros complures, tenues, 8S—30 cm longos, a medio paucira- 
mosos, folia pauca longipetiolata emittens. Folia crassa, 
utrinque glaucescentia, caulina ad ramificationes vel singulum 
infra has subsessilia; lamina 2—41/, cm longa et lata, ambitu 


triangulari-ovata, tripartita, segmentis primariis petiolatis, 


re ea 
1 Planta in honorem missionarii A. Kok pro itineribus meis meritissimi 
nominata, 


93 


triangulari-ovatis, pinnatis usque bipinnatis, segmentis sub- 
sessilibus, patulis, ultimis ad medium vel ad basin tri-et bilobis, 
lobulis anguste lanceolatis usque spathulatis, 2—5 mm longis, 
acutis. Racemi ad caulem et ramos terminales, densi, usque 
ad 30flori. Bracteae infimae foliis supremis similes, ad 
supremas lanceolato-lineares, denticulatas sensim decrescentes, 
omnes pedicellis 6—10 mm longis paulo breviores. Flos 
15 —18 mm longus. Sepala persistentia, minima, membranacea, 
alba, ovata et subintegra usque reniformia et palmato- 
lacerata. Petala porrecta, apiculata; exteriora marginibus 
leviter undulata, tergis breviter integro-alata, coeruleo-violacea, 
antice atriora, subaequilonga, laminis spathulato-orbicularibus, 
3 mmı latis, inferum supra basin acute umbilicatum, superum 
calcare lamina cum ungue aequilongo, 2 mm crasso, subtus 
albo, rectiusculo, apice subsaccato obtusissimo; interiora 
paulo breviora, alba, bifida, lobis maioribus cochleatis, apicibus 
cohaerentibus atromaculatis, dorsis latissime alata. Germen 
lanceolatum, stylo aequilongo: stigma cruciato-reniforme, 
lobis basalibus acutis, margine supero recto, paulum pectinato. 
Capsula pendula, linearis, S—10 mm longa, versus 2 mım lata, 
stylo persistente; semina nigra, levia, nitida. 

Prov. Yünnan bor.-occ.: In glareosis calceo-arenaceis 
montis Schusutsu prope vicum Bödö inter oppida Lidjiang 
(»Likiang«) et Dschungdien, ca 4000 m, legi 5. VII. 1914. 

Species C. pulchellae Franch. similis, quae differt foliis 
bipinnatis, ambitu ovatis, lobulis obtusis, recamis brevibus, 
florum colore, calcare angustato. C. heterocentra Diels, 
radice ignota, petalo infero saccato similis foliis pluries 
ternatis, sed minus divisis et petalis dentato-alatis multo 
maioribus diversa est, C. Atuntsuensis W. W. Sm. foliis pin- 
natis, segmentis integris, racemis laxis brevibus. ’ 


Saxifraga omphalodifolia Hand.-Mzt., sp. nova. 


Sect. Hirculus (Haw.) Tausch, subs. Stellarüfoliae 
Engl. et Irmsch. 

Rhizoma descendens, crassum, squamis et caulibus 
emortuis sparse obsitum. Caulis singulus, simplex, flexuoso- 


4 


erectus, 80 cm altus, ubique foliatus’ et sicut petioli, bracteae, 
pedicelli, hie illice calyces pilis rubellis, tenuibus, patulis, 
glandulis nigris terminatis hirtus. Folia basalia nulla; caulina. 
patula, infima minora, reniformia, media maxima, obcordata, 
+ 31/, cm longa et lata, sinubus ad !/,—/. penetrantibus, 
latis, rotundis, petiolis dimidio circa brevioribus, suprema 
sensim minora in bracteas transeuntia; lamina tenuiter her- 
bacea, subtus pallida, obtuse apiculata, pilis caulinis aequalibus, 
sed eglandulosis crebre vestita, nervis 7 paulum arcuatis 
palmatim percursa et 2 proxime marginem angustissime deal- 
batam cincta; petiolus anguste alatus, apice cuneate-dilatatus. 
Inflorescentia cymoso-corymbosa, flore terminali solitario, 
ramis trifloris; bracteae supremae ellipticae, parvae, sessiles; 
pedicelli floribus ca. 3pio longiores, flaceidi. Flos erectus, 
12 mm diametro. Sepala deflexo-patula, late ovato-elliptica, 
3x2 mm, apice rotundata vel retusa, late scarioso-marginata, 
subtiliter trinervia. Petala aurea, ovata, duplo longiora, 
3—91/, mm lata, obtusa, subito breviunguiculata, tenuiter 
trinervia. Stamina petalis breviora. Germina calycem aequantia. 

Prov. Yünnan bor.-occ.: In silvis abietum inter vicos 
Hsiau-Dschungdien et Bödö, 3800 m, legi ineunte VII. 1914. 

Planta foliis quoad formam, consistentiam, indumentum 
Omphalodem vernam aliquantum referens inter species suae 
sectionis adhuc notas valde isolata et forsan S. stellariifoliae 
Franch et S. Giraldianae Engl. affinis. 


Cobresia Stiebritziana Hand.-Mzt., sp. nova.! 


SJect. emieaver (Benth.)C.Betrarke. 

Dense pulvinato-cespitosa, foliorum fasciculis et caulibus 
vaginis 2 cm longis, pallide brunneis, subopacis, sero reticu- 
latim solutis arcte cinctis. Folia culmos aequantia et superantia, 
laminis tenuiter filiformi-convolutis, marginibus scabris. 
Culmus 3—11 cm longus, rigidulus, teres, levis. Spicula 
androgyna, linearis, laxiuscula, 18—32 mm longa, 2—3 mm 

1 Species dom. A. Stiebritz, qui negotiator me amieissime iuvit, 


dedicata. 


59 


crassa, spicula partiali terminali mascula, femineis lateralibus 
3— 8. Squamae ovato-lanceolatae, acutae, 9—6 mm longae, 
uninerviae, marginibus sursum late hyalinae, ceterum opacae, 
d' pallide brunneae, 9 castaneae. Prophyllum squama paulo 
brevius, convolutum, marginibus omnino liberis, fuscobrunneum, 
dorso viride, apice obtuso hyalinum, carinis scabrum. Nux 
eylindrico-trigona, 2—3 mm longa, in rostrum longum  cito 
conträcta, pallida. Rhachilla secundaria setiformis, scabra. 

Prov. Yünnan bor.-occid.: In glareosis calceis montis 
Piepun ad austro-occid. oppidi Dschungdien, 4400 — 4700 m, 
leer 11: 911..1914. 

Species €. Nepalensi (Nees) Kükenth. et (. pygmaeae 
C. B. Cl. affinis, squamis viridi-carinatis diversis, illi praeterea 
prophylii squamam superantis marginibus connatis, nuce 
sensim rostrata, huic dimensionibus omnibus minoribus, 
squamis haud hyalinis, prophyllo glabro, basi connato. 


Die Akademie der Wissenschaften hat in ihrer Gesamt- 
sitzung vom 29. Jänner 1. J. folgende Subventionen bewilligt: 
I. Aus der Goldschmiedt-Widmung: 
Dr. J. Donau in Graz für mikrochemische Arbeiten, ins- 
besondere für Herstellung einer Mikrowage....... K 1400 ° — 
II, -Aus’dem Legäte Scholz: 
Leonore Brecher in Wien für Untersuchungen über das 


Kierfärnusgsproblen KOLREHME IRA. are K 1400 °— | 


{ ‚Il. Zu gleichen Teilen aus den Erträgnissen des Legates 
Scholz und der Nowak- Stiftung: 


Prof. Dr. Emil Abel in Wien zur Forsetzung seiner Ar- 
beiten. ÜbersBeskbonsknetikW. rn. een. K 3000 — 


er! 


IV. Aus dem Legate Wedl: 


ü 
| 


1. Prof. Dr. Fritz Hartmann in Graz für vergleichend- 
psychophysiologische Forschungen zur Erkenntnis des 
tierischen und menschlichen Nervensystems...... K 4000 — 


an 
(er) 


2. Prof. Dr. Hermann Pfeiffer in Innsbruck zum Studium 


der: ‘proteolytischen JDermente IureugEr pr Tr K 1000: — 
3. Dr. Karl Toldt jun. in Wien zum Studium über den 
Wechsel des Haarkleides der Säugetiere...... un ISO 


V. Aus den Rücklässen der Brasilianischen Expedition: 


Ing. Hans Schloß in Wien für die Bearbeitung der 
Pflanzenfamilie der Bigoniaceen in der Münchener Samm- 
lungit: .. 58237. EWR OR IE FRIRAUER, K 1200 °— 


VI. Aus Klassenmitteln: 


Der Prähistorischen Kommission als Anteil dieser 
Kiadseie. Li ‚eriramsh.a LOHR ee ae K. 1000: — 


1313 Nr. 12 


Monatliehe Mitteilungen 


der 


Zentralanstalt für Meteorologie und Geodynamik 


Wien. Hohe Warte 


48° 14'9' N-Br., 16° 21°7' E v. Gr., Seehöhe 202-5 m 


Zeitangaben, wo nicht anders angemerkt, in mittlerer Ortszeit; Stundenzählung bis 24. 
beginnend von Mitternacht = Oh 


Dezember 1919 


5 


38 


Beobachtungen an der Zentralanstalt für Meteorologie 


48° 14°9' N-Breite. im Monate 
| Luftdruck in Millimetern Temperatur in Celsiusgraden 
Den MN Be an. ar u 
| 77h 14h 31h Tages- chung v. zu jan oyh Tages- chungv. 
! mittel |Normal- mittell |Normal- 
a UV stand] MAAS, x stand 
! I253 3 7752.8750.6°| 52. SIE 1.0 5.6 2.9 3.214 1.7 
219,9 48.7, 48.0.4870 1, 3:0 3.8 3 3.5) + 2.2 
3 | 48.5 49.3 50.2 | 49.3 + 4.3 2.6 2.0 3.2 4.94 3.8 
4 | 47.6 46.6 46.2 | 46.8 + 1.7 2.0 ar Al s.1]—+ 7.2 
5 /42.0 44.9 47.2 | 44,7 — 0.4| 10.4 6.4 3 6.8 + 6.01 
6 1.30.8 34.9 31.9.,.35.5 — 9.6 3.500 8.4 00864 | 5. 
1.,20.5 28.472881 8921-1691. 5a a1. Val 218.5 
8 | 80.9 33.6. 37.2 | 33.9 |) —11.3 2.8 3.9 2.0 2.9) + 2.4 
9 | 39.5. 40.1 40.5 | 40.0 | — 5.2 1.0 26 1:7 1.81 + 1.4 
oe U BE ee 0.5 1.2 0.4 0.7)+ 0.4 
1121 23 20 | wmWan ine W.oa 01 oT 
12 | 44.9 45.0 46.4 | 45.4 + 0.1|| — 0.3 0.808 0.114 01 
13 | 48.3 49.1. 50.1 149,2 | 3:9 — 0.2 Od 0,83 0.1 0.2 
14 | 50.8 50.8 50.6, 50.7 |+ 5.4 0.2 1.6 DSB 0.714 0.9 
15.1,48.9 47.7. 47.01 42:9. 24& — 0,4 294 0.2 — 0.2702 
{ | d 
16 | 45.9 46.7 48.0 146.9 11.81 = 1.07 1.0 — 4 = A 
17:1>49.9 31.0, 527.\,0182 2, = - 3.0 .—.3.4. —..6,1| — 4.322006 
18 | 53.2 53:0 51.7 | 2.6 + 72-88 ae —5.5 48 
19 , 43.9 40.8 40.8 | 41.8 | — 3.6 — 3.7 3.3 RE 0.814 1.6 
90] 42.6 45.9 48.1 5 1.5 a Ma 2.11+ 3:0 
21 | 42.0. 838.6 36.0 138.91 6.5 3.8 Ag. 67 0 Bi 
22 | 31.0 33.6 35.0 | 33.2 | —12.3 6.3 a 2 4.014 5.1 
231 30.9.80.7. 083.54. 310.70,18.,8 1. a 1.9 2.11+ 3.3 
si | 208. SI 35.913265) -12.9 8.3 6.6 SEN 6.9) + 8.2 
25] 86.5 833.6 83.5 | 34.5 | —11.0 1 7.6 h2 5.2) + 6.6 
1 | 
26 | 32.7 38.0 42.2) 37.6| — 8.0 4.4 3.3 — 2.0 1.9|+ 3.4 
27 | 43.£.39.0 34.7) 39.0|— 6.6|.— 24 - 25 — 1.1 — 1.00 00 
28 | 33.7 33.8 38.9 | 35.51) -102 4.8 3.8 3.0 3.9) + 9.6 
29. | 42.7 40.8 44.5 |22.71= 93.01 — 14 — 23. —- 16 Lose 
30 | 44.5 44.8 44.9 | 44.7 | — 1.1 — 1.6:— 1,4 .— 1.0, — 1.8) 08 
81, |.41.27 36.41, 34.4 87.2) = 8,8) = 04 0.8 0.8 0.5|+ 2.6 
Mittel 741.93 741.72 742.44.742.08| —3.32| 1.3 27 1.2) 102988 


Höchster Luftdruck : 7 

Tiefster Luftdruck: 72 

Höchste Temperatur: 12.0° C- am 4. 
Niederste Temperatur: —8.8° C am 18. 


58.6 ua am. 
7 


‚a mm am 7. 


Temperaturmittel?2: 1.9? C. 


137,.(7,2, 9. 5 
SER She 


und Geodynamik, Wien, XIX., Hohe Warte (202:5 Meter), 


Dezember 1919. 16 21°: RB Eange x. Gr. 
Temperatur in Celsiusgraden | Dampfdruck in mm Feuchtigkeit in Prozenten 
TTS Ta oT ET mer 2 a | ea Te ee N Ra Baar Een | HT se ae 
Schwarz- Blank- | ANS- T Tages 
a . ER kuneja ı Strah- | 7] ‘ |lages-| „] h ] a F 
Max. Min. , kugel! kugelt | Ing LS 1oRlı 21h te | a | mittel 
Max. Max. | Yin, | 
na “ #| 
San 0: 27 j4- Ion au.4 9.9 9.3 Sl 90. 80 94 88 
3:80 01 > 4 - 2| 5.5 9.9 DRS 9.7 ITEM IS, 37 97 
30. 18 31 16| - 1| 5.3 8.9 9.8 9,9 9377697792 85 
12.0 0.83 31 20 - 3 5.0 1.8 7 6.5 Be ur 71 80 
2.9 ’3,5 10:,7107: Ar 0.1 4.31. 2.60 4.7. DE, 60,207 64 
8.4 1.8 sl 15) - 2) 4.4 3 Gel 9.3 Tag 767 990 de 
Bud _) 218 13 7 —- 1 4.9 4,1 4,0 4.3 Te 166 00 70 
d ERS ES) 29 141 -2| 4.3 3:7 3.8 3.9 Bo Oz 70 
2.7 -0.1 23 10) -5| 3.93 3.5 3.0 3,83 68. .62,. 69 66 
1.4 -0.3 9 4 -1| 3.4 3.14, 1822) 3.2 El... 02,0 40%) 67 
I 
0.4 -0.6 3 a! 3.0 3.2 rd 685 64.68 67 
0.9 -0.7 13 5) - 31 8.4 3.9 3.6 3.5 7D-MEA2, 19 75 
0.3. -0.5 2 1 - 1 3.8 4.0 4,4 4.1 85 37 95 89 
6 :-022 9 4 2| 4.5 4,0 al Zell DE Re 84 
0.2 -0.8 1 ' -—1| 4.1 3.8 4.1 4.0 Be) tete 89 
-0.3 -1.8 Var= 1| = ı 3.9 3.7 329 3.8 gSrr 93 eh! 
-1.8 -7.1 2 -81- 41 2.8 2.6 2.4 2.6 NGC 78 382 (07. 
-3.5 -8.8 4 -2| -12| 2.1 2.8 3.8 2.7 Ba 80, 793 88 
3.7 4.1 10 5 — 51 3.8 4.0 3.6 3.6 99,..,8907564 76 
2 RO) S 4 — 9, 2.0 74.1 4.0 4.0 Da Un az 75 
WG 02 9 8 — 4 83.8 9.8 6.1 aut I 6897 83 883 76 
She. 7 7 0) #.6 3.8 3.6 4.0 64 65 66 65 
i RS) () 8 - 3) 3.2 4.8 4.4 +.0 63 74 84 74 
3.67.1058 15 9 - 21. 6.4 ©. 2 0.2 5.9 Tl Stern 79 
> ai VAR) 14 11| -—4|) 4.5 9.0 4.3 4.6 82.2 .69,,.,60 zl 
5.5 —,8 26 „136 - 2) &.6 3.8 2,9 3.8 74 658 74 71 
3 2.0 =3.3 10 9| - 9| 2.5 3.3 4.0 3.8 65 84 94 81 
s Br.6: 2,0 8 5) -— 3] 4#.9 5.4 4.6 5.0 7a 930, si 82 
£ 3.0.-3.6 0 0) — | 3.3 8.7 3.9 3.6 713% 936 595 90 
ü -0.9 -2.0 1 0, - 9| 4.0 4.1 4.1 4.1 9,990 797 98 
Ä all 70.9 3 2).—- 1 4.5 4.7 4.8 RT BCIEN 98 97 
; BO FO AU Eu 30 Aa ua, Angel aan: >77 8 7 
| | 
1. Höchster Stand des Schwarzkugelthermometers: 31° C am 3,, 4. und 6. 


| Größter Unterschied zwischen Schwarz: und Blankkugelthermometer 
- Strahlung): 16° C am 6. 

Tiefster Stand des Ausstrablungsthermometers: —12°C am 18. 
Höchster Dampfdruck: 7.3 mm am 4. 

Geringster Dampfdruck: 2.] mm am 18. 


Geringste relative Feuchtigkeit: 540/, am 5. 


! In luftleerer Glashülle. 


(stärkste 


" Blankes Alkoholthermometer,mit gegabeltem Gefäß, 0:06 m über einer freien Rasenlläche. 


50 


Beobachtungen an der Zentralanstalt für Meteorologie 
48° 14°9' N-Breite. 


EEE EEE ET DET RE EEE EEE TITEL TE SEE EEE EZ EEE EEE EEE BE ET EEE EEE ET EEE 


im Monate 


Windrichtung und Stärke | Windgeschwindigkeit Niederschlag = 

n. d. 12-stufigen Skala | in Met. in d. Sekunde insmm gemessen 2 

Tag For Te —— © 

= 

za 14 21h Mittel| Maximum 1 7a 14h 21h 5 

un 

1 NEE ESE W 6.7 0.0 _ == _ 

2 — :0 SE 17. .0[| 1.5 SE 763.0) — 0.3= 0.1= | — 

3 a N Sal Wi 12.2 .l= = — _ 

4 SW 2 WSW4 WSW4| 4.1 | WSW 20.0 le 3.58 0.08 | — 

b) War. .We57 @W’ 1216026 | BVSW e22,8 = 0.1e —_ 

6 SSW2 WW 2 NNWIlI 3.4 W 17.8 0,1o 0.68 1.20 || — 

7 WSV DV. Spy Blase. SVISNVElTES 0.9e -- — = 

8 Wr 074 EWe 21546 W 14.4 = = —_ - 

g W 2 "wi 2 NW 2] 4.4 Ww 14.1 _ —_ > 

10 NNW3 NNW3 NW 4l .6.8 NW Es 0.0% — 0.0x || — 

11 WNWA .WNWA4 WNW2| 7.2 | WNW 18.9 0.0x _— 0.0x || — 

12 MINEN SON 20 NW .10.3 _ = = = 

13 WSWI’NNE 1 ENE 1 0.7 W 3.6 = —_ — 
14 — 70% 710) 81003 1 ANINNWV 97274 _ = = 

15 SE’ 1° SE” 7 SE 117294 SE 7.5 _ — = — 

16 DSB, 2.7. SER 27 SEIEN] 829 ESE 10.9 Da OR 0.08: || — 
17 Nr SNESTENNBIA FT NNE 5.1 0.1= _ — —t 

18 — 0 NET EOS NE 1.5 — — 0.9%* 

19 S 1WNW4 W 4 4.7 W 18.9 0.0% 0.2%* = 

20 W 8 WAANWNW3|-5.6: |WNW 18.9 _ 0.5% = 

21 W:6. WW. 5 WSW3| .8.5 W 23.1 _ 2.1e 1.30 | — 

22 Ver 2a WE ES 191879 W 22.4 _ 0.3@ = = 

23 AV a N 2 we RAR Ww 21.9 = 0.3% 0.08 | — 

24 W 3 WSW3 WSW4|l 6.8 | WSW 20.7 4.50 S.de 2.30 | — 

25 SE 1 SW 2 WSWS5l 5.83 Ww 19.8 — _ = 5 

26 WSW4 NW 3 NNW 2| 6.3 NW 221.3 — 0.:3Axı Bus 

27 AVIN WEIT ESE dr SV ll 224 NINVE — = 4.6x | — 

28 W 3WwSW2 WNW2|I 5.5 W 20.0 75 2.0® 1.50 

29 NE 15 SEP 1) !SE 110 31 |OWNW #142 = 7.38%  3.0% 
30 SE. 40 SEN 1) SB: /11 0257 SE 7.00 BARS = _ 

31 SE 1 SE 1 NNWIl 1.4 SE 6.3 .g=: _ — 

Mittel | 2.1 2.8 2.0 4.0 14.1 13.5 26.4 15.4 | — 

Ergebnisse der Windaufzeichnungen: 
N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NWZNNW 
Häufigkeit (Stunden) 

18.615 422 anti meie Sal 20? 151,26r 16T 44 27 
Gesamtweg in Kilometern 

1597 91: 126170.257 169598892525, 2158..10774.109 7172 22568789. 1512 7779822305 

Mittlere Geschwindigkeit, Meter in der Sekunde 
2.6 -1.7-. .1.61.1,8,,2:0,:4.07 2,85522%2:. 1:6-.2.0..1.8,..0.4216.820.:9,8 AD 
Maximum der Geschwindigkeit, Meter in der Sekunde 
6.1 31 3.3.3.3: 4.4.5.6 4,4 3.904.2 3.3 2.5 12.5 18.1 0.0 ae 


Anzahl der Windstillen (Stunden): 66. 


Größter Niederschlag binnen 24 Stunden: 15.2 mm am 24. 
Niederschlagshöhe: 58.3 sum. 
Zahl der Tage mit e(x): 11(9); Zahl der Tage mit =: 8; Zahl der Tage mit R: OÖ. 


! Den Angaben des Dines’schen Druckrohr-Anemometers entnommen. 


61 
und Geodynamik, Wien, XIX., Hohe Warte (2025 Meter), 


Dezember 1919. 16 217 Panpe vr. 
n | 3ewölkung in Zehnteln des 
Eu | sichtbaren Himmelsgewölbes 
5 S Bemerkungen sr nr ee 
= 3 | m... 1m 2m |88 

BeuN TS Beh eie Weir x Bl iR I rn 
l 
cbnec |ı-0 mgns. I 90-1 60 20 3.3 

ggggg | =1=:071 gz. Tag. | 102=0-1 102=1 101=1 [10.0 

fdbbb | =071 his 6. 7 290-1 1071 0) 8.8 

ngede | e!715—1015, oe Tr. 18; =071 mgns. | 10lel 70-1 g0-1 8483 

ffeme | 0071 745—8, | 100-1 101 10 70 

ggege | 0-17 -_8,e0 1030-50, 00-1 18% _21,012150—22.| 10160 60-1 100-180) 8.71 

eefmd | 00 630, e Tr. 10. 2912 101 10 6.3 

emddb | — 70-1 Hl? 60-1 6.0 

edngf |x Fl. 15; WI mens. 30-1 sı-2 101 7.0 

fgggg | xt 21- Qi 101 101x0 | 9.7 

ggggg | x0—6 zeitw., #071 1535 — 1715, 100-1 101 101 10.0 

fggsg | — | 190-4, 101 101 9,2 

ggggg | =; nochm. zeitw.;=18—20. ' 101 101=1 101 10.0 

ggfgsg | =1, =;0 mens. bis 12. | 101=0 sol 101 9.3 

ggggg | =! bis 4. | 101=0-1 10=1 101 10.0 

ggggg | =:071 gz. Tag zeitw., x0 21; ul”? mgns. u. abds. ' 101 101 101x0 |10.0 

ggmaa | AU 7; W172 gz. Tag. ‚ 101 90-1 0) 6.3 

aangg | x071 1615 — 2110; 172, ul mgns. | 10 60 101x0 | 5.7 

ggggg | x0 AI S0— 10. 101 101 101 10.0 

mgfmd | x0°1 80 9 — 1045, AO 60 1285. IN #31 101 20 DR, 

egggg | #01 735— 1050, e0 11—12 zeitw., eI 1 14—19. | 70-1 100718071 101 9.0 

ggegm | x0 60 910745, e Tr. nochm. zeitw. | 101 101 101 10.0 

cgefg | x1845— 1105, 80-1 2045 — Khao > 208 10160 | 7.7 

fgemb | eI71.- 630, el 715 — 18. 490-1 90-180 31 %.0 

bndbb | — ey! 10071 2071 | 4.3 

bddne | ALx0-1 80 1145 — 1245, x172 1840 — 2050, got 21 101 4.7 

enggg | x! 1410— 1930, IE a0 ON 101 9.0 

fggme | 0e0714— 2110, | 9180 1018071 907180] 9.3 

ggggg | *19— 1539, #0 20140 —21, xI71 2230 — 101 101x1  101x0 [10.0 

ggggg | «71-3; vl72, =172 gz. Tag., =:071 22 — 10! 102=? 10?=? |10.0 

gggge | =:971-3, ryU0T1 gz. Tag; =17? bis 21. | 10121 102=2 - 101=1 110.0 

I 


Mittel I Lee 8.6 8 19 


Schlüssel für die Witterungsbemerkungen: 


a = klar. f = fast ganz bedeckt. ak =ihoig. 
b = heiter. g = ganz bedeckt. I- Il = gewitterig. 
€ = meist heiter. h = Wolkentreiben. | m = abnehmende Bewölkung. 
d = wechselnd bewölkt. i = regnerisch. | n = zunehmende » 
e = größtenteils bewölkt. | | 


Der erste Buchstabe gilt für morgens, der zweite für vormittags, der dritte für nachmittags,. 

der vierte für abends, der fünfte für nachts. 
Zeicnenerklärung: 

Sonnenschein &, Regen e, Schnee x, Hagel a, Graupeln A, Nebel =, Nebelreißen =;,. 
Tau a, Reif —, Rauhreif V, Glatteis ru, Sturm 9, Gewitter R, Wetterleuchten <, Schnee- 
gestöber -$, Dunst oo, Halo um Sonne ®, Kranz um Sonne ®, Halo um Mond []J, Kranz. 
am Mond W, Regenbogen f}. 

eTr. = Regentropfen, xFl. = Schneeflocken, Schneeflimmerchen. 


-62 


Beobachtungen an der Zentralanstalt für Meteorologie und 
Geodynamik, Wien, XIX., Hohe Warte (202°5 Meter), 


in Monate Dezember 1919. 


Ver- Dauer e) $ ® =)  Bodentemperatur in der Tiefe von 
dun- 2 > = 5 = 0. ‚50 m 1.00» 2.00 $: .00 m ‚se 00 
Tag stung a ae & = | ne un 
in nm || SonelNs- | Ejo %; 5 "Tapes-  >Tages- 
| zh | ARE Seel mittel mittel = Ir n 
1 DR 6.4 38 5.4 8.9 10.6 11.0 
2 0. 0.0 3.6 DR 8.8 10.5 1180 
2 0, 4.3 3.9 Sy) 8.7 10.4 1029 
4 il: DR 8.9 Ds! ART 10.9 
D T; 0.0 4.6 5.4 De 10.4 De 10m 
6 0. 1.8 4.2 5.8 8.6 10.3 10.9 
7 ®; 0.0 4.2 5.6 8.6 10.2 10.8 
8 1 Br 4.1 546 9-8) LOL 10.8 
9 0) 3.9 Bu) nn 8.4 KORZ 10.8 
10 0) 0.0 2.8 5.4 8.4 10.1 1007 
11 1. DR 2.5 5.2 9.4 10.0 10.7 
12 0) 0. 28) a! SINE, 10:0 1087 
13 0) 0) | 2.8 4.9 O3 9.9 10.6 
14 0) 0, 208 A, 3.8 9.9 10,6 
18) 0) Dr | 28 4.7 Sr 9.9 10.6 
16 0) 0 2 4.8 8.1 9,8 10.5 
17 0) 0. 2,0 4.5 8.0 9.8 10.5 
18 0. 3: 10 4,4 4,0 ORT 10.5 4 
19 0.8 DAR 1.4 Da 1.8 De 10.5 
20 0,9 Or I | HT en 10.4 
il lan! 0.6 11:8 4.1 EBEN Te 9.6 10.4 
22 ie 0. 1.4 38.9 16 ED 10.4 
23 0.6 0. 1.4 829 a 9.5 10.4 
24 0.8 0. leer, 3.9 Fee Eng 10,4 
25 172 0. il 38 14.0 9.5 10%. 
26 11.2 3. 22 3,9 7.4 9,4 10.3 
27 91 0. - 2.0 3.9 706) 9.3 10.3 
2 DD d. 1 1.8 3.9 1.83 9:8 1052 
29 0.2 0 1009 3.8 Tee 9.2 10,2 
30 0,C 0, RT, 3.8 763 9.2 1088 
31 0) O, LT. 3.7 2 sel 1088: 
Mittel 0, Ir 2) 4,6 30 9.8 10.6 
Monats- 10 31; 
Summe 


Größte Verdunstung: 1 
Größte Sonnenscheindauer: 


6.4 Stunden am 1. 


Prozente der monatl. Sonnenscheindauer von der möglichen: 120/,, von d. mittleren: 650/,. 


Größter Ozongehalt der Luft: 


03 


Beobachtungen an der Zentralanstalt für Meteorologie und 
Geodynamik, Wien, XIX., Hohe Warte (202'5 Meter) 


Windmessungen mittels Pilotballonen im November und Dezember 1919 


Seehöhe: | 230 | 500 | 1000 | 1500 | 2000 | 2500 | Größte Höhe 
| Eu on . a a u u: pre 5 nn. 
Datum 5 $ E ® 3 ei | E 3 | 3 Fe 5 3 5 E © 
AR Re ee REST 
a 17655 E ° En“ Se en = 
| | | | 
| 
November | 
| | 
1. 838 NEN SESNSIENE AWP 1 ne 15 | WSW 1 
14. 855 |WNW 1| NW ı1| NW 1| W 3 WSW 6|WSwW 7| 47 |WNW 26 
19. 1051 W..9)WNW 9) NW 1... |. — | _ 13| NW 18 
27. 854 NW 1|SSw 2)SSW 7 S 10), SSwW 8! SSw 13| 57 | sw 21 
28. 1059 wa wi —- | - an 8" WG 
29. 901 — 0) E23) E55 — Dan BE” 1 
Dezember | 
1. 1108 NNE i| E..6| SE. 6.:8S 9 .8Sw 2, W 4 61|NNW.7 
3.902 SER WE 21. Wan20lse im _ 13 | WNW 20 
8. 9ns W 5) WSW 10 WNW21| WNW 18, WNW 16. WNW 15| 45 | WNW 17 | 
9. 858 Ww 6|WNWI15|WNWI1l NW 8 NW 7 NW Al6ı| SW 24 
10. 940 NW Snııw9 NW N 7 — | — i7| .N. 16 
18. 859 — 018, 3 81-8,W . AWwNW A, NW‘ aldr| m. 
26. 914 Ww 5[/WNWI11WNW21| NW 24| NW 261 WNW29| 32|wNW25 
27. 947 ENE 2| SSE 3| SW 3 WW 9WwNW10. — 23|WNW15 
| | 
| | 
Seehöhe: | 3000 3500 4000 | 4500 » | 5000 | 5500 6000 
November 
14. 855 w 10|)wnwil| W 14|WNW21 = = 
27. 84 sw 11| SW 11|WSW 15 | WSW 15 |WSW 19| SW 17 
Dezember 
1. 1108 |wsw 7| WSWı10|wsw 9|wSw 4| NW 7| NW 7|wNW 7 
8. 9985 |wNWi12| w 1ı3| ww 10|wNw17| — _ 
9. 853 w 5| wsw 7| SW 10) sw 1383| SW 14| SW 14| SwW’24 
18. 859 N 4| NNE 6|NNE 9| N 11) — = — 
26. 914 | WNW28 I un = - — ae 


64 


Übersicht 


der an der Zentralanstalt für Meteorologie und Geodynamik im 
Jahre 1919 angestellten meteorologischen Beobachtungen. 


Luftdruck in Millimetern 


Monat 24stünd. Mittel | Abwei- |  _. IR | 28 

2 chung | Maxi- Tao Mini- Ta 8 g 

Jahr 50jähr. |v.d.nor-| mum as mum 8 aE 

| 1919 Mittel | malen | <3 

| 

länner . at ..]1742.729:.746.09,| 2.3.30) 756.7. BAU 223.7 5. 33.0 
Februar ......| 39.96 45.08 |—- 5.12] 55.2 9.2 |.425.5 17. 29.7 
März; ..1. 5 3..:635.00.942,.455 > 2.25..49,8 3... Mo. 30.4 
Apulla) br rB 40.87 Bal.8aı 1.200740, 8 Ta 2a. 8. | 288 
Mai se 44.09 142,86) 1,837. 50:85, 22. Mala Ai 19.3 
Jans 0... 44,60 43.12 |+ 1.48| 53.8 2: 32.0. 87 21.8 
alt GM PER ER 22 Ir As Mon— Tea AN ae Bi io 
INRIUSUR Pe re.R | 44.59 43.71 |+ 0.88] 50.0, 92010423659 27. 13.1 
September ....| 45.01 45.07 |— 0.06| 54.5°. 11. | 29.9°19., 20. | 24,6 
Wktober- 4.8. Ir 45.01 44.37 + 0.64 58.2 19 34.5 28. 13.7 
November ..... 397057 44,70% == 9209. Pa2T a RS, 6. 28.8 
Dezember... | 42.16 45.35 |— 3.19) 54.3 1.9) 27.0 % 27.3 
Jahı 742.:49 743.93 |— 1.44| 758.2 19.|X. | 719.4 22/110. | ers 


| Temperatur der Luft in Celsiusgraden 


Monat 24stünd, Mittel | Abweh | yayı. re Er 
Jahr 125jähr.|v.d.nor-- mum Tag en Tag 25 

1919 Mittel | malen 3 
Jänner: . ‚Base ee a2 Ze 15382 6. — 7.1 ale 20.9 
Bebrwar.....cce — 0.01 — 0.1 13:8 Bl — 8.9 9. 22.2 
März 4.8 3.7|+ 1.1 17:2 11 ee) 20 RT 
ENDE RR een ) 1) aa! 7 — 0.5 23 I7R6 
Mala re 191720 14.5 | — 3.5 211 12V 0) 1 IR 
un 7 ER 16.7 rei, 29,0 21 8.9 23 2941 
Tl 16.8 1a 2 26.7 20. 9,4 1 17.3 
Aupust kim. 18.4 1904 0,6. 3103 DAR 9.8 5,26 21% 
Septembek..rn 16.3 15.0)—+ 1.3| 25.4 15. 3.9 22 21.5 
Oktober 4%... 8.0 gab 1b 29 5.,6.|1 — 1.8 31 2126 
November ..... 5, Bean ale) 185 1% — 6.8 18 20.83 
Dezember ..... IT ee 2 12.0 4. — 8.8 18 20.8 
Jahı s.s Saar a0Rs 81.3 21./VIL| — 8.9 9 I 40.2 


er a LT} 
ale sans. a w 

[ur ur Br ar ar ar Sr 
Basıle ieh alten) er ere ara 
But eleinı 0 «ee ainLe oe 
fehle a a0 du un an Nee 
Weste e tun oe nteiu ee“ 


September e 
Oktober 


ee 


SEO en OR 


Dampfdruck 
in Millimetern 


Feuchtigkeit in Prozenten 


Mit 30jähr. Maxi- 
har Mittel | mum 

J. 1919 | 

| 
4.0.00 349 ca! 
3.8 8.8 6.9 
4.90 4.9 7.8 
3.6.6.0 9.6 
a | 9.9 
Er 1 LO a 
Im: 1409 
10.11. 1584 
30.97 74 9.091.136 
Gera 18180 
to. 7.5 
4.2009 3.9 028 
DORT. en 10R4 


Mini- 
mum 


NSNUIOND mr 


(or) 
> oo9oPr,u1 ao © 


DO oo 


Mitt“ 30jähr.| Mini- 

lere Mittel|_ mumı #8 

1.1919 b 
> ul 
78) Mao, IESLBE. De 
75. 070 ag ao im 
0 ven’ 34 82 24. 
65 Az a 
64 69 | 25 20 18, 19. 
71. bes, | sale i a 
a7. I#R0ı I ao am, 2. 
75 Ta. AN YS3Bn 12 
791. Yale Mas 5 
Sue A 17 
ee ra re N 
‘+ 75 25 20 418.u.19. 

vr. 


Ozonmittel 


NDO DO + Ow 


=>) 


EU NOSOOOD Dr 
SI | 


{er} 


1) Die linke Spalte gibt die niedrigste Feuchtigkeit aus den Terminbeobachtungen, 
die rechte jene nach den Auswertungen des Hygrographen „absolutes Minimum“. 


Monat 


Jänner 


Bebrust.... 
März ; 67 
ApPHl,...0:. 69 
Mana an. 104 
Hunt ...%..: 12 
ni .......; 92 
Bueust..... 48 
September ..|| 75 
Oktober ....|| 51 
November ..|| 88 
Dezember . 58 
‚Jahr. «| 798 


Summe in Millim.| 


J. 1919 60j.M. 
! 


Niederschlag 


| 


Millim. Tag 


19 N 
B12'015 
16  18./19 
39 3 
33  26./27 
434: +8;j0 
29  30./31. 
64  21./22. 
15  28./29. 
12: 3.J4. 
15.4424, 
64 21./22. 


I 


| 1919 


Maxim. in 24 A Zahld. Tage 
zn z m. Niederschl. 


Jahr 


8 Bewöl- 
E kung 
© ee 
REISITE 
ce = e | = 
: ES = ll = 
la ıla 8 | ® 
0 9.0 7.1 18 
11 0 17.6 6.6 7 
kas-ıı, 027 2486,50 99 
12 0°116.9=5.0 113 
14 6 6.3 5.41 219 
14 2 15.0 5.1| 233 
14 8 16.0 4.7 238 
12 5:45.024J5 1 254 
10 2 13.2 4.6|| 248 
12 BrN7 858 93 
13 018..5.97..8 36 
14 017.974 32 
152 124 6.7 5.8|| 1655 


Sonnenschein 
Dauer in Stunden 
1} 


25jähriges 
Mittel 


1839 


66 


Häufigkeit in Stunden nach dem Anemographen 


Wind- 
richtung so —_—— m nn; 
Jän. Febr, März April Mai Juni | Juli Aug. .Sept.|Okt. Nov. Dez. Jahr 
N 2.8 52|°56 131" 106). 60 33° 03 a0 so Bel 
NNE | 15 De ns 8 As or AT oa I N 
NE .:..,| 48.7 18.0518 | 127 0246754010 12,,3,315 5,27 (0a 
ENE, || yı 6 a 4 37810, 6 da 5.26 . Lasalges 
E ee 2 a 1 a 11510 a ©) 9%. »14: 181 125 BP 
ESE 20 51:26...049,| 38 60 Alain 22m 15 „AI 16 Ba az 
SE 1 140. 58684 46.7 2 163-920 24.1, 198.877 Se 
SSE | 102 D0: gig | -A0) Bas, 2) 187. RAU BD en 33 201.819 
S 602525 BA (ee 9 Is, 032 8 89 202230 18 || 329 
SEWE: le Man anal Ss en, 31.478 ,.88'n 14 „14 Ve 
SW 110 7 210 BE 0L Ver 2 7.10. . aarızs 
WSW 9 12 35 10) 17 19 4 AT 12 25 62 1161| 358 
W 43 s4 108| 102 ae 112 Ton 126 93 89 143 15611112 
NW 34.108 448 1.178 . 1317 I: 270, 184 85 | 204 s1 72 11628 
NW 88 82 691 65 159. 100 97 98 64 | 104 30 44 11000 
NNW 100. Abs 50|: 72: I74n Slah dar, 35 54 A6: el 
| 
Kalmen | 25 63 2a 2 a nt 68 FO 781 38 66) 537 
SE 


L_—___—__— nee Denen nennen Dom LLn mm Lemon ons en nn mlnbneneBsBnnen nn nme Le Ten mmmeHHeishn nn nme mn 


Täglicher Gang der Windgeschwindigkeit, Meter in der Sckunde 


Zeit | 3 SEEN 22 EEE 

| i } 
| Jän. Febr. März |April Mai Juni | Juli Aug. Sept.|Okt. Nov. Dez.|| Jahr 
ee 9-71742:8: 3121| 3-9 4-1.3°4 1 3:7 23 88-1 3U Sea 
Be 27.2.9 3-8] 3.8 41 AI 17 1 2-9 2:6 Ba 
neh 2-5 2-6..2°70| 4-2 3°9 .3:.021.8358-2:4.1:8.)2:.623.B TA 
Iran Be 24-25: %72)>4 240 Be ee rer 
45 | 2 Baer 2 | 3 9-0 812 
5-6 2| 2°8,:2:9. 35001139. 378213:.2,73, ZB 160 22 Be 
027. ‚= 2>5%2:9,.3-37] 4 3’61:308% 3-4 | 3°2 72.517.) 0-8 Sc 
De: 27 2-8 3°3.113°8°3°8 40 | 3:3. 2:9| 1-872-8 3-5. Arne 
8—9 3:1,3:0. 41.1 46° 4:3: Aa PA=] 18481 2-6 09.D.23 06 Se 
el) 3.1.5286. 04-1125 485 4-20 I E22 3-3 a 
10-14 2.9. 19-1 44 | AA 4:3 4-10 13-9 19-2 3:0 | 3:373-9 Ara 
64-12 34.384.146 |) 4:7 4320421139 13-2! 3302| 3.574 Ara 
2-13 33.36 147 |!48. 4:5 4-17) 4:0 8535| 3702-1 5:1 Wa 
19--14 34 346 |) E84 RT 7 3 rn 
14—15 31.84.46 146 49 74-02).90-2 94-1736. | 3-73 IF 
15-16 3.2.0732. 4-3 |) 428-412 4:19.43 Ae1) 34 Ba BA 
16—17 2928 45|'45 48 14143 ii are re 
17—18 2.8.127:.4-3 |) 44 47 4°0%|.13°9 IB 2ı8 | 2.828 A 
18—19 24 26.38 | 21 45 3.3.3.8 3-1) 2:8] 2,9 2-83: re 
_ ua 20 25 26. BT] 40 42 3-11.,83-6 7! 300 | 2793-0 Sure 
2021 2-6. 26.7 430 Nr et) 2-92 Bo 
21-28 2-6. 2.5. 83"6 11 8°84°3 .3°191.3:7 28123] 834 SU Ai 
2223 2°4 2:6. 3-3 |14°0.04 4.32 | 4-0 28 2-1.]| 941 3:2 Some 
23—24 25.28.8394. 3671 4873:37].108 Bald 2 re 
Mittel 3:8 2°9 37) A248 3°6 | .3°8  3-0,2-8 13:1 73-2 20 

J 


67 


&n 
RN = 
sn Weg in Kilometern 
3 
„ 
= 
Z Jänner Februar März Aprii Mai Juni Juli 
„ 
N 581 538 602 869 1783 1058 465 
NNE 151 44 347 786 994 463 323 
NE 33 57 127 64 189 46 37 
ENE 4 21 42 62 95 16 10 
E 96 135 120 102 137 112 45 
ESE 118 165 146 257 51 200 170 
SE 1246 582 558 265 101 111 13 
SSE 1497 498 743 614 328 Tr 263 
S 1100 171 392 153 310 94 185 
SSW 152 51 36 52 118 127 
SW >8 58 95 34 5 103 30 
WSW 42 92 471 4583 52 235 33 
W 218 1050 1604 1658 227 1292 1168 
WNW 321 1787 2983 3058 2386 2608 9376 
NW 867 1085 1015 1047 3065 1469 1337 
NNW 984 713 685 1410 1115 69 432 


Anzeiger Nr. 9. 


en 
& 
2 Weg in Kilometern 
S 
3 vet | 
= August September | Oktober November Dezember | Jahr 
| 11 
N 305 417 307 118 159 7202 
NNE 68 335 113 223 91 3938 
NE 78 29 34 146 126 966 
ENE 4] 48 7 151 75 HS2E 
E 64 61 61 344 169 1446 
ESE 85 102 113 631 389 2427 
SE 12% 257 193 442 525 4488 
SSE 578 1205 368 302 158 6786 
S all 477 174 146 107 3620 
SSW 54 310 98 3 109 1180 
SW 123 97 43 67 122 945 
WSW 140 so 262 1412 2256 5528 
W 1533 599 1258 2811 3789 17737 
WNW 2946 1303 3485 Nool 1382 29796 
NW 1174 729 1187 417 758 14153 
NNW 443 536 481 68 363 7861 


Fünftägige Temperatur-Mittel. 


Österreichische Staatsdruckerei in Wien. 


I 
| Beob- Beob- 
1919 achtete 125jäh.| Abwei- 1919 achtete 125jäh.|Abwei- 
r Tem- Mittel ' chung Tan Tem- Mittel | chung 
peratur | peratur 
1.— 5. Jänner 4.5 —2.5|-+7.0 | 30.— 4. Juli 13.8 19.31—5.5 
6.—10. 7308 2.9 Er oO O5: 18:9 19.600708 
11.—15. 1.4 —2.5/—+3.9 | 10.—14. 17.1. 19887 
16.—20 1.3 —1.91 3.2 | 15.—19. 12.97. 20, 2a 
21.—25. —1.4 —1.6|-+0.2 | 20.—24. 14.6. °202 21-26 
26.— 830. —1.8 —1.3| —0.5 | 25.—29. 15.9 20:21 
1.— 4. Februar —2.7 —0.7| —2.0 | 30.— 3. August 138210 20, Ser 
5.— 9 —4.5 —0.4) —4.1| 4— 8. 16637 20401 se 
10.—14 —3.2 —0.5| —2. 9.—13. 20:1 19 TERRA 
15.—19 0.6 0.01—+0.6 f 14.—18. 19.9 19,0 re 
20.—24 5.0.0.9] -+4.11 19.—23. 21.4 1, 0EE394 
24.—28. 16,5 1421179 
25.— 1. März 5.6 2.012458. 6 
DEE 5.9. 2.2|—+3.7 | 29.— 2. September 16.0 17.91—-1.9 
7.—11 78 2.91 +4.9 3.— 7. 17.9 17.00220%9 
12.—16 5.4 83.5/41.9| 8—12. 18.9) IGR2 207 
17.—21 2.1 4.4| -2.3 | 13.—17. 19.4 15.2) 44.2 
22.—26 4.7 4.9| —0.2 | 18.—22. 13.6 14.5I1—0.9 
27.—31 4.2 6.2] —2.0 | 23.—27. 13.87 13. 2,201 
1.— 5. April 5.0 7.31 —2,3 | 28.— 2. Oktober 16.8 13.217356 
6.—10. eek ee 14.1 2ER 
11.—15. 10.4 9.2)—+1.2| 8.12. 7.8 el era 
16.—20. 10.3 9.9|-+0.4 | 13.— 17. 7.4 9.9|—2.5° 
21.—25. 4.1 10.9] —6.8 | 18.—22. 6.4 8.81 —2.4 
26.—30 6.6 11.8| —5.2 | 23.—27. 7.1: Re 
1.— 5. Mai 8.4 12.91 —4.5 | 28.— 1. November 1.7.,, 6.81—5.14 
6.— 10. 10.0 13.8] —3.8]| 2.— 6. 2:1: 718.68 
=; 15.3 46.5)=1.2f 7—H. 5.2 4.764054 
16.—20. 8.8 15.2] —6.4 | 12.—16. 1.1:. ‚372968 
21.—25. 12.5 16.0] —3.5 | 17.—21. 0.9 3.01—-3.0' 
26.— 30. 14.4 16.6) —2.2 | 22.—26. 4.6 2.312.335 
31.— 4. Juni 15.9 17.4| —1.5 | 27.— 1. Dezember 3.9. SEE 20 
9.— 9 \ 16.0 17.9] —1.91 2.— 6. 9.8 1.0 144.8) 
10.—14 20.9 18.11+2.81 7.—11. 1.9. 0.4 |-2.1.59 
15.—19 18.3 17.9) —+0.4 | 12.—16. —0.1 —0.2 140.1 
20.—24 18.3 18.4) —+0.4 1 17.—21. —0.3 —0.8 |4-0.5 
25.—29 13.4 18.9| —5.5 | 22.—26. 4.0 —1.3|4+5.3 
27.—31. —0.1 —1.8|+1.7 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 5 Nr. 6 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 19. Februar 1920 


u Tu 


Prof. Dr. Alfred Tauber in Wien übersendet eine Mit- 
teilung mit dem Titel: Ȇber eine Beziehung zwischen 
Gleichungen und linearen Differentialgleichungen.: 


Das w. M. R. Wegscheider überreicht eine Abhandlung 
aus dem Institut für organische, Agrikultur- und Nahrungs- 
mittelchemie der Deutschen Technischen Hochschule in Brünn: 
»Untersuchungen über Lignin. Ill. Gewinnung einer 
Gerbsäure aus Lignosulfosäuren«, von M. Hönig und 
W. Fuchs. 

Aus allen Fraktionen der Lignosulfosäuren Kann man 
durch Kochen mit Barytwasser ein und dieselbe Substanz 
gewinnen, der die Bruttoformel 


CH, 0uSBa oder C,,H,,0,(0OCH,)(COO)(SO,)Ba 


zukommt. In ihr liegt das Baryumsalz einer Säure vor, die 
den Charakter einer Gerbsäure der Katechugruppe hat. Der 
Schwefelgehalt der Substanz modifiziert ihre Figenschaften 
als Gerbsäure nur wenig; vor allem in der Hinsicht, daß sie 
aus chromiertem Hautpulver etwas Chrom herauslöst. Die 
Ausbeute an Gerbsäure ist sehr befriedigend. 


i 10 


v 


Selbständige Werke oder neue, der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Eastman Kodak Company in Rochester: Abridget Scienti- 
fic Publications from the Research Laboratory of the 
Eastman Kodak Company, volume Il, 1917 — 1918. Ro- 
cheSter und New York, 1919; 8°. 

Meteorologisches Observatorium in Tartus “(Dorpat): 
Fünfzigjährige Mittelwerte aus den meteorologischen Beob- 
achtungen 1866 — 1915 für Dorpat. Tartus, 1919; 8°. 


Österreichische Staatsdruckere? in Wien. 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 Nr... 7 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 4. März 1920 


Das k.M. Prof. J. E. Hibsch dankt für die Bewilligung 
eines Druckkostenbeitrages zur Herausgabe der Karte des 
Pyropengebietes im Böhmischen Mittelgebirge. 


Dr. F. Aigner und Dr. A. Smekal sprechen den Dank aus 
für die Bewilligung einer Subvention zu Untersuchungen auf 
dem Gebiete der Röntgenstrahlung. 


Das w. M. Hofrat J. Hann übersendet eine Abhandlung 
von Prof. Dr. Heinrich Ficker in Graz mit dem... Titel: 
»Beziehungen zwischen Änderungen des Luftdruckes 
un daders Temperatur im!den unteren‘Schichten der 
Troposphäre (Zusammensetzung der Depressionen).« 

Die Untersuchung, die sich auf die Beobachtungen von 
16 russischen Stationen zwischen Eismeer und persischer 
Grenze und an 5 alpinen Höhenstationen gründet, weist 
nach, daß die als Depressionen bezeichneten Luftdruckgebilde 
sich aus zwei Systemen von Druckänderungen zusammen- 
setzen: Aus primären Druckänderungen, deren Ursache 
vermutlich im Sinne F.M. Exners in der Stratosphäre zu 
suchen ist und die in keiner Beziehung zu den Temperatur- 
vorgängen in den unteren Schichten der Troposphäre stehen; 


11 


—J 
DD 


ferner aus sekundären Druckänderungen, die ausschließlich 
durch den Wechsel verschieden temperierter Luftströmungen 
in den unteren Schichten erzeugt werden. Die sekundären 
Anderungen treten nur in Begleitung der primären auf, 
aber nicht umgekehrt. Bei vorhandener Verbindung beider 
Druckwellen — zusammengesetzte Depression — wird eine 
charakteristische, zeitliche Phasendifferenz beobachtet, die es 
gestattet, für sechs charakteristische Entwicklungsstadien der 
Depression die Temperaturänderungen festzustellen und. den 
komplexen Luftdruckgang in der Niederung wenigstens 
qualitativ in die primäre und sekundäre Schwankung auf- 
zulösen. 

Die Amplituden beider Druckwellen nehmen südwärts 
ab, aber die Amplitude der primären Welle in einem 
rascheren Verhältnis, so daß in niedriger Breite die Steig- 
und Failgebiete des Druckes immer ausgesprochener den 
Charakter sekundärer, thermischer Druckwellen . annehmen, 
während in hohen Breiten die Steig- und Fallgebiete des 
Druckes in viel höherem Grade durch die primären Vorgänge 
in hohen Schichten bestimmt sind, ein Verhältnis, das im 
Sommer noch ausgesprochener ist als im Winter. 

Die Veränderlichkeit des Luftdruckes im Ganzen wird 
zum weit überwiegenden: Teile durch die primären Druck- 
schwankungen diktiert; der Einfluß der Sekundärschwankungen 
auf die Veränderlichkeit des Druckes bedingt lediglich lokale 
Modifikationen. Der im Jahresmittel weit überwiegende Effekt 
der Primärschwankungen (hohen Depressionen) läßt sich 
dort nachweisen, wo ein genügend hohes Gebirge bei zu- 
wandernden, zusammengesetzten Depressionen die thermische 
Sekundärschwankung vollständig zerstört, so daß auf der 
Kammhöhe des Gebirges und auf der Leeseite nur mehr der 
Effekt der Primärschwankungen zur Beobachtung kommt 
(West- und Ostturkestan). 


Das k.M. Prof. F. Emich übersendet zwei Arbeiten aus 
dem Laboratorium für Allgemeine Chemie an der Technischen 
Hochschule Graz: 


3 


1. »Über eine neue Rubidium(Cäsium)—Silber— Gold- 
verbindung und ihre Verwendung zum mikro- 
chemischen Nachweis von Gold, Silber, Rubidium 
und Cäsiums, von Erich Bayer. 


D 


»Bemerkungen zu vorstehender Arbeit«, von k.M. 
F. Emich. 


In der Bayer’schen Arbeit wird folgendes festgestellt: Beim 
Zusammenbringen von Rubidium- oder Cäsiumchlorid mit 
salzsaurer Goldsilberlösung entstehen charakteristische kry- 
stallinische Ausscheidungen (Akademischer Anzeiger Nr. 22 vom 
31. Oktober 1918, mathem.-naturw. Klasse); das Rubidium- 
silbergoldchlorid bildet blutrote, nach Scharizer rhombische 
Prismen und Täfelchen, die Cäsiumverbindung kleine, undurch- 
sichtige Krystalle von vorwiegend Würfel- und Sternformen. 
Die Zusammensetzung der Verbindungen entspricht den 
Formeln: 


De a I, U 
(Ag;, Au,)Cl,.3RbCI, beziehungsweise (Ag,, Au,)C1,.3CsC], 


wobei Gold und Silber als vikarierende Bestandteile er- 
scheinen. 

Dabei fand Bayer auf 3 Atome Rubidium 0°81 bis 
1'04 Atome Silber und auf 3 Atome Cäsium 0°4 bis 118 
Atome Silber. 

Die Krystalle können zum mikrochemischen Nachweis von 
Gold, Silber, Rubidium und Cäsium verwendet werden, und 
zwar wurden die kleinsten nachweisbaren Mengen beziehungs- 
weise zu 0-1, 0:01, 0:1 und O0'1 Mikrogramm gefunden. 


Prof. Dr. Anton Gmeiner in Innsbruck übersendet eine 
Abhandlung mit dem Titel: Ȇber die Ketten der redu- 
zierten binären quadratischen Formen mit positiver 
nichtquadratischer Determinante.« 


Dr. Ernst Müller in Wien übersendet eine Abhandlung 
mit dem Titel: »Periodizitätseigenschaften arithmeti- 
scher Reihen in bezug auf gegebene Moduln im Zu- 
sammenhange mit der Theorie der Sternvielecke und 
den Simony’schen Knotenverbindungen.« 


Prof. Dr. A. Defant in Innsbruck übersendet eine Ab- 
handlung mit dem Titel: »Untersuchungen über die 
Gezeitenerscheinungen in Mittel- und Randmeeren, in 
Buchten und Kanälen. VI. Teil: Die Gezeiten und 
Gezeitenströmungen im lIrischen Kanal.« | 


Die Analyse der beobachteten Gezeitenerscheinungen, 
sowohl der vertikalen als auch der horizontalen periodischen 
Verschiebungen der Wassermassen des Verbindungskanals 
zwischen England und Irland ergab, daß die  halbtägigen 
Tiden des Irischen Kanals Mitschwingungsgezeiten der Wasser- 
massen des Kanals mit den äußeren, vor den beiden Mün- 
dungen vorhandenen Gezeitenbewegungen sind. Die hydro- 
dynamische Theorie erklärt in einfacher Weise die zwei 
Minima der Hubhöhe im St. Georg-Kanal und im Nordkanal 
und das bedeutende Maximum in der Irischen See, südlich 
deiInsel Man, weiters die stenochrone Anordnung der Hafen- 
zeiten in der Umgebung der Hubhöhenminima und die aus- 
gedehnte Homochromie bei der Insel Man. Auch die aus der 
Theorie gefolgerten Gezeitenströmungen stimmen in aus- 
gezeichneter Weise mit den beobachteten, sowohl was Größe 
und Richtung, als auch was ihre: Phase betrifft, überein. 

Die unregelmäßigen Gezeitenerscheinungen des irischen 
Hafens Courtown finden ihre Erklärung bei der Untersuchung 
der zwar sonst unbedeutenden Eintagstiden des Irischen 
Kanals, deren Kleinheit nicht so sehr eine Folge der Kon- 
figuration des betrachteten Kanals, als vielmehr eine Folge 
der an sich sehr kleinen Eintagstiden der westeuropäischen 
Meere vor den Mündungen des Kanals sind. | 

Die Untersuchung der Gezeitenerscheinungen des Eng- 
lischen Kanals und der südwestlichen Nordsee einerseits und 


75 


des Irischen Kanals andrerseits hat gezeigt, daß die Gezeiten 
dieser Verbindungskanäle gänzlich auf die periodischen Im- 
pulse zurückzuführen sind, welche ihre Wassermassen von 
außen her empfangen. Sie sind physikalische Notwendigkeiten, 
die nur auf Grund der hydrodynamischen Gesetze der 
Wasserbewegung erklärt und verstanden werden können. 


Das w. M. Hofrat F. Exner legt vor: »Beiträge zur 
Kenntnis... der. atmosphärischen Elektrizität. Nr. 61. 
Messungen des Ra-Emanationsgehaltes in der Luft 
von Innsbrucks, von Rely Zlatarovic. 


Es wurde eine neue Methode zur quantitativen Bestim- 
mung, des Ra-Emanationsgehaltes der Atmosphäre besprochen. 
Das Prinzip ist, die Luft des lonisationsgefäßes praktisch voll- 
kommen zu entemanieren und aus der Differenz der Sätti- 
gungsströme in gewöhnlicher und entemanierter Luft den 
Emanationsgehalt zu berechnen. Es wurde auf den besonderen 
Vorteil dieser Methode verwiesen, falls Schwankungen der 
äußeren durchdringenden Strahlung für den engeren Beob- 
achtungsort nicht in Betracht kommen: der in entemanierter 
Luft gemessene Sättigungsstrom ist eine Konstante. Diese 
»Entemanierungskonstante« wurde bei Verwendung von Kohle 
und Petroleum als Entemanierungsmittel bestimmt. Es sind 
49 Beobachtungsresultate tabellarisch mitgeteilt worden mit 
dem Mittelwerte 433. 10718 . und den Extremen 1110 
und 40.. Eine Abhängigkeit von meteorologischen Faktoren 
konnte nur bei Niederschlägen deutlich erkannt werden: der 
regenreicheren Zeit entsprechen niedrigere Emanationswerte. 


Prof. Dr. L. Kober legt ein Manuskript vor, betitelt: »Das 
östliche Tauernfenster. I. Teil: Allgemeine Ergeb- 
nisse.« 


I 
P} 


Die Arbeit ist dem Andenken an E. Suess und V. Uhlig 
gewidmet und ist die Zusammenfassung langjähriger For- 
schungen des Autors in den Tauern (1906—1914) mit Berück- 
sichtigung der Untersuchungen der Herren V. Uhlig, F.Becke, 
M. Stark, F. Trauthb, W. Schmidt und E. Seemann. 


Die Untersuchungen wurden mit Unterstützung der Aka- 
demie der Wissenschaften in Wien durchgeführt, wofür bestens 
gedankt wird. 


Folgende Ergebnisse lassen sich feststellen: 
1. Die Tauern sind ein Fenster. 


2. Der Deckenbau der Tauern ist prinzipiell der gleiche 
wie in den Westalpen. 


3. Die Deckenbewegung erfolgt von S gegen N. 


4. Alle Gesteine zeigen eine von diesem nordgerichteten 
Deckenbau überall sichtbare Abhängigkeit. In der Tiefe des 
Deckenbaues regionale Metamorphose, molekulare Umformung 
und mechanische Durchbewegung. Die höheren Decken zeigen 
diese letztere als Hauptcharakter. Je höher die Decke liegt, 
desto geringer die Deformation. 


5. Die Hauptbewegung S—N zeigt sich in Scharnieren, 
Stirnen, daneben kommen sekundäre transversale Aufwölbungen 
vor. 

6. Im Gebiete des Zentralgneises und der Schieferhülle 
werden folgende Decken unterschieden: Die Decke des An- 
kogel (tiefste), die Hochalmdecke, die Sonnblick- und 
die Modereckdecke (Decke der Roten Wand bei Stark). 


7. Diese Decken sind das Äquivalent der penninischen 
Decken der Westalpen. h 


8. Es ist notwendig, auch diese Einheit festzuhalten. Die 
Bezeichnung »lepontinisch«, die schon E. Suess als vor- 
läufig betrachtet hat, ist fallen zu lassen und+-dafür die ein- 
gebürgerte Bezeichnung der Westalpen, also »penninische« 
zu setzen (untere und mittlere lepontinische Decken, die 
Zentralgneis- und Schieferhülldecken [Kober] = penninische 
Decken): 


| 
u | 


9. Die Stirn der Modereck-, der Sonnblick-, zum Teil auch 
der Hochalmdecke, lassen sich erschließen. Die Modereck- 
decke, die höchste, erweist sich als eine Decke, die 20 km 
breit und dabei bloß zirka 500 m mächtig ist. 


"0. Die Spenmimnisenen "Decken des, östlichen 
Tauernfensters werden in der Schieferhülle als mesozoisch 
betrachtet (wahrscheinlich Trias—Unterkreide). Als Vertreter 
der Trias gelten besonders die auf dem Zentral unmittelbar 
aufliegenden Quarzite, die Dolomit-, Kalkmarmorserie! (Anger- 
talmarmore von F. Becke). 


11. Zwischen die penninischen Decken und die Radstädter 
Decke schiebt sich eine penninisch-ostalpine Misch- 
zone ein (Trümmerzone). 


12. Die Radstädter Decke teilt sich .der Hauptsache 
nach im Gebiete der Radstädter Tauern in eine tiefere, die 
(Klamm-) Hochfeinddecke, und eine höhere, die Pleißling- 
decke (Tauerndecke bei Uhlig). Zwischen beide schiebt sich 
als Antiklinalteil das Twenger Krystallin ein. Dieses bildet 
das Grundgebirge für die Radstädter Tauern. Das gesamte 
Deckensystem ist als ein normal nach Norden abfließender 
Deckenstrom zu erkennen. Die Verfaltungshypothese ist in 
gewisser Hinsicht aufzugeben, ebenso der anormale Kontakt, 
der in der Schichtfolge: Quarzit, Jurakalk etc. überall gesehen 
wurde. Die Serie: Quarzit, Rauchwacke, Bänderkalke, Dolomit 
ist als normale Triasfolge viel wahrscheinlicher. 


13. Die Radstädter Decke liegt unter dem Gros des 
ostalpinen Grundgebirges. Im Schladminger Massiv be- 
sonders schaltet sich zwischen dieses und der Radstädter 
Decke ein reduziertes Paläozoikum ein. Dadurch wird der. 
allgemeine Verband auch ein innigerer. Im Detail freilich finden 
wir tektonische Kontakte. 


14. Die Radstädter Decke liegt unter dem Östalpinen, ist 
mit diesem zu einer Deckenordnung zu verbinden. ‚Sie ist 


1 Der »Hochsteger Kalk« von Mühlbach im Salzachtale (Heritsch 
und Ohnesorge) ist ein Kalk der Grauwackenzone, der mit der pennini- 
‘schen Decke nichts zu tun hat. 


78 


eine unterostalpine Decke. Die Bezeichnung »oberlepon- 
tinisch«- wird somit fallen gelassen. Die ostalpinen Merkmale 
der Radstädter Decke sind: Ostalpines Grundgebirge, reduzierte 
Grauwackenzone (Carbon—Perm), Mesozoikum mit ostaipinem 
Anklängen (aber noch nicht typisch, nur in einzelnen Gliedern). 
Geringere Metamorphose und Entwicklung freieren Falten- 
baues. 

15. Das ostalpine Grundgebirge samt der daraufliegenden 
Grauwackenzone und dem Mandlingzug werden als ober- 
ostalpıne Decken zusammengefaßt (früher unterostalpin 
nach L. Kober). Der Mandlingzug ist durch das.Enns- und 
Salzachtal bis gegen Bruck—Fusch zu verfolgen. 

16. Darauf liegt die hochostalpine! Decke (früher 
obere ostalpine Decke), obere Grauwacken-, Hallstätter und 
hochalpine Decke. Diese liegen aber außerhalb des Rahmens. 
der Darstellung. 

17. Der stratigraphisch-fazielle Aufbau der einzelnen 
Decken ist ein ganz bestimmter. 


1 Diese Bezeichnung führe ich in Anlehnung an meine frühere Nomen- 
klatur <hochalpin< und auf Grund eines (brieflichen) Vorschlages von 
R. Staub und Albert Heim ein. 


Die Akademie der Wissenschaften hat in ihrer Sitzung 
am 26. Februar beschlossen, Dr. Josef Lindner in Graz zur 
Fortsetzung seiner Arbeit über das Convallarin aus den Erträg- 
nissen des Legates Scholz eine Subvention von K 3000 zu 
gewähren. 


Das Komitee für die Erbschaft Treitl hat in seiner 
Sitzung anı 29. Jänner beschlossen: 


1. k. M. Prof. J. E. Hibsch als Erhöhung des Druck- 
kostenbeitrages zur Herstellung seiner geologischen Karte 
des Pyropengebietes aus den Erträgnissen für 1919....K 3500, 

2. Dr. F. Aigner’ .und Dr. -A- Smekal in Wenrzus 
Spektraluntersuchungen der Röntgenstrahlung aus den Er- 
trägnissen, für 1920 EL ee er ee K 20.000, 


79 
3. der mathem.-naturw. Klasse aus den Erträgnissen 
des Jahres 1919 als Druckkostenbeitrag .......... K 28.500, 


2 sdem.-Phonoerammarehin .. sa22.:. 252 22.02 K 6000, 
und zwar je K 3000 auf Rechnung jeder Klasse, aus den 
Erträgnissen für 1920 
zu bewilligen. 


Ferner hat das Treitl-Komitee in der Sitzung am 26. d. 
beschlossen, der Biologischen Versuchsanstalt aus Anlaß 
der Sturmschäden am Gebäude als Subvention K 8000 und 
als Vorschuß K 6000 noch aus den Rücklässen des Jahres 
1919 zu bewilligen. 


Selbständige Werke oder neue, der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Wolfer, A.: Astronomische Mitteilungen, gegründet von 
Dr. Rudolf Wolt. Nr. CVIU. Zürich 1919; 8°. 


1 


CR 


ED En ei- 


at altern 


un 
in 
7 
Es 
Kr 
je 
x 


Fun n ir et at“ a H 
Br RT u PO TWERRER 67 Wet A 
RER EN RE 
% er, 2 h 


EN 
4 2 


1920 Nr. 1 
Jänner 


Monatliche Mitteilungen. 


der 


Zentralanstalt für Meteorologie und Geodynamik 


Wien, Hohe Warte 
48° 14°9' N.-Br., 16° 21:7' E. v. Gr., Seehöhe 2025 m. 


Luftdruck in Millimetern | Temperatur in Celsiusgraden 
as Abwei- Abwei- 
Ba Tages-|chung v Tages- ıchung v. 
21 ) 9! = EV ch 1 211 5 8 
1: =: mittel | Normal- i a .. | mittel! | Normal- 
| | stand | | stand 
| ı| I 
173228, 731.108729 | 31.0 14.9 0.83 2.4 1.6) 1.4 |+ 3.7 
2.129.3 31.4 34.4 | 831.7 | —14.2 12 1#7. 19 1.6 |+ 4.0 
3 | 86.6 36.4 36.2 | 36.4 |— 9.5 0.8 0.5. — 0.1 0.4 |+ 3.0 
4 | 86.7 . 38.7 42.0 | 39.1 |— 7.1 — 0.1 (055) 0.6 0.3 I+ 2.9 
5 | 46.2 48.8 53.0 | 49.3 |+ 3.3 1.2 0.7 — 1.0) 0.3 |+ 3.0 
DER BDA az. 08.10.5062 752.,8,1-2.2058 — 1.2 1.6 1.3) 0.6 |+ 3.4 
RarAr.ı 485 434 45,01 1.7 0.5 1.4 1.4) 1.1 |+ 4.0 
8.740225 36.2 34162 1.37.00 MW || 2 2.6 6.5 3.4 |+ 6.3 
31) 82.82: 31.9 735.85 |83.,71= 12,4 | 22 6.2 3.7 9.0 |+ 7.9 
10 2 FEB 007 38.57 735.00 Be a 3.8 1.4 2.1 |+ 4.9 
11 BER Te 88..002°..82.,0133:9,1—12,.3 | 10.4 124 Tas 10.0, er ba.7 
12 | 31.3 34.6 38.4 | 34.8 |—11.4 | 7.4 9.8 8.8 8.6 |+11.2 
18 186.6 38.5 37.901 837.7 |— 8.3 | 9.6 14.3 14.0 12.6 | +15.1 
147\785.9° 13048 142.80. 86.37 9.9 | Dt 7.20, 4.4 5.8 |+ 8.2 
15 | 52.4 55.5 56.3 | 54.7 |+ 8.5 | 2.4 3.8 3.2 3.0 |+ 5.3 
16 | 55.9 56.3 54.2 | 55.5 |+- 9.3 3.4 4.2 5°8| 4.5 |+ 6.6 
17 | 48.5 46.6 46.8 | 47.3 -H 1.1 | 8 10,0 9.31, 9.2 HT.2 
18 | 45.0 45.9 .46.3 | 45.7 |— 0.58 | 9.7 9.6 83. 92 Fri 
19 | 44.3 42.3 839.5 | 42.0 |— 4.2 | 8 11.9 Sl 9.6 |+11.4 
20 I 37.10 402 42.0 |189,80|—- 6.4: | 5.4 oe 22, 4.2 |+ 5.9 
Bi 247 39.07 786.18. 13917 6.5. | 1066) 4.1 0.8 2.1 + 3.8 
BR A110, ,46,000 50.0 146,0. —- 0.2, 2.6 3.0 1.9 2.5 |+ 4.1 
23 Dat 92.0, Dee 52.5 | 6] 1.0 26 0.0 1.2 (+ 2.8 
24 | 81.27 52.2 52.2 |61.9:|+ 5.8 | —'2.7 0.1 — 1.3)— 1.3 |+:.0.2 
25.| 52.2 52.3 52.6 | 52.4 |+ 6.3 | — 2.6 — 0.4 — 2.0 — 1.7 —. 12 
26 | 51.9 50.3 49.2 | 50.6 |+ 4.5 || — 0.2 2.1 — 1.8 0.0 |+ 1.4 
27 | 45.6 44.4 43.4 | 44.5 — 1.6) — 2.2 — 0.8 — 0.4— 1.1 |+ 0.3 
29. Som, Aa.) Ad 1.8 2.2 1.21 1.7 |+ 3.0 
208:.|-43.7-. 46.7 -.50,0 | 46:8 |+ 0.8 || — 0.4. —-1.6- — 2.01 — 4:3 0.90: 
BU ED2:8 .91..9.2 51.8 Ballen I 1.9008 0.92 0.0 
Bat 52.38 52.0 . 51.1 )51.8 |+ 5.8 | — 0.4 1.4 0.6 0.5 |+ 145 
4Mittel|743.49 743.53 743.98|743.67|— 2.44 20 = 2.8 3.1 14+ 5.2 
? | 


Eu Temperaturmittel?. 3.0° C. B . 
Zeitangaben, wo nicht andeıs angemerkt, in mittlerer Ortszeit; Stundenzählung bis 24 
ee. beginnend von Mitternacht = ON, 


Beobachtungen an der Zentralanstalt für Meteorologie 


48° 14:9' N-Breite. im Monate 
| Temperatur in Celsius | Dampfdruck in mm Feuchtigkeit in 0, | Ver- 
> x Pper se Were en dun- 
Tag | |. =. Tessa |& 8 jstung 
| Max. Min. |58#] #8. 7° 14h 9jh | "S 9 )-7h 146° 12h He linmmt 
| S3<| ass] ‚ mittel = 
| ee | a IE 
| 
1 2.4 0.0 ss I—- 2 A oe oe DR 96 98795 7:170.2 
2 2.0 1072 4 (0) a une) 4.9 97..98..93-1-9 0.0 
3 1.6. — 0.2 s 4.4 3.8 3.8 4.0| 90 81 84 | 85 || 0.4 
4 1.0 — 0.3 I u ee | 4.1 4.4 4.6 4.4 90. -93._96 | 93 10.0 
5 1.2 — 1.3 2 0| 4.8 4.7 4.0 #+.5| 97 :98 93 | 96 | 0.2 
6 2.1 — 1.7 5 | 40T A 4.5 95 95° 91792712050 
7 L.o 0.1 4 0 22.6 7426.74.16 4.61: 96° 927 9271793210050 
8 6.6 ORDH ST [ON ler 3 en 4.91 97 92° 64 184 14 
9 7.0 2.71 20.1 =, 9829 59:22, 533 5.4 ,,89- 78,209 E70 
10 4.3 0.81 2271 = 5 8.0, 24.0746 4.011 70. :66.. 907] Zoos 
11 4 12.8. 1245.|-34 1 111. 15,7 15,87..7.0% =B.21|, 060. 622 aa Er 
12 14.2 DRS | 88 3 6.3, Draw) 5.4, 82° 570.582) /0br dran 
13 14.9 4.51 35 BN-ET.I EN 7.41.2838 58.7597]768 10222 
147121022 420180 4 6.8 #429 46 5.1 SI HIER 1.8 
15 | 4.4 IA 2er Se a Ne 3.0 56 46 56 | 53:1 1.6 
16 (Ode 174 9 0) 3.8 244.,08 eh16 4.1 DT 67 166 | L.E 5 
17 Ka 697.128 2 BZ 2 00.080 6.7 Ser 78 | 7712.83 
18 10.4 Sm 238 ZU 05850. W0r8L 10:6 5.01.55 7028081 2682) SIEGE 
19 12129 7.2038 B) Be ee, Mes 4 Sosan 94 | 83 || 0.9 
20 8.9 Lt N) 47.9.6. 8.7.8.0 4..4|| 83.156 792% 1.2 % 
21 4.4 0043| 28.18: 3l| 3.6 3.7 45, 78.91 <70. Bir 9a oe 
22 3.1 0.4 6 0) 4.5 RANDR rd +.3 s1 7807 722 8217028 
23 2.35 — 0.7| 26 |— 3 3.4.3.4 3.8 3.9 70 261.0.82R azlan age 
24 0.7 — 2.8 Se! Se NE fee BE 90-85 90. | 8871 022 
25 I—0.2 — 3.0| 23 |— 6| 3.4 3:6 3.8 3.6|| 90 82 96 | 89 || 0.2 
26 2.1- 4#.0| 27 |— 6| 4.1.3.5 3.5 3.711 91 65 88.| 80 | 0.3 
27 || 3.0 — 3.8| 14 |— 7 3.5 3.9 4.2 | 3.9 90 90 94°) 91 || 0.1 
28. 8.5 °0,8| 12.1 — 4 4.4 4.0 4,62 4.5] 783 852 92 Bra 
29 0.8 — 2.2| 0.1 21 4.3.4.0 86.| 4.0 96 992.92, Baar 
30 10.7 — 2.2 DI, 2 001 2 818, 048 3.81 92 88 80,901. 0:0 
31 1.5 — 1.2 5 |— 2| 4.3 4,5 4.5 4.4] 96.88 . 95.| 93.1 0.25 
Mittel 9.0 0.9| 16.0/-0.7 A Arne AT, 4.7 St 17.7.8838 | Slam 
Summe | | 22.3 t 
| 


= &| |Dat. FE De a BEN 
gsläls REINER EIERN 
Bears 5.8.5 3,9 8.5.34 3%5 30563.5 
Sam 9 6.8 6.3 6.8 6.7 6.7.6.6 6.5 
3383 9.0 8.089 8.9 8.8.0 a rau 5 
as = 10.1 10.010.0 10.0 9.9 9.9.9.9 9.9 9.8 


Größter Niederschlag binnen 24 Stunden: 12.2 mm am 12. u. 13. Niederschlagshöhe:. 
73.8 mm Zahl der Tage mit e (x) 22 (10): Zahl der Tage mit=: 9; Zahl der Tage mitR: 0. 
Prozente der monatl. Sonnenscheindauer von der möglichen: 19 /,, von der mittleren: 82 %/,. 


’ In luftleerer Glashülle. 5 t 
2 Blankes Alkoholthermometer mit gegabeltem Gefäß, 0-06 m über einer freien Rasenfläche. 


und Geodynamik, Wien, XIX., Hohe Warte (2025 Meter), 


Jänner 1920. 16° 21°7' E-Länge v. Gr. 
= 
Bewölkung in Zehnteln des | Dauer | 
sichtbaren Himmelsgewölbes | des | 
Del | Bemerkungen 
= | 
En ei 21! = Stunden 
| | 
go 102%=? 10l=1 | 9.71 0.0 || el 945— 1020; =172 12 — nachts. 
101 10=1e60 10180 110.01 0.0 ||=! ganzen Tag; e!71 1330 — 
101x0 101 101x0 110.0 0.0 ||e® — 4, x071 530 — 1215, x0 17 — 
101%0 101 101%x0 [10.01 0.0 [|x071—1030, x0 11—12, x071 1445—19, 21—23. 
101 102=?e0 1010 [10.0] 0.0 || e%=:1”2 nachm. zeitw., x0 1740 —23; =172 tagsüber. 
I 
101 ‚2012 101 10.0 0.0 = 1mens., e0 1213; =! 15-17. 
101 101 101 10.01 0.0 \=:0715--14;=1 vorm. 
101=1 70 101 9.0) 2.3 ||=1mgns. u. abds.; eI71 2145 — 
20071 - 10071.  101 10.0) 0.1 ||e071—-685, 
7071. 100712 100 9.0) 2.9 ||e071 1740 —2035, 80 2245 —23. 
30-1 40-1 10180 5.7\ 5:6 ||ie0 171038, 80 12021. 
10lel 7071 101 9.01 2.5 || el 1—10, 0 2310 — 
10180 7172 0 5.7| 3.2 || e71—720, e1 222040. [14-15 Ya.Wv.135km'Std 
101 31 9 7.3| 2.2 || 0 230-330, 730-805, 071 940_1020, e071 1520-18 
11 20-1 80 3.7 6.6 || e071 21040; __0 mens. ; 
101 101 801 | 9.31 0.0 ||x0 AU 745 — 1120 zeitw., e0 1145, el 71 1450 — 1540, 
10160 10071 101el 10.01 0.2 ||oe1 3—7, e0 910750, 1445 —15, el 1830 — 
707180 9071 8071 | 8.0) 3.7 ||e971—1, 007,910, el 1050 —11. 
91 101 10lel | 9.7 0.2 ||e® 13, e071 17—23. 
10180 101 8071 | 9.31 0.0 || e071 310 —4, el 510—815, 
3071 701 1011 | 6.7) 6.4 |%0 e071 1540 —17, #117 — 
9510 101 9.7| 0.0 ||x9 e!71—410, 6071 730—9, 80 11— 12, 14—17 zeitw. 
som SozL. 10% 5 7 ACH 16.8 u 
80-1 100-1 g0 7.0) 0.1 ||-Imgas. 
70 10 0) 2.7| 2.6 ||ı-l mens. 
10071 10 9) 3.7 6.3 ||-1 mgns. 
101=071 10071 101x0 110.0) 0.0 ||x11745—22, e0”1 2310750; =1 mens. 
7071 -'10180 10071 | 9.01 0.0 ||e014—16. 
101 101=1 101=1x1/10.0 0.0 ||=:0mgns.,=1 ul”? abds.; APe0 16-18 ztw., #1 A01S- 
101x0  101=1 101 10.0 0.0 ||x071—1245; =1 tagsüber. 
101 101=1 101 10.01 0.0 ||x071 610755, &0 1430; =1 nachmittags und abends. 
8.6 8.1 a) SAT. 
DT, 


Er EEE Ta En EEE TEE EEE TEN EEE TEE SH TE Eu TEE EREB GEL RE TE WERL EL EL TEBEEE IEERGEL TE EEETELTER ER 
Ber aa Dee 22a 934095, 208,27. 28.759. 30. 31. |Mittel 
209 448%. 0408606. 0 A 9 19,1 ler 15 1 2er 

A,A A. 4,6 4.8,5.074.9 4.9 4.6 4.5 43 #2 4.0 3.9 3.8 3.6|4.0 

6.3 63 6.3.6.3. 6.4 6.4 6.5 6.5 6.5 6.5 6.5 6.4 6.4 6.4 6.4|6.5 

} 242.84 44.9.008,.9898. 300.302 8.28 0,00. Sahar8u 13: 85,.1.5841458,.07:8407880. 845 
R 9.6 9.6, 9,9.,9.5,:.9.5 9.4, 9.4.9,4 9.3:.9.35:9.3 19.8; 9.2: :9, 2: 9321 9.6 

# Zeichenerklärung: 

- Sonnenschein ©, Regen.e, Schnee x, Hagel:s, Graupeln A, Nebel=, Nebelreißen = 


Tau a, Reif —, Rauhreif \/, Glatteis ru, Sturm #, Gewitter RK, Wetterleuchten <, Schnee- 
gestöber $, Dunst co, Halo un Sonne ®, Kranz um Sonne (P, Halo um Mond []), Kranz 
um Mond W, Regenbogen N. ıeTr: = Regentropfen, «Fl. = Schneeflocken, Schneeflimmerchen. 


Beobachtungen an der Zentralanstalt für Meteorologie und Geodynamik, 
Wien, XIX., Hohe Warte (202°5 Meter), 


im Monate Jänner 1920. 


| Windrichtung und Stärke |Windgeschwindigkeit | Niederschlag, 2 
n. d. 12-stufigen Skala | in Met. in d. Sekunde in mm gemessen a 
Tag | En pe ze 21 
1 14h 21h | Mittel Maximumi | 7h 14h 21h |5 
| | | | 4 
1 — 0 !—..0%.,8SBEs 1 02320 WSWERT7E2 = 0.8@ — 
2 — OSTEN SET 087. W 9.5 | -- 1.9 2.9e | 
8 [WNW4 NW 3. NW 1 4,41 NW 12.17. 14.11.20 ED 
2: NW 1 Bel AD, 1.7 ESE 5.8] 1.83% 1.3%*  0.6x 
5 BEST ZENNERT Ne .2 2.6 N 9.5 | - 0.0%x 1.1=e 0.8=ix | Blf. 
6 NESISEESETIZESSER I 2.8| ESE 14.2 0.3=x: 0.2=:e — 
7 ESE 3 ...SEH 38 le A9n lan ir - 5 
8 SIE SESSERE NE SIWEES 2.1 | WSW 16.9 | _ — — 
% S 1-WSW3 WSW3| 4.7 W 185) 0.88 — — 
10 1 WSW.2: 778% 71.708 di, 22.65, VENnwv. ara _ _ 2.08 | —| 
11 wW5 WSW4A4 SSW 1 6.3 | WNW 27.9 | 0.le _ 0.70 | — 
12 |WNW4 WSW4 WSW 4 7.3 | WSW 21.3 |  4.le 5.7e _— |— 
13 Wa 4257.57 WISIWW6 8.4 W 25.9| 6.5e 0.0e —_ 
14 WBSW2. Ww1l ‚awee5 8.2 | WSW 37.6 | 0.40 0.20. 1.0e 
15 WNW6 NW 3 WNWA4 1205| D\INNVE232.0 0.3e —_ — 
16 WSWi WSW2 WSW5 5.9 | WSW 21.0 En 0.189 70.88 
17 IIVISIVV.02 So Wa iD DW Dr RD WE 526.9 3.86 0.5e 2.80 | - 
18 WEN 0 5 WE a Ve 9.5 Wu 226.5 3.4e 0.le — |- 
18) Nee 2 vs Bl 3.9 NE 21385 _ 0.0 0.38 | — 
20 WSW4 WNW4 WSWA4 | 6.8 | WSW 25.0 2.3e 0.le u 
21 WSW3 WSW3 Sl 4.2 | WSW 12.9 = 5.48 
22 NW 3 NW 3 WNW2 4.8| NW 141 6.0... 0.65", 0.08 
23 NW 42 Ne — 0 2.2. OWEN\WV- 8.9 _ — |-f 
24 — 0 ESEI —0 029 SE 7.9.9 _ = | 
2 = NONRESEI 0 0.3 W DEN = = un 
26 —u One END 0.7 N 9.8 = —_ = 
27 Zu ONE EI 0.38 | WSW 12.0 _ —_ 1:22 
28 wW2 —0 St 2.2 WE Der 6 0.3e 0.le 0.30 | — 
29 ESE 1 SE 2 ESE 1 3.1| ESE 9.9 0.1=: - 1.83% | — 
30 SSE1 SE 1 ESE 1 2.3| ESE 11.2 3.18 0.7% — |— 
31 SE 1 Sea 1.6 SE 5.3 0.2x -- 0e | — 
Mittel zZ 2.4 2.0 4.1 15.2 37.6 14.6. 2126 


Ergebnisse der Windaufzeichnungen (nach dem Schalenkreuz): 
N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW 
Häufigkeit, Stunden 
12 UPS ESS DT 25 129 106 69 46 10: 
Gesamtweg, Kilometer 
193 56 21 52 71 791 385 244 154 124 179 2882 3487 1475 7038 52 
Mittlere Geschwindigkeit, Meter ı. d. Sekunde 
21 14 Er EEE 3 3021 10° 37 2008227927 BD Bee 
Höchste Geschwindigkeit, Meter i d. Sekunde 
4,4 3.1 1.4 2.5 2.577.890 3.031 DU7ER BAER 
Anzahl der Wäindstillen (Stunden) = 102. 


[Se] 
a 
nl 
- 
| 
<> 


!Den Angaben des Dines’schen Druckrohr-Anemometers entnommen. 


Österreichische Staatsdruckerei. 2250 20 


E, : * 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 | Nr. 8 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 11. März 1920 


Erschienen: Monatshefte für Chemie, Bd. 40, Heft 8 bis 10. 


Dr. Karl Toldt jun. dankt für die Bewilligung einer 
Subvention für seine Untersuchungen über den Wechsel des 
Haarkleides der Säugetiere. 


Das k. M. Prof. F. Höhnel übersendet eine Abhandlung 
mit dem Titel: »Fragmente zur Mykologie (XXIV. Mit- 
teilung, Nr. 1189 bis 1214).« 


Ing. Rudolf Scheiber in Wien übersendet ein versiegeltes 
Schreiben zur Wahrung der Priorität mit der Aufschrift: 
»Bewegungsvorgänge in planetarischen Nebeln.« 


Das w. M. Prof. Dr. F. Hochstetter legt eine Abhandlung 
von Dr. Karl Pühringer aus dem Il. anatomischen Institute 
der Wiener Universität vor, betitelt: »Über Nervenkanäle 
des Schlüsselbeins.« 


86 


Plantae movae Sinenses, diagnosibus brevibus de- 
scriptae a Dr. Heinr. Handel-Mazzetti (2. Fortsetzung).! 


Corydalis hemidicentra Hand.-Mzt. 


Perennis compacta glaberrima. Rhizoma perpendiculare 
longum et crassum squamatum inferne fibrosum. Caulis termi- 
nalis tenuis usque ad 16 cm I1g. fasciculato-foliatus et -ramosus 
et hucusque squamis multis dissitis lanceolatis 5 — 10 mm Igis. 
obsitus, cum petiolorum partibus subglareosis flexuosus. Folia 
alterna carnosa infra cerino-glauca ternata; petiolus 35 —12 cm 
lg. sicut pedunculus sursum incrassatus; foliola lateralia arti- 
culato-sessilia, medium saepe brevipetiolatum vix maius, omnia 
late ovato-elliptica rotundata vel acutiuscula 10 — 25 mm |e. 
aequilata vel 2plo angustiora, marginibus angustissime revo-. 
lutis integerrima. Racemi ad caulem et ramos terminales 
pedunsulis 4—11cm Igis, 4—-Sflori, pedicellis tenuissimis 
erectopatulis summis 5 mm Ilgis. ad imos 3 cm Igos. elon- 
gatis umbelliformes, calcaribus arrectis comati. Bracteae imae 
2 cm, summae 2 mm 1g. omnes obovatae foliolis similes. Flos 
22—27 mm ]g. Sepala persistentia membranacea 1—1'5 mm 
diam. vix lacerata. Petala pallide violacea; exteriora ubique 
6 mm It. rotundata prorsus patula fornicata margine undulato- 
alata et dorso crista semiorbiculari 1'5 mm It. integra in- 
structa, superum cum calcare crasso lamina usque subdimidio 
longiore et aequilato rectiusculo obtusissimo, inferum supero 
subaequilatum et ad 2 mm longius basi subsaccato-truncatum; 
interiora paulo breviora anguste alata tenuiter unguiculata 
biloba lobis maioribus cochleatis atrocoeruleis apicibus co- 
haerentibus. Germen ellipticum stylo crassiusculo rectiusculo 
subtriplo longius; ovula pauca biseriata; stigma semilunare 
4cuspidatum. 

Prov. Yünnan bor.-oce.: In glareosis mobilibus calceis 
montis Piepun ad austro-or. oppidi Dschungdien (»Chungtien«), 
44 — 4600 m, legi 11. VII. 1914. 

Species e descriptione proxima (C. benecincta W. W. Sm. 
differt bracteis multo maioribus involucrum formantibus, pedi- 
cellis complanatis, calcare breviore. 


1 Vgl. Akademischer Anzeiger, 1920, Nr. 4 und 5. 


87 


Primula Dschungdienensis (Poissonmii X secundiflora) 
Hand.-Mzt. 


Folia oblonga, 2:5 xX11—3'8X13 cm. in petiolos breves 
latissime alatos sensim attenuata, rotundata, dense irregulariter 
argute denticulata, crassiuscula, cum caule et calycibus caesia, 
nervis secundariis utringue conspicuis, venulis indistinctis. 
Caulis 12 —40 cm I1g., florum verticillos paucos gerens et ad 
illos cum pedicellis parcissime farinosus. Bracteae lanceolato- 
subulatae, 5—7 mm lg. Flores 10 —15ni pedicellis 6 — 30 mm 
lgis. Calyx campanulato-infundibuliformis, 5—6 mm Ig. ad), 
in dentes ovato-triangulares acutos fissus, herbaceus extus 
fuscescens concolor intus pallidus et ad marginem et sinus 
interdum etiam extus sparse farinosus. Corolla longistyla 
kermesina + 2 cm 1g. et It.; tubus latissimus sursum dilatatus 
calyce subduplo longior; limbus late infundibuliformis lobis 
aequilatis ac longis paulum emarginatis; stamina infra medium 
tubum inserta filamentis subnullis, polline maxima parte sterili. 
Capsula globosa calyce duplo brevior; stylus 6 mm Ig. 

Eiusdem ditionis ad fontes prope vicum Hsiau—Dschung- 
dien, 3350 m inter parentes, legi 9. VIII. 1914. 

A Pr. secundiflorae Franch., cui propior, speciminibus 
praesentibus opimis 80 cm altis. differt foliis latioribus crassis 
caesiis, caule minus farinoso, calyce minore pallidiore extus 
nec farinoso- nec membranaceo-striato angustius dentato, 
corollae limbo paulum planiore, a Pr. Poissonii Franch. 
calyce maiore minus fisso farinosulo, corollae limbo infundi- 
buliformi lobis minus profunde emarginatis etc, ab utraque 
corolla paulum maiore atriore, capsula minuta. 


Primnla cyclostegia Hand.-Mzt. 


Sect. Tenellae Pax. 

Gregaria rhizomate tenui foliis emortuis involucrato. Folia 
numerosa 3—8 mm lg. carnosula infra praeter nervos flavo- 
farinosa; lamina rhombeo-orbicularis in petiolum aequilongum 
anguste integro-alatum sensim attenuata, dentibus utrinque 
2-—-7 aequalibus lanceolatis obtusis ultra !/, incisa. Scapus 
unicus 10—32 mm Ig., tenuis rigidus cum bracteis calycibus- 


88 


que marginibus saepe erosulis farinoso-glandulosus, - uni-, 
rarissime 2florus. Bracteae 3, exterior calycem dimidium 
paulo superans orbicularis vel rarius late ovata, interiores 
saepe minores. Flores subsessiles. Calyx late campanulatus 
4—5'5 mm Ig. ultra 1/,—ad !/, in dentes oblongos vel ob- 
ovatos & obtusos fissus. Corolla intense violacea; tubus cylin- 
dricus calyce 1 mm longior, fauce annulo densissimo pilorum 
alborum clausus; limbus 14—20 mm diam., planiusculus, ad 
basin Sfidus lobis versus medium bilobis laciniis 2—3 mm It. 
obtusissimis et saepe crenulatis. Antherae minutae 'subsessiles. 
Capsula calyce paulo brevior. | 

Eiusdem ditionis in fossis nivalibus montis Piepun copiose, 
substr. calceo, 44— 4700 m, legi 11. VIII. 1914. 

Species bracteis latis insignis, Pr. bellae Franch. proxima 
foliis albofarinosis, pedunculis pro foliis brevioribus, bracteis, 
corolla maiore, calycis lobis deltoideo-ovatis acutis diversae; 
species nuper in sectione descriptae magis differunt. 


Pedicularis parvifolia Hand.-Mzt. 


Sect. Longirostres 8 Siphonanthae A Eusiphonanthae 
Bram: N 

Rhizoma simplex, breve, radices longas tenuissimas, 
folia perpauca, caulem singulum gracilimum 1—3 cm Ie. 
erectum simplicem teretem aphyllum vel 1—2 folium cum 
foliis glaberrimum edens. Folia alterna, oblonga, 2—5 mm Ieg. 
et subdimidio angustiora, in lobos 2—4jugos late rectangu- 
lari-ovatos crenatos fere ad medianum vix conspicuum fissa 
carnosa subtus dense impresse reticulata, petiolis tenuibus 
2—7 mm lg. Bracteae submaiores, ceterum aequales. Flores 
1—2, 19 — 2:5 mm 1g., pedicellis 1— 2:5 mm 1g. Calyx herba- 
ceus ovatus, 6—7xX3 mm, nervis quinis subalatis sparsissime 
longipilosis, ore subtilissime ciliatus, antice ultra !/, fissus, 
ad 5—6tam partem in lobos 4 petiolato-flabellatos argute 
paucidentatos et posticum minutum erosum incisus. Corolla 
membranacea intense rosea; tubus anguste cylindricus 
aequalis vix ultra 1 mm crassus calyce 2!/, plo longior rectus 
medio extus puberulus et sursum cum lateribus galeae et 


ik Di 


89 


basi labii inferi glandulis subsessilibus adspersus; labium 
inferum 12—14 mm It. et fere Ig., lobis lateralibus tubum 
amplectentibus rotundis transverse latioribus, medio porrecto 
cordato 3 mm Ig. et It, margine repando subtiliter dense 
ciliatum; superum parte basali paulum inclinata tubo aequi- 
lata 3 mm 1g., galea horizontali 3— 2 mm lg. 2'5 mm \t., 
crista angusta subdeclivi antice truncata, margine infero 
convexulo, rostro 4—5 mm Ig. oblique deflexo rectiusculo 
tenui breviter fisso. Filamenta apice tubi inserta, 2 apice 
villosa; antherae basi acutae, cohaerentes. Stylus inclusus. 

Eiusdem ditionis in fossis nivalibus montis Piepun 
substr. calceo, 44— 4700 m, leg. 11. VIII. 1914. 

Species isolata prope ser. 5 Pumiliones ponenda, quibus 
cespitosis etc. haud arcte affinis est. 


Österreichische Staatsdruckerei. 503 20, 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 Nr. 9 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 18. März. 1920 


Erschienen: Sitzungsberichte, Bd. 128, Abt. I, Heft 2 und 3; — Abt. Ila, 
Heft 4, Heft 5; — Abt. IIb, Heft 3 und 4. 


Dr. Josef Lindner in Graz dankt für die Bewilligung 
einer Subvention zur Fortsetzung seiner Arbeit über das Kon- 
vallerin. 


Prof. Felix Ehrenhaft und Dr. Kurt Konstantinowsky 
übersenden eine vorläufige Mitteilung: »Transversaleffekt 
des®Piechtesyauftdie Mäterie’ beider Photöpherese«, 

Außer der lichtpositiven oder lichtnegativen Photophorese 
(Fortbewegung von Probekörpern im oder entgegen dem 
Sinne der Fortpflanzung des Lichtstrahles, longitudinaler 
Effekt) werden auch Bewegungsimpulse senkrecht zum 
Lichtstrahle auf die Materie übertragen (transversaler Effekt), 
wie die Beobachtung nach der Ehrenhaft’schen Methode zeigt. 
Diese Impulse scheinen durch den Gradienten der Licht- 
intensität des Lichtsirahlquerschnittes (vregl. F. Ehrenhaft, 
Ann. d. Phys. 56, 122, 1918) hervorgerufen zu werden. Denn 
ein  Probekörper, der durch Gravitations- oder elektrische 
Kräfte quer durch einen Lichtstrahl gezogen wird, wird beim 
Eintritt in den Lichtstrahl in seiner Bewegung gehemmt und 


13 


92 


beim Verlassen desselben beschleunigt. Wird in erster An- 
näherung die photophoretische Transversalkraft dem Licht- 
gradienten proportional gesetzt, so ergeben vorläufige Ver- 
suche mit Selen-Probekörpern eine Intensitätsverteilung im 
(Juerschnitte eines nichthomogenen Lichtstrahles, wie sie 
nach anderen Messungen zu erwarten ist. Dieser Effekt wird 
nunmehr an Probekörpern verschiedenen Materiales und in 
verschiedenen Gasen bei verschiedenen Gasdrucken untersucht. 


Prof. Dr. Robert Sternecx ın Graz übersendet eine 
Abhandlung mit dem Titel: »Die Gezeiten der Ozeane« 
(1. Mitteilung). 

Daß das Problem der ÖOzeangezeiten bisher noch als 
vollständig ungelöst bezeichnet werden muß, hat heute nicht 
mehr in dem Mangel an entsprechenden Beobachtungen 
seinen Grund, vielmehr in dem Umstande, daß es eben bisher 
nicht gelungen ist, das Chaos der Beobachtungsdaten ohne 
Verwendung irgend eines ordnenden Prinzips zu überblicken. 
Ein solches zu finden, ist der Zweck der vorliegenden 
Abhandlung, in der die Untersuchung mit Hilfe eines außer- 
ordentlich einfachen mathematischen Gesichtspunktes auf 
die Betrachtung synchroner Schwingungen zurückgeführt 
wird. Man kann nämlich an jeder einzelnen Stelle des Ozeans 
die Gezeitenbewegung, die den vereinigten Halbtags- 
komponenten zur Zeit der Syzygien entspricht, in zwei 
Schwingungen mit ein für allemal fest angenommenen, von 
einander aber um ein Viertel der Periode verschiedenen 
Epochen zerlegen, als welche die Zeiten O0" und 3" 
(Greenwich) gewählt wurden. Dieses einfache Zerlegungs- 
prinzip, das sich bereits in früheren Arbeiten des Verfassers 
als sehr nützlich erwiesen hat, führt offenbar dazu, die zur 
Beobachtung gelangenden Gezeitenerscheinungen als das 
Ergebnis des gleichzeitigen Vorhandenseins zweier das ganze 
Weltmeer umfassenden Systeme stehender Schwingungen 
mit den genannten Epochen aufzufassen, so daß es sich zur 
näheren Beschreibung vor allem um die Aufsuchung der 


ae) 
& 


Knotenlinien jedes dieser beiden Schwingungssysteme handelt. 
Diese gelang unter Anwendung eines die Anschauung 
wesentlich unterstützenden Hilfsmittels. 

Das Netz dieser Knotenlinien, die mit den Flutstunden- 
linien für 3" und 9" einerseits, für 0" und 6" andrerseits 
identisch sind, läßt jedes der beiden Systeme als eine Schar 
von Parallelkurven erkennen -mit der für ein System von 
Knotenlinien charakteristischen Eigenschaft, daß der Abstand 
der ersten Kurve vom Festlande ungefähr halb so groß ist 
als der Abstand zweier Parallelkurven untereinander. 
Letzterer ist eine Funktion der Meerestiefe und stimmt im 
allgemeinen gut mit der Merian’'schen Formel. Um jeden 
Schnittpunkt zweier Knotenlinien verschiedener Systeme 
entwickelt sich ferner eine sogenannte Amphidromie, d. h. eine 
sternförmige Anordnung sämtlicher Flutstundenlinien und 
zwar ergeben sich (von den Nebenmeeren abgesehen) im 
Atlantischen Ozean zwei, im Indischen vier und im Stillen Ozean 
sechs derartige Amphidromien, von denen man bisher (nach 
Harris) im Indischen Ozean bloß eine und im Pazifischen 
bloß drei kannte. Zwei unmittelbar benachbarte Amphi- 
dromien haben immer den entgegengesetzten Umlaufsinn. 

Damit ist nun, wenigstens in den Hauptzügen, eine Über- 
sicht über die halbtägigen Gezeitenerscheinungen in den Welt- 
meeren gewonnen, und zwar sind die Ergebnisse vollkommen 
im Einklang mit den einfachsten Grundsätzen der Hydıo- 
dynamik. Zur Entstehung stehender Schwingungen ist es 
nämlich durchaus nicht nötig (wie man vielfach angenommen 
hat), daß der betreffende Meeresteil auf die Periode der Be- 
wegung genau abgestimmt sei; vielmehr wird jedes irgendwie 
geformte Wasserbecken auf periodische Kräfte, wie die flut- ' 
erzeugenden Kräfte es sind, mit stehenden Schwingungen 
reagieren müssen, nur wird natürlich die Lage der Knoten- 
linien und insbesondere auch die Amplitude von der speziellen 
Konfiguration und den Dimensionen in besonderem Maße 
abhängig sein. Da man nun die periodischen Kräfte, die auf 
jedes einzelne Wasserteilchen einwirken, in zwei gleichfalls 
periodische Komponenten mit vorgeschriebenen, um 3 Stunden 
verschiedenen Epochen zerlegen kann, so ist eigentlich von 


94 

vornherein nichts anderes zu erwarten, als daß sich auch 
zwei voneinander unabhängige Systeme stehender Wellen in 
den Ozeanen ausbilden werden. Neben der Feststellung dieser 
Tatsache besteht das Ergebnis der vorliegenden Untersuchung 
vor allem in einer neuen Weltkarte der Isorhachien, der noch 
zwei speziellere Zeichnungen für die Gebiete der Nordsee 
und des australasiatischen Mittelmeeres beigefügt sind. 


Das k. M. Prof. Dr. Anton Skrabal in Graz übersendet 
folgende Abhandlungen; 


1. Ȇber die alkalische Verseifung der Ester der 
symmetrischen Oxalsäurehomologen«, von Anton 
Skrabal und Erna Singer. 


2. »Zur Kenntnis von Harzbestandteilen.: VL Mit 
teilung«, von Dr. Alois Zinke, Alfred Friedrich und 
Alexander Rollett. 


Dr. Karl Federhofer in Graz übersendet eine Abhandlung 
mit dem Titel: »Zur Bewegung der veränderlichen 
Masse.« 


Das w. M. Prof. R. Wegscheider überreicht eine Abhand- 
lung aus dem I. Chemischen Laboratorium der Universität 
Wien: »Über das Loturin«, von Ernst Späth. 

Verfasser zeigt, daß das von OÖ. Hesse aus Symplocos 
racemosa isolierte Loturin identisch ist mit Aribin und Har- 
man und demnach die Formel C..H,,N, hat. 

Prof. Wegscheider überreicht ferner eine Abhandlung: 
»Löslichkeitsbeeinflussung von Chlorat durch Chlorid 
und ihre Abhängigkeit von der Temperatur«, von Jean 
Billiter. 


N 


95 


Das w. M. Hofrat Hans Molisch überreicht eine im 
pflanzenphysiologischen Institut der Wiener Universität von 
Hermann Brunswik ausgeführte Arbeit: »Über das Vor- 
kommen von Gipskrystallen bei den Tamariceae.« 

1. Die bei den Tamaricaceen vorkommenden Krystalle 
bestehen nicht, wie man bisher angenommen hat, aus Kalk- 
oxalat, sondern aus Gips. 

2. Ihre Gipsnatur wurde mikro-, makrochemisch und kry- 
stallographisch erwiesen. 

3. Das Vorkommen der Krystalle innerhalb der Familie 
der Tamaricaceae erstreckt sich in stärkerem oder geringerem 
Maße auf sämtliche untersuchte Arten ihrer vier Gattungen 
Tamarix, Reaumuria, Myricaria, Hololachne. 

4. Die Arten von Fonguiera (jetzt Fonguieraceae) ent- 
halten keine Gips-, wohl aber Kalkoxalatkrystalle. Es ist dies 
ein neuer Beweis für die Berechtigung der erfolgten Abtren- 
nung von Fouquiera als eigene Familie. Auch die nahe ver- 
wandten Frankeniaceae führen bloß Oxalat-Krystalle. 

5... Die: Lokalisation der Gipskrystalle, in ‚der ein- 
zelnen Pflanze ist folgende: Im Mesophyll, besonders längs 
den Blattnerven, entlang der Leitbündel in Mark und Rinde, 
dort häufig in sklerenchymatischen Zellen. Unter Umständen 
sind Pflanzenteile, z. B. das Mesophyli (Reaumuria) oder der 
Stengelfuß einjähriger Zweige (Tamariy) dicht angefüllt mit 
Gipskrystallen. 


Die Akademie der Wissenschaften hat in ihrer 
Gesamtsitzung am 19. März folgende Subventionen bewilligt: 


ix. w. M. Prof. Karl Diemer für die Herstellung von., 
9 Tafeln zu seiner Arbeit »Neue Tropitoidea aus den Hall- 
stätter Kalken des Salzkammergutes« ........:: RK 3000 : — 
aus den Erträgnissen der Boue-Stiftung und .. » 3400° — 
aus den Rücklässen der Erbschaft Strohmayer; 

2. Prof. Dr. Egon Schweidler in Innsbruck zur Fort- 
führung und Ausgestaltung seiner Jluftelektrischen Uhnter- 
Buchungen. „a. ae ie K 2000: — 
aus dem Legate Scholz. 


96 


Selbständige Werke oder neue, der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Koninklijke Natuurkundige Vereeniging in Batavia- 
Weltevreden: Het Idjen-Hoogland. Monografie V. Afleve- 
ring I. Het Klimat van den Idfen, door Dr. C. Braak. 
Groß-4°. 

Oberlin College in Oberlin: Laboratory Bulletin No 16. The 
Relation of the Body Temperature of Certain Cold-blooded 
Animals to that of their Environment. By Charles G. 
Rogers and Elsie M. Lewis. (Reprinted from Biological 
Bulletin, Vol. XXXL No 1, July, 1916). Oberlin, Ohio, 
1910,70. 

Ruths, Ch, Dr.: Ein neues Gebiet der Astronomie  (Sonder- 
abdruck aus der Astronomischen Zeitschrift, XI. Jahr- 
gang 1918, Nr. 5). Hamburg, 1918; 4°. | 

Ufficio idrografico di Pola: Gruppo II. Rapporto annuale 
delle osservazioni meteorologiche, magnetiche e sismiche. 
Nuova serie, vol. XXIIl. Osservazioni dell’anno 1918. 
Pubblicate dalla sezione »Geofisica«. Pola, 1920; Groß-4°. 


97 


.. 1920 Nr, 2 
Februar 


Monatliche Mitteilungen 
der 
Zentralanstalt für Meteorologie und Geodynamik 


Wien, Hohe Warte 
48° 14:9' N.-Br., 16' 21:7' E. v. Gr., Seehöhe 202-5 m. 


| Luftdruck in Millimeter Temperatur in Celsiusgraden 
Bi | Abwei- I Abwei- 
o ah jan oh Tages-chungv. -, jan oyh Tages- |chung v. 
‚ mittel | Normal- A | mittel1 |Normal- 
| v | stand rt stand 
1 | 746.3 748.8 754.4 | 49.8 |+ 3.9 0.5 6.4 9.8 4.1 |+ 4.9 
2 57.9 58.5 59.8 | 58.7 |+12.8 4.9 3.6 Be ee 
3 60.1. 60.0 59.7 | 59.9 |+14.0 4.2 m] 129 4.3 |-+ 4.8 
4 98.2..57.0 57.8 | 97.7 |+11.9 | —'0.2 030.6. 1—.0.2 14- 0.3 
5 Sen el er ele — (U. 125 231 L2Or ERS 
6 61.4 62.0 62.5 | 62.0 |+-16.3 | 3.0 II, ba 1 es 
7 62.4 61.3 60.7 | 61.5 |+4+15.8 | — 2.2 3.8 2.5 1.4 |+ 1.8 
8 59.6 58.3 58.2 158.7 |+13.1 | — 1.2 3.2 2.8 2.3 + 2.7 
9 57.1 55.5 54.2 | 55.6 |+10.0 | — 3.8 3.1 2,8 0.7 + 1.2 
10 51.7 47.7 .44.3 | 47.9 + 2.4 3.4 OR 8.8 6.3 + 6.8 
11 40.8: 37.7: 36.2 || 83.2 TR 7.4 8.5 8.3 8.1 + 8.6 
12 39.6 41.8 46.7 | 42.7 |— 2,7 2.4 9.9 4.4 4.2 + 4.8 
13 50.3. :49.8 47.3 | 49.1 |+ 3.7 2.4 4.5 18 2.9 + 3.4 
14 44.4 43.9 44.5 | 44.3 |— 1.0 0.6 8.5 7.2 3.4 + 5.8 
15 45.4 47.0 49.0 | 47.1 |+ 1.9 6.9 4.8 2.0 4.4 + 4.7 
16 49.5 50.3 50.7 | 580.2 |+ 5.1 || — 2.1 347 1%2 0.9 |+ 1.0 
17 50.7 51.0 51.5 | 51.1 |+ 6.0 0.4 4.4 2.1|: 2.3 |+4+ 2.3 
18 51.8 51.5 51.6 | 51.6 I4+- 6.6 | — 0.5 9.7 2.0) 2.4 |+ 2.2 
19 5025: .49.007 43.3 149,52 2.4 0.0 6.8 NEE 3200-1 286 
20 46.6 45.0 43.4 | 45.0 |+ 0.2 || — 0.3 4.3 2.4| 2.114 1.6 
21 41.5 41.4 42.3 | 41.7 |— 2.9 el 3.9 2.8 2.6 + 1.9 
22 45.1 47.6 50.9 | 47.9 |+ 3.4 Io, 4.7 4.6 3.7 |-+ 2.8 
23 54.4 54.5 55.1 | 54.6 |+10.2 3-2 7.9 3.7 4.8 + 3.7 
24 54.4 53.0 52.4 | 53.3 |+ 9.0 || — 0.9 6.9 3.3 3.1 + 1.8 
25 50.38 49.6 48.2 | 49.5 |+ 5.4 | — 0.1 10.4 9.9 5.2 |+ 3.6 
26 47.5. 45.9 45.1 | 46.2 |+ 2.3 0. 6.6 2 8.1..3.2 12.1.4 
27 45.9 42.0 36.0 | 41.2 |— 2.6 7: 10:8 6.7 5.4 |+ 6.4 
28 41.8 48.2 53 47.7 + 4.2 2.9 +.9 ED en 
29 55.2 54.3 54.1 | 54.5 |+11.1 1.6 8.9 7.51 6.1 + 4.0 
30 | 
31 | 
Mittel|750.99 750.70 750.94|750.87|+ 5.85 1.4 9.6 3,0: |. Su me a 


Temperaturmittel?: 3.6° C. 
_ Zeitangaben, wo nicht anders angemerkt, in Mittlerer Ortszeit; Stundenzählung bis 24 
b beginnend von Mitternacht = ON. 


211, (75.2, 9. 8.5 
215.7, 2,9, 9. 3.6 
serichtigung: Im Jänner 1920 niedrigster Luftdruck 29-1 am 1. 


98 
Beobachtungen an der Zentralanstalt für Meteorologie 
48° 14°9' N.-Breite. im Monate 
Temperatur in Celsius | Dampfdruck in mm | Feuchtigkeit in ®/, || Ver- 
= je mr ee || © = 
Tag | a 5 USE hm ||stung 
| Max. Min. | 888588] -7n | 14m 210 |Ta885-| 7m | 14m. 21% | SS linmm 
“| aselusal mittel SE 
Se en | El „ 
Ren a t | [= \ I | ie 
| RR N ale) 0| 4.7 5.91 4.4 | 5.0|| 98 :82 65 | 82 || 0.4 
2 See all 4.3 5,1 5.3 |. 4,9] .68 86 sp eco 
3 EEE 2| 4.9 4.2 4,7| 4.6| 70 55 02 Ton 
4 Harz ae 45 4.5.4204 100 
5 De (ET Sr | 4.0 4.0 4.5 4.21 90 78 857) 821,088 
6 74 0.2.31 |e- al 3.5 3/0084 93,4 171 631 :03 Br 
7 ı7ain,a) Bol 2lı 3.30 amate "als 86 20 arme 
N 5,4, 1.2] 81 18] 2.5.1.9 2,51, 2,31 60. 29,14 
9 3.9 — 4.0| 29 |— S| 2.9 3.8 2.9 3.2 83 66 5271071028 
10 9.0 Bw Dal BD une 2.6|| 55: 33726 Ba 
11 9.80 105199 15 3l| 5.5 5.5 5.3 | 5.4|| 272 66 64 | 67 11.6 
12 a Ol. 4.4 4.0.3.6 |. 4.01. 81: 57. 57.) Basen 
13 #5 .1,5| 30 | ıl. 3.4 4.0.3.9 | 3.8| 62 83) 7a 
14 9.17. 0.51 85 | Bl 4.305.158] 5.1 00/26 7 
15 Til 1422415 41.5.2 4908:6 | W.6|): 78 76.684) Mas ONE 
16 4.5 22 27 1.6103.5 4.0.4.1. |:8,9|..88 SB7. st ae 
17 4.7 » 10.1127 \-- 2], 3.8 4380, 2.0|, 8 08 72,7 u 
18 6.0. — 1.1] 31. 3] 03.9) 4.3, 472 1.4.0. 892 68. 79a za 
19 74. 0.1 31 18] 4.2: 4.8 4.4 |. 4,5 9165 sa 
20 6.3: — 086] 29. ı || 2.3 A401 A;8 | #6 91 79. Stasi 
21 a Ball 0, 4,2 4.2,4.3| 4.2|.'85 21, 76. ZoEees 
22 4.8, HB 01 A.3 4,7 ,4.5| A5|.'82 73 Il 
23 RS ao ee 2|. 4.7 4.42.4,61|:.4.6| 81 57.77. | von 
24 8.3 —1.0| 34 |—5| 4.0.5.3 5.11 4.8, 98 717 ses ea 
>5 113.0 — 043| 29 | = A| 4.2 5.4 7543 |. %.01..96 -570 79 frz 
26 6.8 — 0.5) 31 |— Al. 4.4 5.2.5.0. 4.91 95 71, 89, 85 0085 
»7 112.0 3830| 36.—- ıl 6.1 4.4) 5.6.) 5:41.78 45,70 Koss 
28 Are 2,4020 0. 3.3 3.0.3.1 1 2:1|, 61 48, 52 anne 
29 9.3 1.01 86 1 al 8.4 3.4 2.11 3.0] '66- 20-27 er 
2 
31 
Mittel | 6.4 0,4.124.5.1-1.6|. 4.1 43,411] 4.2| Si 63.70 zaes 
Summe J IS 
FE nal”. 12.7 3. rer De a 
S #15 8ln.a01.6 2.302,83 22012.0 1.711.418 1/2:1.52.1 Sen 
Baln1n 3,6 3:58.4 3.5 3.5 3.5 3.5 3.43.4 3.39.23. SoSe 
26 || 6.2 6.2 6.2.6.2 6.1.6.1 6.1 6.0 5.9 5.8. 5.95.08. 800085 
3.3|*|318.0 17.9%7.9%7.9 797.9 7.8.7.8 7.07 7.07 °7.71.0 7,0 
a.) 19.2:9.% 9.292 9.2. 9.29.2.9:2 94.0.1799 a Da 


Größter Niederschlag binnen 24 Stunden: 15.1 mm am 1. Niederschlagshöhe: 37.9 mm. 
Zahl der Tage mit e (x): 10; Zahl der Tage mit =: 3; Zahl der Tage mit R: 0. 
Prozente der monatl. Sonnenscheindauer von der möglichen: 44%/,, von der mittleren: 149 0/,. 


) In luftleerer Glashülle. 
>) Blankes Alkoholthermometer mit gegabeltem Gefäß, 0:06 m über einer freien Rasenfläche, 


und Geodynamik, Wien, XIX., Hohe Warte (202:5 Meter). 


Februar 1920. 162217‘ E.-Länge v..Gr. 
= j M T BIEISsE su 
Bewölkung in Zehnteln des | Dauer 
R . .. || | 
sichtbaren Himmelsgewölbes |, des | 
> Sonnen- ; 
"HlliS@Hein® Bemerkungen 
hı Ah DEBT & = Il in | 
y 14 21 = Stunden 
1018! 10180 100 10.01 0.0 || e0=1730 (510: =1 vorm. 
101 10lel 100-180 110.01 0.0 |e1l9-—-16, e!-1 1830-2350, 
90-1 30-1 0) Mal 287 - 
101=1 101=1 10l=1 [10.0 0.0 ||=.0"1 7. Tagzeitw.; ul”? mgns., =17? ganzen Tag. 
100-1 101 9gu=1 9.71 0.0 ||xFl. 14— 1520; =071 his 4, 071 2030, 
g0-1 10 1) 3.01 9.0 || mens. 
0) 301 0) 1.01 9.0 ul mens. 
0 ) 0) 0.01 9.4 _ 
0) 0) 0 0.01 8.5 [1 mens. 
90-1 80-1 101 9.01 1.8 \el722130— 
100-1 80-180 801 | 8.7 0.0 || e0-1—-4, 0 720, xFl. 940, &0 [4 —16 zeitw. 
10180 6071 101 8.71 2.6 || 60 539% —7,xFl. 1315, ed 1620, 19. 
11 50-1 9071 | 5.01 6.0 ||xFi. 1020-12 zeitw. 
100-1 90-1 101 9.7| 0.8 |x0 A0 450-510, eTr. 13, 15—16, ed 18-20 zeitw. 
go-1 101 101 9.31 0.1 |e01 720-810, 
60-1 40-1 30 4.3| 6.2 ||-0971 mens. 
19 50-1 9) 2.01 6.5 |-1 mgns. 
10 10 0 0.71 9.4 ||! mens. 
101 20 9) 4.01 4.3 ||! mens. 
101 30 a res ENG = 
101 101 101 10.01 0.0 = 
10071 101 108 10.01 0.0 |- L 
10071 40 2) 5.31.8.1 |IWL 21. 
20 10 0) 1.01 9.2 ul mens. 
0) 0 9) 0.0| 9.3 el mens. 
10071 0) 0) 3.31 6.9 ||ı1,=0 mens. 
a. 7071 10160 | 8.7| 2.8 |el-2172%0—19, A? e2 Böe 224, ed) 19 — 
40-1 10172 9172 7ilr 5:0 el]. 
j0 60-1 100-1 Tl 78T ®:? Klsl)223: 


6.5 ».4 9.9 5.8 4.4 


N er aaa 31 28 aa aa 35. 96, 37. 28. 239. .30, 31. | 
Be 9.9, 51 Ea a3, 2E 29 3.4: 3,5 2,3 
B02031573.5- 2,5 aan ger. ir 35 ES 4,0 3.5 
an 7 on. Zug ne ers 5.6 5,6 9:65.08, 5,6,,5,6 5,8 
a Tee ae 3 7.3.0:8 7:22:70 7.6 
Ban 9.058,0 Grosse 908.7 8.7 8.7.8.7 8.6 9.0 

F 

N Zeichenerklärung: 


Sonnenschein (-), Regen e, Schnee x, Hagel a, Graupeln A, Nebel =, Nebelreißen =!, 
Tau a, Reif“, Rauhreif \/, Glatteis ru, Sturm 5, Gewitter R, Wetterleuchten 8, Schnee- 
gestöber #, Dunst oo, Halo um Sonne ®, Kranz um Sonne ©. Halo um Mond (J), Kranz 
um Mond W, Regenbogen N), eTr. — Regentropfen, «Fl. — Schneeflocken, Schneeflimmerchen. 


Anzeiger Nr. 9. 14 


100 


Beobachtungen an der Zentralanstalt für Meteorologie und Geodynamik, 
Wien, XIX., Hohe Warte (202:5 Meter), 


im Monate Februar 1920. 


Windrichtung und Stärke INvindeescman re | Niederschlag, 2 
| nach der 12-stufigen Skala | in Met. in d. Sekunde | n mımı gemessen Er 
lag ——— 3 3 
| ® 
ud 4 21% Mittel, Maximum! | 7 [4 ayıı B 
| | nn 
en — =— = = 
1 SE 1 WNW4 WW’ 4 | 4.3 wer sls.zner.be De 0.30 
2 w3 .WA.W.3| 7.2) W8W io.) — 3.7@ 1.30 
3 LIST NZ! BI le W 9.0 || 0.70 = _ 
- 0 Se 0 a) ESE . 6.0 — 0.2=: . - 0.0=: 
5 NY NEN WAZ ENIVEgRN 1.8 NV 2.0.9 - 0.0x er 
6 IWNWI N ENNSVel 2.6 | NNW 8.3 
7 | WNW1 NW 1° 0W 27.117222 N ANNE 850 — 
S W 1 WNW2 WNW1I | 2.82 #WNWe9.1 — 
&) DIVE NV 17272] SWISNV.e 923 - — = 
10 W. 24 WSW.5 AN SWBu 8.9 | 1WSW 27:7 -— = 
ii IWSW5 WSW2 WSW5 || 9.5 | WSW 24.0 || 11.9e IE 0.08 
12 NW Ar EV DE WER 0 AVVOSIIVEELILIG l.le _ 0.08 
PB INVNWIST EBWE2UFSE MN 3.5 | SWNW: 15.8: — 0.0x —: 
14 SSW I SW 2 WSW3l 328 | WSW ’1#.8 ÜBEL — 0.08 
15 |WSW3 N al NIE 2.5 | WSW 10.4 — 0.20 —_ 
16 —. 0 ESE 2 .ESE 12.94 EBSE7 9.3 — — — 
1n7. ESE 2 ESE 3 ESE 3 || 6.6 ESE 13.9 - - —_ 
18 ESE 3 SE 4 ESE3| 6.2 ESE 15.3 u) = = 
19 ESE. 2, SE 2 SE Er | 7280 SE 28 — — _— 
20 ESE 2 Bar? Be 22 850 ENE 10.0 = — — 
al Er 2 SESE or !BSBR2E ESE 110.37, — 
22 SW 1 NW. 27°WNW1 | 2.8. -WNW 10.2 - - -- 
23 NW 1 WNW2 WNW1 3.2 | WNW- 9.5 | — 
24 — 0 EBENE ==0 1,12 NE 4.4 
25 ESE 1 N. Je 00] 1,4 ESE 7.2 — — 
20.0) SWETESSTIEEN — 011.3 | WSW 11.6 - ! . 
27 W 2 SW .4 WSW5 || 6.8 Ww 31.2 — 2.20 
28 WW 5 NV INN 22 were Wr 23.61 0. — = 
A NN N 252 vu 212 — = . 
30 
31 
Mittel] 1'9 2:8 1:9 4.1 13.2. 18.8, 15,8 3.8 | 


Ergebnisse der Windaufzeichnungen (nach dem Schalenkreuz): 

N NNE NE ENE- E ESE SE SSE S SSw SW WSW W WNW NW NNW 
Häufigkeit, Stunden 

35 13 14 2] 22, Io 23210 6) 6 29 133. 78» 795 2 25 
Gesamtweg, Kilometer 

141 59 54 158 201 2195 146 56. 16 89 298 8368 1475 1208 4467393 

Mittlere Geschwindigkeit, Meter in der Sekunde 

ar san 25902108 2.6. 1.0158, 328, 2.0.3, BoD ee 

| Maximum der Geschwindigkeit, Meter in der Sekunde 

2.8-.2.852,5.53 5.6088 2.7 34 .1.9073.9° 75 18.713293 er 

be Anzahl der Windstillen (Stunden) — 15. 


ı Den Angaben des Dines’schen Druckrohr-Anemometers entnommen. 


au 


Österreichische Staatsdruckerei. 504 20 


nz 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 Nr. 10 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 22. April 1920 


‘Erschienen: Almanach, Jahrgang 69, 1919. 


Das. k. M. Prof. J, E. Hibsch; .übersendet .die.: Pflicht- 
exemplare seiner mit Unterstützung der Akademie der Wissen- 
schaften herausgegebenen Geologischen Karte des Böh- 
mischen Mittelgebirges, Blatt XIV (Meronitz—Trebnitz). 


Das. w. M. V. Lang übersendet eine Abhandlung von 
Dr. Gottfried Dimmer (aus dem Laboratorium der Normal- 
Eichungs-Kommission in Wien): »Versuche zur Bestim- 
mung des Längenunterschiedes eines metallenen 
Meterstabes in horizontaler und vertikal hängender 
oder unterstützter Lage« 

Es wurde der Versuch gemacht, den Unterschied der 
Länge eines metallenen Meterstabes in horizontaler Lage und: 
bei vertikaler Aufhängung oder Unterstützung zu messen. Die 
drei metrologisch wichtigsten Materialien: Platin, Stahl und 
Messing, wurden nach zwei verschiedenen Methoden unter- 
sucht, deren eine behufs Vermeidung des Temperatureinflusses 
auf dem Zusammenspiel zweier gleicher, unter 90° zueinander 
stehender, nahe der Kreuzungsstelle geklemmter und samt 


‚der Trägervorrichtung rotierender Stäbe ‚beruht, während bei 


15 


der zweiten Methode nur ein Stab zur Anwendung kommt, 
an welchem beim Übergange von der hängenden zur unter- 
stützten Lage die Bewegung des einen Endes gemessen 
wird. Zur Ermittlung der gesuchten kleinen Strecken dienten 
Interferenz- und Spiegeleifrichtungen. Das Ergebnis der ersten 
Methode war ein weniger günstiges; mit Hilfe der zweiten 
Methode jedoch gelang es, auf wenige Hundertel eines Mikrons 
an die theoretischen Werte heranzukommen. 


..+ 


Das k.M. Prof. Philipp Furtwängler in Wien übersendet 
eine Abhandlung: »Über die Ringklassenkörper für 
imaginäre quadratische Körper. 


Herr Alexander Fischer in Göding (Mähren) übersendet 
‚eine‘ Abhandlung mit dem Titel: »Über einige Anwen- 
dungen der Approximationsrechnung in der Theorie 
der Differentialgleichungen.« | | 


Dr. Paul Roth in Wien übersendet eine Abhandlung: 
»Über Flächen, die die Punktepaare zweier und einer 
algebraischen Kurven abbilden.« 


Plantae novae sinenses, diagnosibus brevibus descriptae- 
ı Dr. Heinr. Handel-Mazzetti (3. Fortsetzung).! 


Pedicularis dolichocymba' Hand.-Mzt. 


SECt, Aduncae SRIS Rhyncholopheae 9 Eurhyucholopheae 
33 Proboscideae Prain. 

Rhizomatis caudiculi tenues, usque an 10 cm Ig., repentes, 
‚hypophyllis triangularibus. remotis et ad apices radicibus 
tenuibus fasciculatis obsiti, caules singulos floriferos strictos. 


r Vor Akademischer Anzeiger, 1920, Nr. 4 


103 


simplices 14—18-cm 1g. ad 4. angulos- (hie. illie glanduloso-, 
pilosos, inferne nudos,  sursum densissime foliatos. edentes. 
Folia alterna, lanceolata, usque ad 45x11 cm, glabra, .bası 
cordato-amplexilauli sessilia,;, ad tertiam, vel. dimidiam lat. 
partem pectinato-multilobata lobis semicircularibus duplicato- 
dentatis, sinubus. angustis.. Spica brevis,  ovata, bracteis.. & 
basibus late cuneatis longe ciliatis triangularıbus, duplicate- 
dentatis. ‚ Flores subsessiles, 'resupinati. Calyx. late ‚ovatus, 
+ 12X8 mm, ore ‚obliquus, ultra +tam partem. in..lobos 
5 spathulato-oblongos subpalmatim dentatos fissus, . nervis 
5 .angulosis, pilis. longioribus eglandulosis et. brevioribus 
glandulosis parce obsitus: Corolla.3 cm 1lg., flava, galea rufa: 
tubus' calycem aequans rectus 4 mm It. sursum dilatatus et 
intus pubescens, ‘extus: praeter strias 2° pilosas glaber: 
labium inferum adcumbens, 9 mm lg., 6 ımm It., longe et late 
unguiculatum, lobis «3 firmis aequalibus ovatis . ungue 
brevioribus pilis 1 mm. lg. dense ciliatis; labium superum 
plusquam sesquilongius, parte basali 3*5 mm It. vix inclinata 
ungue :breviore, galea naviculari coriacea 5 mm. It. erostri, 
antice.- paulum  rotundato-convexa et sursum ad apicem 
angustum obtusum brevissime bifidum rectilineo-producta, 
pilis violaceo-articulatis 2 mm lg. in derso sparsis margine 
convexo densissime barbata. Filamenta medio tubo inserta, 
glabra; antherae liberae, obtusae. Stylus longissime exsertus 
et hic: semicirculariter inflexus. 3 

', Prov. Yünnan bor.-occid.; In: cespitosis ad limitem sil- 
varum in summitate sita juxta jugum Niutschang supra vicum 
Bödö inter oppida Lidjiang (Likiang) et Dschungdien, 4200 m, 
leg, 7P VAL IE 

Species inter. affines foliorum forma, galea longissima, 

stylo Reue exserto en 


Pedicularis nen Hand.-Mzt. 


Sect.. 4duncae SS8 Rhyncholopheae €. IE TRNIN AO 

3% Rudes Prain. | | 
‚; Rhizoma verticale . crassum, Aria ie siarileae Du 
tenuium et caules aliquot erectos 1—1'6 m lg. erassos teretes 
pilosulos infra ‚nudos sursum crebre. foliatos edens. .‚lolia 


104 


alterna glabra vel sparsissime pilosa, lanceolata (inferiora 
19x95, summa 9% 18cm) auriculato-sessilia, obtusiuscula, 
usque ad 3-4 mm a mediano pectinato-pinnatifida segmentis 
oblongis obtusiusculis 20-—-26jugis foliorum inferiorum ob- 
solete lobatis superiorum duplicato-serratis. Spica 30 cm |g., 
laxa. Bracteae foliis summis similes, summae glandulöso- 
pubescentes calyces aequantes. Flores sessiles flavi 2 cm Ig. 
Calyx cylindricus, 10%X5 wm. herbaceus, nervis indistinctis, 
pilis paucis longis et crebris brevibus glanduliferis obsitus. ad 
4tam partem in lobos 4 oblongos obtusös subintegros et 
posticum minutum subulatum fissus. Corollae dorso dense 
breviter pubescentis tubus rectus ceylindricus, 12X3 mm sur- 
sum vix ampliatus intus villosus; labium inferum deflexum 
lem lg. et paulo latius, ad dimidium in lobos obtusos in- 
tegros laterales orbiculares medium transverse latiorem dimi- 
dium obtegentes fissum; labii superi pars erecta 2 mm It. et 
le., in galeam horizontalem labio infero aequilongam 5 mm It. 
marginibus aequaliter convexis erostrem acutam integram 
arcuato-producta; galeae et labii margines pilis aequalibus 
2 mm longis densissime barbati. Filamenta imo tubo inserta, 
longiora inferne sparsissime pilosa; antherae liberae loculis 
basi acutis. Stylus vix exsertus. 

Eiusdem ditionis in silvis abietinis montis Piepun pröpe 
Dschungdien, 3600 sn, legi 12. VIII. 1914. 

Species e descriptione Ped. principi Franch. proxima, quae 
differt foliis brevipetiolatis pinnatifidis rhachide alata, calyce 
minore glabro, corolla maiore, filamentis glaberrimis. Ceterae 
species affınes descriptae jam labio infero glabro vel brevi- 
<ciliato differunt. 


Pedicularis psendoversicolor Hand.-Mzt. 


Sect. Aduncae 8888 Bidentatae B. Verae 45 Sudeticae 
Prain. | 

Rhizoma crassum, radices longas crasse napiformes, collo 
hypophylla brunnea triangularia, folia et caules compluria vel 
hunc unicum 2—3 cm lg. crassum simplicem nudum vel uni- 
folium 2—4fariam pilosulum edens. Folia crassiuscula, glabra 
vel subglabra; lamina petiolo subalato longior, lanceolata 


105 


20-—-37 mm |g. et 2t/,—5plo angustior, — 12 jugo usque ad 
rhachidem anguste alatam pinnatisecta, lobis oblongis vel ob- 
ovatis obtusis basibus latis sinubus rotundis seiunctis mar- 
ginibus invicem se tegentibus utrinque ad dimidium incisis 
lobulis interdum apiculatis, subtus calce squamata, purpuras- 
centi-reticulata. Spica ovata densissima ca. 6—-10flora. 
Bracteae trifidae paulum lobatae calyces aequantes et cum 
his longiuscule albo-ciliatae. Pedicellus subnullus vel crassus 
ad 4 mm \g. Calyx infllato-obovatus 10-—12xX4--5 mm, inter 
costas 5 angulatas submembranaceus, ore obliquo ad 4dtam 
partem 5dentatus dente postico longe subulato integro ceteris 
petiolato-spathulatis dentato-lobulatis. Corolla Nava apice 
rubescens 23—23S mm |g. a parte supera tubi paulum inclinata; 
tubus ceylindricus subaequalis calyce paulo longior 2°5 man It. 
intus glaber extus bifariam pilosus; labium inferum 10 mm 
lt. patulum sessile lobis versus basin usque seiunctis laterali- 
bus rötundis + 5 mm diam. medio 7 mm lg. parte basali tri- 
angulari laterales aequante terminali suborbiculari 21/, mem 
diam, omnibus apicibus subemarginatis marginibus sinuatis 
breviter ciliolatis; superum 10—14 mm Ig. tubo vix latius, 
dorso rectilineum, antice dimidio infero paulum dilatatum et 
margine reflexum acie cartilagineo-denticulatum lateribus parce 
glandulosis, galea vix 4 mm lg. et paulo angustiore horizontali 
supra semiorbiculari subtus paulum concava erostri apice 
truncato 1 mm It. leviter emarginata et dentibus 2 brevibus 
porrectis instructa; fillamenta supra. medium 'tubum  inserta, 
longiora sursum: villosa, antherae albae liberae basi acuti- 
usculae; stylus vix exsertus. 

Inidem in glareosis 4300 —4500 mi, leg. 11. VI. 1914. 

Planta habitu, fohis, florum colore P. Oederi 'edentatam 
aemulans, notis P. Sonugaricae affinis, laciniis foliorum angustis ' 
bracteis pinnatifidis calycis dentibus integris galeae dentibus 
longis’ deflexis et habitu elato valde diversae. 


1:06 


Das w. M. Hofrat H. Molisch legt folgende Arbeiten vor; 


I.» »BemerkungenüberAlfredFischer'sGefäßglykose:, 
von Prof. K. Linsbauer (Graz). 


Die Untersuchung führte zu folgenden Ergebnissen: 

1: Die nach der Methode von Alfred Fischer erzielbare 
Reduktion der Fehling’schen Lösung in den toten Elementen, 
speziell den Gefäßen des Holzkörpers ist wenigstens der 
‘Hauptsache nach nicht auf Glvkose oder auf einen anderen 
velösten, reduzierenden Zucker zurückzuführen. | 

2. Der Kupferoxydulniederschlag, der unter diesen Um- 
ständen teils im Zellumen, teils in der Membran selbst zur 
Abscheidung gelangt, ist vielmehr vorwiegend oder aus- 
schließlich auf die reduzierende Wirkung der Membran; 
wahrscheinlich bestimmter Zellulosemodifikationen, zurück- 
zuführen; dadurch findet auch die scheinbare Glykose- 
speicherung in den Libriformfasern und den an der Wasser-' 
leitung nicht mehr beteiligten Gefäßen ihre ungezwüungene 


Frklärung. 


2. »Studien an Eisenorganismen«, 1. Mitteilung, von 
Josef Gickelhorn. 


1. Berlinerblaubildung als Reaktion auf Fe, O,-Verbindungen 
tritt bei Trachelomonas-Arten und Eisenbakterien in drei Typen 
auf: a) lokal auf Eisen führende Teile des Organismus :be- 
schränkt, Db) als körneliger oder’ homogenblauer Niederschlag 
auch außerhalb der Körperteile, c) in Form Traubescher Zellen 
verschiedenster Gestalt und Größe an der Körper-, beziehungs- 
weise Schalen- und Scheibenoberfläche. Die Art und der Ort 
der endgültigen Fe-Probe hängt sowohl von der Art der 
Durchführung der Reaktion als auch von der Gegenwart des 
lebenden Protoplasten ab. HORIE 

2. Außer im Gehäuse von Tracheloimonas finden sich im 
Flagellaten Eisenverbindunken vor, die beim Absterben oder 
bei Reizung aus dem Protoplasma ausgestoßen werden. 

3. Der lebende Flagellat, beziehungsweise die lebende Zelle 
von Eisenbakterien kann beträchtliche Mengen von Eisenoxyd- 
verbindungen führen, ohne daß das Gehäuse, beziehungsweise 


107 


die Gallertscheide. Eiseneinlagerung zeigt; Eisengehalt und 
Eisenspeicherung können daher getrennt voneinander auftreten. 

4. Das im Mikroskop zu beobachtende Ausstoßen der 
nachgewiesenen , Eisenverbindungen unter Bildung ruckartig 
anwachsender Traubescher Zellen ist als Reizvorgang auf- 
zufassen, da nur lebende Trachelomonas-Arten dies zeigen; 
mechanische und chemische Reizung bewirkt diese aktive 
Ausscheidung besonders auffällig. 

5. Im Gehäuse von Trachelomonas kommen sowohl’ Feo- 
als auch Fe, O,-Verbindungen vor; im Flagellaten finden sich 
nur Fe, O,-Verbindungen. 

6. Durch: die mikrochemische. Methode läßt sich leicht 
ein schaliger Bau aus differenten Schichten beim Trachelo- 
monas-Gehäuse nachweisen, der aber weder durch direkt 
Beobachtung noch durch Tinktionen. zu differenzieren ist. 

7. Bei den Eisenbakterien, Leptothrix ochracea als Typus 
genommen, sind ähnliche Verhältnisse aufzuzeigen: auch, der 
lebende Protoplast.der Zelle führt große Mengen von Fe, O,- 
Verbindungen; Eisengehalt der Zelle und Eisenspeicherung 
sind in hohem Maße voneinander unabhängig; jüngere Fäden 
mit kaum merklich ausgebildeter Scheide, die selbst eisenfrei 
ist, zeigen doch starke Eisenreaktion; die Intensität der Eisen- 
reaktion ist in lebenden Zellen des ganzen Fadens annähernd 
gleich; in toten ‚Zellen ist bei Leptothriv kein Fe,O, mehr 
nachzuweisen. 
| 8. Die nachgewiesenen Fe, O,-Verbindungen dürften nicht 
ausschließlich. durch Oxydation der Fe O-Verbindungen mit 
Hilfe des atmosphärischen Sauerstofies entstanden sein. Die 
in der vorliegenden Untersuchung mitgeteilten Tatsachen weisen 
auf einen entscheidenden Einfluß des lebenden Protoplasten hin. 

9. Die bisherigen Theorien der Eisenspeicherung ‚von 
Winogradsky und Molisch lassen ‚durch eine sinngemäße 
Vereinigung zu einem Standpunkt gelangen, der so ziemlich 
alle bisher bekannten einschlägigen Tatsachen erklären kann. 
Die durch Untersuchungen von. Molisch nachgewiesene 
Entbehrlichkeit größerer Mengen von.Fe-Salzen, widerlegte die 
von Winegradsky angenommene Bedeutung der Fe-Ver- 
bindungen als Energielieferanten; die Fe-Speicherung, der hohe 


108 ’ 
Fe-Gehalt der lebenden Zelle, die Veränderungen der Hüllen 
und Gallerten von Eisenorganismen auf Grund der Wirkung 
äußerer Reizungen weisen dagegen auf die von Winogradsky 
betonte Häuptrolle des lebenden Protoplasten hin. 


3. Ȇber das Vorkommen von kohlensaurem Kalk 
in einer Gruppe der Schwefelbakterien«, von Egon 
Bersa. 

Die Hauptresultate lauten: 

1. Achromatium Schewiakoff ist identisch mit Moddernla 
Frenzel und Hillhousia West & Griffiths. Die Größen- 
differenzen rechtfertigen noch nicht die Aufstellung mehrerer 
Arten. Vielleicht können indessen innerhalb der weitverbreiteten 
Art mehrere Lokalrassen unterschieden werden. 

2. Die Größe schwankt zwischen 9 bis 75 u in der Länge 
und 9 bis 25 w in der Breite. Das Plasma ist gleichmäßig grob 
vakuoli® gebaut und zeigt keine Differenzierung in eine wabig 
gebaute Rindenschichte und einen Zentralkörper. Ein Kern ist 
nieht vorhanden. Die Membran enthält keine Zellulose und stellt 
wahrscheinlich "eine äußere veifestigte Protoplasmahatit dar. 
Die Zelle ist von ‘einer Schleimhülle ‘umgeben, die’ wahr- 
scheinlich durch die Membran hindurch ausgeschiedei wird. Die 
Bewegung ist sehr langsam. Irgendwelche Bewegungsorgäne 
fehlen. Die Teilung geht durch eine einfache Durchschnürune 
der Zelle vor sich. 

3. Inı Plasma von Achromatiımn oxalifernm und Microspira 
vacıllans finden sich Schwefeltropfen, die mit dem Schwefel- 
wasserstoffgehält des Wassers auftreten und verschwinden. 

4. In den Vakuolen liegen größere Körner von amorphem 
kohlensaurem Kalk. Ihre physiologische Bedeutung ist noch 
unbekannt. 

5. Bei Psendomonas hyalina bildet der kohlensaure Ralk 
den > Inhaltskörper. 

Alle rei’ Arten sind an das Vorkömmen von Schwefel- 
ihn gebunden, gehören also zu den Schwefelbakterien, 
von denen sie wahrscheinlich eine besondere Gruppe - IT- 
SEHEN. 


109 


: Das w. M. Hofrat’E. Müller überreicht eine Arbeit über 
»Zyklographische Abbildung von Flächen und die 
Geometrie von Kurwenscharen in der Ebene«. 

. DieZykiographie, als eineindeutige Abbildung’ der Punkte 
‚des Raumes auf die orientierten Kreise (Zykel) einer Ebene II, 
bildet ein: Übertragungsprinzip zwischen räumlicher 
und ebener Geometrie. Im Raum spielt dabei eine para- 
bolische »Pseudogeo metrie« die Hauptrolle, deren absolutes 
Gebilde jener reelle unendlichferne Kegelschnitt C ist, der von 
allen gegen I unter 45° geneigten Geraden getroffen wird. Die 
vorliegende Arbeit enthält den ersten Versuch, Sätze 
der Flächentheorie mittels dieses Übertragungsprin- 
zips für dieGeometrie der Kurvenscharen in der Ebene 
zu verwerten, und eröffnetdamiteinneues Forschungs- 
feld. Auf jeder Fläche -P gibt es im allgemeinen zwei 
Scharen von C-Kurven (Pseudominimalkurven), das heißt von 
Kurven, deren Tangenten C treffen. Ihnen: entsprechen in Il 
zwei Kurvenscharen, die die Bildzykel der Punkte von ®, zu 
Schmiegzykeln haben. Jeder Kurvenschar (U) in II entspricht 
durch Abbildung ihrer Schmiegzykel eine Fläche im Raum, 
daher eine zweite »ergänzende« Kurvenschar (U;) in Tl. Diese 
Betrachtungsweise wird hauptsächlich zur Untersuchung der 
zu einer Kurvenschar (U7) gehörigen Kongruenzen von Äqui- 
tangential- und Isogonalkurven verwendet, über die besonders 
G. Scheffers [Math. Ann. 60 (1905)] eine Reihe überraschend 
wirkender Sätze gefunden hat. Sie verlieren durch die erwähnte 
Übertragung das Überraschende. Es ergeben sich zum Beispiel 
die Sätze über Äquitangentialkurven aus den einfachsten 
Sätzen über Pseudoparallellächen, deren C-Kurven der einen 
Schar als Bildkurven in Il eine Kongruenz von Äquitangential- 
kurven haben. Zugleich folgen aber auch geometrische 
Deutungen für die Pseudokrümmungslinien und Pseudohaupt- 
krümmungstadien 'einer Fläche in der Geometrie der Kurven- 
scharen in. Durch zyklögraphische Abbildung von unorientierten 
- Kreisen, von Kreisbüscheln 'ünd Kreisbündeln in Il auf den 
Raum gelangt manzueinerhyperbolischen »Scheingeometrie«, 
mittels ‚der die Sätze über'Isogonalkurven analög wie die über 
Äquitangentialkurven "gewonnen werden. Die Anwendung’ der 


110 


sefundenen allgemeinen Sätze auf Scharen von orientierten und 
unorientierten Kreisen sowie von. Speeren liefert neben bekannten 
Sätzen auch einige neue. Ergebnisse.. In den zwei Schluß- 
nummern wird die Abbildung der pseudogeometrischen Seiten- 
stücke zu. den imaginären Monge’schen Flächen (mit einer ein- 
zigen Schar.von Krümmungslinien) und zu den Minimalflächen 
behandelt. Sie zeigen. vor allem, wie bekannte Sätze über imagi- 
näre Gebilde nun für reelle Gebilde in der Ebene Verwertung 
finden. Die Abbildung der Drehflächen zweiten Grades mit zu Il 
normaler Drehachse führt zu interessanten Kurvenscharen in I. 


Das w. M. Hofrat Franz Exner legt folgende Abhand- 
lungen. vor: 


1. »Der Vorsprung der negativen Entladung’ vor der 
positiven«, von Karl Przibram. ‘ 
Aus dem Verhalten der zweipoligen elektrischen Figuren 
hatte der Verfasser geschlossen, daß die ‘die elektrischen 
Figuren erzeugende Entladung sich von der Anode aus rascher 
ausbreite als von der Kathode, an letzterer aber etwas früher 
beginne. ” 

Der erste Teil dieses Satzes hat durch die Messung der 
Ausbreitungsgeschwindigkeiten durch P. OÖ. Pedersen eine 
schöne Bestätigung erfahren. In der vorliegenden Arbeit wird 
nun gezeigt. daß sich mittels eines’ ebenfalls von Pedersen 
angegebenen Versuches auch der Vorsprung der negativen 
Entladung vor der positiven nachweisen läßt. Derselbe ergab 
sich zu rund 2.10 ®sec in Luft von Atmosphärendrüuck bei. 
einer Plattendicke von 1'4 mn und einer Primärfunkenlänge 
von 5 mm. Der Vorsprung läßt sich durch Vorschalten einer 
kleinen Funkenstrecke beeinflussen. 


2.»Mitteilungen aus dem Institut für Radium- 
forschung. Nr.;126..Über die Ausbeute an aktivem 
Niederschlag des Radiums.im elektrischen Felde«, 

von Anna Gabler.. as errrrd 
Es. wurden ‚quantitative Untersuchungen über. die Aus- 
Deute an aktivem. Niederschlag des Radiums im elektrischen 


11i 


Felde bei großen Emanationsmengen angestellt. Durch die 
intensive ionisierende Wirkung derselben war eine starke 
Beeinflussung durch den elektrischen Wind vorauszusehen. 
Es wurde die Gesamtausbeute, d. h. die Menge aktiven Nieder- 
schlages, die man aus einer bestimmten Menge Radiumemana- 
tion erhält, untersucht, worüber noch keine Angaben vorlagen. 
Ferner wurden die Ausbeuten an den Elektroden bestimmt. 


5. »Mitteilungen .aus dem. Institut für  Radium- 
forschung Nr. 127. Über die Konstanz. des ‚Ver- 
hältnisses, zwischen :UX .und UY in.:Uran ver- 
schiedener Herkunft«, von Gerhardt Kirsch. 


Es wird eine bequeme Methode beschrieben, die es 
gestattet, radioaktiv reine T'horisetoppräparate an eine .beliebig 
kleine, wohldefinierte Menge wägbarer Substanz (Zirkon) 
gebunden, binnen kürzester Zeit herzustellen, so daß der 
Zeitpunkt der Abtrennung von der Muttersubstanz als scharf 
gegeben angesehen. werden darf. 

Es werden die. ‚Halbierungszeiten und Zeriällskohstanten 
von UX, und UY bestimmt und angegeben: 


für UX,; T= 23-824 +.0°075, 1—3'367.107 sec", 
ür UY: _ T — 24 64" + 027, = ol, Cape. 


Es wird das Verhältnis der UX- und UY- Produktion in 
Uran. verschiedenster Herkunft verglichen ‘und konstatiert, 
daß die Abweichungen vom Mittelwert im Durchschnitt 
kleiner als 1%/5 gefunden werden, welche Streuung. durchaus 
im Bereiche der Versuchs- und Beobachtungsfehler liegt, 
so ‘daß das untersuchte Verhältnis als: konstant betrachtet 
werden darf. el s 


4. »Mitteilungen aus dem Institut für. Radium. 
forschung Nr. 128. Untersuchungen: über die 
Verteilung von Radiumemanation in. verschie- 
denen Phasen«, von Maria Szeparowicz. | 

: Es‘ wird der Löslichkeitsverlauf von 'Radiumemanation 

in ‘Wasser und Benzol als Lösungsmittel im Temperatur- 
intervall zwischen Schmelz- und Siedepunkt untersucht und 


112 


gezeigt, daß. im Einklang mit einer von G. Jäger aufgestellten 
Formel der Absorptionskoeifizient der Radiumemanation in 
Wasser bei einer Temperatur von 932° C ein Minimum 
erreicht und daß dieses bei Benzol als Lösungsmittel außer- 
halb des Temperaturintervalles der bei normalem Druck 
flüssigen Phase gelegen scheint. 

Der zweite Teil der Untersuchungen bezieht sich au’ 
die Verteilung von Radiumemanation zwischen flüssiger und 
fester Phase bei Niederschlägen. Die Erscheinung erwies sich 
fast unabhängig von der Menge des gebildeten Niederschlags, 
auch wurde eine Abhängigkeit von der verwendeten 
Emanationsmenge nicht beobachtet. 


5. »Mitteilungen aus dem Institut für Radium- 
forschung Nr. 129. Über die Dimensionen der 
„-Partikel und die Abweichungen vom Coulomb' 
schen Gesetze in großer Nähe elektrischer 
Ladungen«, von Adolf Smekal. 


Nach Ruthersford verhält sich der Helumkern wie 
eine zweifach positiv geladene Kreisplatte, die sich stets 
senkrecht zu ihrer Fortbewegungsrichtung einzustellen scheint. 
Als obere Grenze für den Halbmesser dieses Scheibchens 
gibt er 3.1073 cm!’ an. 

Das He-Kern-Modell von Lenz gibt sowohl die Kreisei- 
wirkung wie die abgeplattete Struktur ‚der %- Teilchen qualita- 
tiv ausgezeichnet wieder. Rechnet man aber den Energteinhalt 
dieses Modelles mit Coulomb’schen Kräften und der Quanten- 
theorie, so erhält man einen um fast drei (Größenordnunger. 
kleineren Wert als jenen, der sich mittels der relativistischen 
Energie - Masse - Beziehung aus den Atomgewichten des 
He-Kernes ergibt. Da der Verfasser die Energie - Masse - 
Beziehung kürzlich an der Stickstoffkernzerlegung ‚durch 
Rutherford aufs Beste bestätigt gefunden hat, konnte auf 
letzteren, verläßlichen FEnergiewert und das qualitativ gut 
bestätigte Modell die Berechnung ‘der Dimensionen des 
»-Teilchens unter Voraussetzung nicht Coulomb’scher 
Kräfte gegründet werden. 


115 


Für den Radius des #-Scheibchens ergibt sich auf diesem 
Wege 1'5.10-1?cm, in vorzüglicher Übereinstimmung mit 
der erwähnten Schätzung von Rutherford. Die in einer 
mittleren Entfernung von etwa 18.10"? cm auf die Einheits- 
ladung ausgeübte Kraft wirkt dann wie ARE 

= ‘ 

Im Verlaufe der Betrachtungen ergeben sich mehrfach 
Anhaltspunkte dafür, daß die Approximation des wahren 
Kraftgesetzes in sehr großer Nähe der Ladungen durch den 


2) 


c F: - ur « 
Ansatz — mit variablem Exponenten nur für n<353 zu 
y! 2 


physikalisch brauchbaren Resultaten zu führen scheint. 
Es ist bemerkenswert, daß für n = 3 die Quantentheorie 
bekanntlich illusorisch wird, und daß das »kubische« Gesetz 
—— der Ausbreitung einer Wirkung in einem 4-dimensionalen 
r? 

Raume entspricht, was auf gewisse Beziehungen zur 
Relativitätstheorie hinweist. 


Selbständige Werke oder neue, der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Andres, Leopold, Ing.: Ein astronomisches Nivellement im 
Meridian von Laibach (Separatabdruck aus den »Mit- 
teilungen des Militärgeographischen ES, XXXIV. 
Band). Wien, 1919; 8°. 

Nemethy, E.v., Dir. Ing.: Das Fermat-Problem. Eine mathe- 
matische Abhandlung. Arad, 1920; 8°. 

Technische Hochschule in München: Akademische Disser- 
tationen des Jahres 1919. 


eb Yun At öpehafe Bra. web hf b 
hrs an yeninisaisner ETLUH U TIRG 100 nk ‚we U 
sth sich ee IaY "re morı 
BIC GE IE TIER. om le 1 10 no Grunsunaiaeha 


D' 


Ip 


‚Yin unab, IAntur ia eidhoueun an re 


wie 

rate oe rt eintargerensb "SirahnsV! im 
nauladr a nolanıFzorgek ib da Nah Stande 
nah ara NagaybR-t vb sa ar ee re 


nenn Ansnoe weidehn Sit 


Jnisdse ‚Merlit US naar naısdrlanaıd Heel 
\ .2 h Ze ER er 

simadtinsinang) sh Km ii Gab ROOT TEILEN ja SR 

sisaonf ssaltigte Nash Usb hab Se 100 oa 


sslsooisnsrib-+ suanid on Swdai' LERERKE Dr wigıdeni 


us nsanutaisoet ariäg RT st 
BERN ‚ala „sans 


1 a mg 


te jonsie simsbruA- sb ‚sus RAR sw IRONER 
j tynalsgais bais aatboinndt; si Dh 


= 


” 


v4 » on ke BARRY, tadsziioneren, ni, ser Blogasık, 
aM Me. ‚nah Kate dabdsin 1Rae). osdie.| Pa, „anibit 
Ride aratzcl wo: yeigersgonnlilih zulı0ng 
| | 90 BR a “Bi n 
zur bar. Pr insldord.n ‚ro Er „anl, ME. u I 

TER ERNEN aß urE ‚ba ah ME 3192 
„paridl ssfoeimshanlf, aadan uM is sludoadack ar 2 
Ve Wa re a EN sah erh. gab aunal 


Verzeichnis 


der von Anfang April 1919 bis Anfang April: 1920 an die 
mathematisch-naturwissenschaftliche Klasse der Akademie der 
Wissenschaften gelangten 


periodischen Druckschriften. 


Altenburg. Naturforschende Gesellschaft des Osterlandes: 
— — Mitteilungen aus dem Österlande, Neue-Folge, Band: 16. 


Augsburg. Naturwissenschaftlicher Verein für Schwaben und 
‘Neuburg: 
— — Bericht 42, 1919. 


Basel. Helvetica Chimica Acta. Volumen II, fasc. HI—VI; volumen II, 
fasc. 1. 
— :Naturforschende Gesellschaft: 
DZ Verndtnn. Band. XXIX, Band XXX. 


Bergedorf. Hamburger Sternwarte: 
-— — Jahresbericht, 1918. 
.„— ı—, Meteorologische Beobachtungen, 1918, 


Bergen. Museum: 
— — Aarbök (Naturvidenskabelig raekke), 1916 — 1917, hefte 2; 1917 — 1918, 
hefte 1 (Druckort Christiania). 


— — An account of the crustacea of Norway, vol. VII, part I, II 
(Druckort Christiania). 


Berlin. Astronomisches Recheninstitut: 
— — Berliner Astronomisches Jahrbuch für 1921, Jahrgang 146. 
— — Kleine Planeten. Bahnelemente und Oppositions-Ephemeriden, Jahr- 
gang 1920. } 


— — Veröffentlichungen, No 483. 


116 


Berlin. Deutsche chemische Gesellschaft: 


Bern 


— Berichte, Jahrgang 51, 1918, No 18; Jahrgang 52, 1919, No 4—11; 
Jahrgang 53, 1920, No 1, 2. 

— Chemisches Zentralblatt, Jahrgang 90, 1919, Band I/II, No 11-26; 
Band II/IV, No 1—26; Jahrgang 91, 1920, Band I/II, No 1--10. 

Deutsche geologische Gesellschaft: 


— Zeitschrift (Abhandlungen), Band 70, 1918, Heft 1—4; Band 71, 
1919,} Heft’; 2. 


— Zeitschrift (Monatsberichte), Band 70, 1918, Heft 1—12; Band 71, 
1919, Heft 1—4. 

Deutsche physikalische Gesellschaft: 

— Fortschritte der Physik, 1917, Abteilung I—IIl.- 

— Verhandlungen, Jahrgang21, 1919, No 3— 24 (Druckort Braunschweig). 

Fortschritte der Medizin. Jahrgang 36, 1918/19, No 11-36; 
Jahrgang; 37,, 1920, Nr. 1, 2. 

Jahrbuch über die Fortschritte der Mathematik. ‚Band 45, 
Jahrgang 1914/15, Heft 1. | 
Naturwissenschaftliche Wochenschrift. Band 34, 1919, Heft 
10—52; Band 35, 1920, Heft 1— 10. 

Preuß. Akademie der Wissenschaften: 

— Sitzungsberichte, 1919, I—LIll. 

Preuß. geodätisches Institut: 

— Jahresbericht, 1918/19. i 

— Veröffentlichungen, Neue Folge, No 76, 78, 80, 

Preuß. meteorologisches Institut: 

— Veröffentlichungen, No 298— 303. 

Zeitschrift für Instrumentenkunde. Jahrgang XXXIX, 1919, Heft 
4—12; Jahrgang XL, 1920, Heft 1, 2. 

Zentralbureau der internationalen Erdmessung: 

— Veröffentlichungen, Neue Folge, Nr. 33: 

Zoologisches Museum: 

— Mitteilungen, Band 9, Heft I, II. 


v . ; 
. Schweizerische Naturforschende Gesellschaft: 


— Mitteilungen, 1916; 1917; 1918. 


— Verhandlungen, Jahresversammlung 98, 1916, Teil I, U; Jahıres- 
versammlung 99, 1917; Jahresversammlung 1918. 


Bremen. Geographische Gesellschaft: 


— — Deutsche geographische Blätter, Band XXXIX, Heft 1. 
— Naturwissenschaftlicher Verein: 
— — Abhandlungen, Band XXIV, Heft 1. 


Brünn. Naturforschender Verein: 
— — Verhandlungen, Band LVI, 1918— 1919. 


Budapest. Ungarisches National-Museum: 
— — Annales, vol. XVII, 1919. 


Buenos Aires. Instituto Bacteriologico: 
— — Revista, vol. I, num. 2—5: vol. II, num. 1. 
— Sociedad Quimica Argentina: 
— — Anales, tomo IV, 1916, No. 14. 


Buitenzorg. Department van Landbouw, Nijverheid en Handel: 

— — Bulletin du Jardin botanique, serie 2, No. XXV—XXVII; serie 3, 
vol. TI, fasc. 3, 4. ; 

— — De nuttige planten van Nederlandsch-Indi&, deel II, IIL, IV. 

— — Gedenkschrift ter gelegenheid van het honderdjarig bestaan op 
18 Mei 1917. 

— — Jaarbock, 1915, 1916, 1917. 

— — Malayan Fern Allies; supplement 1. 

— .— Mededeelingen uit den Cultuurtuin, No. 6—12. 

— — Mededeelingen van het algemeen Proefstation voor den Landbouw, 
No. 1—3. 

— — Mededeelingen van het agricultuur chemisch Laboratorium, No. VIIL; 
XU— XIX. 

— — Mededeelingen van het Laboratorium voor Agrogeologie en 
Grondondersoek, No. 2—4. 

— — Mededeelingen var het Laboratorium voor Plantenziekten, 
No. 19—22, 24—38. 

— — Mededeelingen van het Proefstation voor rijst ec. a., No. IL, II. 

— — Treubia, vol. I, livr. 1—3. 


Cairo. Survey Department: 


— — Meteorological Report, 1912. 
— The Cairo Scientific Journal. Vol. VII, 1914, No. 94. 


Cambridge (Amerika). Astronomical Observatory of Harvard 
College: 
— — Cireular, 219. 


Cambridge (England). Philosophical Society: 
— — Proceedings, vol. XVII, part I-VI; voi. XIX, part I-V. 
— — Transaections, vol. XXI, No. V--XVIH. 


Anzeiger Nr. 10. 16 


115 


Cape of Good Hope. Royal Observatory: 
— — Report of the secretary of the admiralty, 1918. 


Cassel. Verein für Naturkunde: 
— — Abhandlungen und Bericht LV, Vereinsjahr 81—83, 1916-1919. 


Chicago. University: 


— — The Journal .of Geology, vol. XXIV, number 2-8; vol. XXN, 
number 1—8; vol. XXVI, number 1—8; vol. XXVIL, numben 1-8, 


Christiania. Geofysiske Kommission: 
— — Geofysiske Publikationer, vol. 1, No. .2. 


Chur. Naturforschende Gesellschaft Graubündens: 
— — Jahresbericht, Neue Folge, Band LIX, 1918/19. 


Cordoba. Academia nacional de Ciencias: 
— -— Boletin, tomo XXI, 1916; tomo XXII, 1917. 


Danzig. Naturforschende Gesellschaft: 
— -— Schriften, Neue Folge, Band 14, Heft 3; Band 15, Heft 1, 2. 
— Westpreußischer botanisch-zoologischer Verein: 
— 2 Bericht 189.40,21. 


Dresden. Sächsische Landes-Wetterwarte: 


— — Dekaden-Monatshefte, Jahrgang XIX, 1916, 

— — Deutsches en Jahrbuch (Sachsen) für 1913; für 1914; 
für 1915. 

— — Jahrbuch, Jahrgang XXXIV, 1916, Abteilung L; 11. 


Easton. American Chemical Society: 
— — Journal, vol. 42, 1920, Nr. 1, 2. 


Edinburgh. Mathematical Society: 
— —. Proceedings, vol. XXXVIH, session 191819. 


Emden. Naturiorschende Gesellschaft: 
— — Jahresbericht 101 und 102, 1916— 1917. 


Erfurt. Akademie gemeinnütziger Wissenschaften: 
— — Jahrbücher, Neue Folge, Heft 44; 45. 


Florenz. Archivio per l’Antropologia e la Etnologia. Vol. XLIV, 
1914, fasc. 4; ‘vol.’ XLV, 1915, fascı 1-4; vol. XLVI, 1916, 
fasc. 14.’ vol.- XLVII, 1917,' fasc. 1-24; “vol.” XLVIN, 1918, 
fasc. 1—4. 


119 


Frankfurt am Main. Senckenbergische Naturforschende Gesell- 
schaft: 
— — Bericht 48. 


Freiburg i. Br. Naturforschende Gesellschaft: 
— ‚= Berichte, \Bandı22, ‚Heft ‚1: 


Genf. Archives des Sciences physiques et naturelles. Periode IV, 
annee 121, 1916, tome -XLI, 'No'1-6; ‚tome XLIL, :No 7—12; 
annee 122, :1917, tome XLIIIL, No 1-6; tome XLIV, No:7-—-12; 
annee 123, 1918, vol. 45, Janvier—Decembre;: periode V, 
annee 124, 1919, vol. l Janvier-Decembre; annee 125, 1920, 
vol. 2, Janvier, Fevrier. 

— Journal de Chimie physique. Tome 17, No 1-4. 

— L’Enseignement mathematique. Annee XX, 1918, No 4—6. 
-- Societe de Physique et d’Histoire naturelle: 

— — Comptes rendus des seances, vol. 36, 1919, No 1—3. 


Gießen. Oberhessische Gesellschaft für Natur- und Heilkunde: 
— — Berichte, Neue Folge: Medizinische Abteilung, Band 11; — Natur- 
wissenschaftliche Abteilung, Band 7. 


Görlitz. Natürforschende Gesellschaft: 
— — Abhandlungen, Band 28. 


Göttingen. Gesellschaft der Wissenschaften: 
— — Nachrichten (mathem.-physik. Klasse), 1917, Heft 2; 1918, Heft 1—3, 
Beiheft; 1919, Heft 1. — Geschäftliche Mitteilungen, 1919 (Druck- 
ort Berlin). | 


Graz. Landwirtschafts-Gesellschaft für Steiermark: 
— — Landwirtschaftliche Mitteilungen, Jahrgang 68, 1919, No 15—52; 
Jahrgang 69, 1920, No 1, 3—11. 


‘Güstrow. Verein der Freunde der Naturgeschichte in Mecklenburg: 
— — Archiv, Jahr 72, 1918, Abteilung I. 


Halle. Academia Caes. Leopoldino-Carolina germanica naturae 


curiosorum: 
— — Leopoldina, Heft LV, 1919, No 4-12; Heft LVI, 1920, No 1, 2. 


Hamburg. Deutsche Seewarte: 
— — Annalen der Hydrographie und Maritimen Meteorologie, Jahrgang 47, 
1919, Heft I—-XII; Jahrgang 48, 1920, Heft I, II. 
— — Tabellarischer Wetterbericht, Jahrgang 44, 1919, No 75—365; 
Jahrgang 45, 1920, No 1—60. 
— Naturwissenschaftlicher Verein: 
— — Abhandlungen, Band XX, Heft 3; Band XXI, Heft 1. 


120 


Hannover. Deutscher Seefischereiverein: 
— — Mitteilungen, Band XXXV, 1919, No 4—12; Band XXXVI, 1920, 
No 1, 2 (Druckort Berlin). 


Heidelberg. Akademie der Wissenschaften: 

— — Abhandlungen (mathematisch-naturwissenschaftliche Klasse), 4; 5; 6. 

— — Jahresheft, 1918. 

— — Sitzungsberichtte A (mathematisch-physikalische Wissenschaften), 
Jahrgang 1918, Abhandlung 1— 17; — B (biologische Wissenschaften), 
Jahrgang 1918, Abhandlung 1-3. 

— Naturhistorisch-medizinischer Verein: 

— — Verhandlungen, Neue Folge, Band XIV, Heft 1. 

— Sternwarte: 2 

— — Veröffentlichungen, Band 7, No 7—10. 


Heisingfors. Finska Vetenskaps Societeten: 


—, — Aeta, tom: XL, No’; ‚tvog. XEIN, ıN012, 9,5, 7; tom. ae 
Nor2 —4: toms REVT. Nor, 3e 8; tom. XLEVIIS tom. NEVU 
No 1—4. 

— — Bidrag till kännedom af Finlands Natur och Folk, H. 74, No. 1; 

H. 75, No 2; H. 77; Ne4&7 278, 7NO SIEB: 

— — Finländische hydrographisch-biologische Untersuchungen, Nr. 18, 
Jahrbuch 1913. J 

— — Öfversigt af Förhandlingar (Matematik och Naturvetenskaper), 
LVI, 1913— 1914; LVIL, 1914—1915; LVII, 1915-1916; LIX, 
1916— 1917; LX, 1917 —1918; LXI, 1918— 1919, haeftet 1,2. 

— Societas pro Fauna et Flora Fennica: ß 

— — Acta, 39 (1914— 15); 40 (1914— 15); 41 (1915— 19); 42 (1915 — 17) ;. 
43 (1916); 44 (1916 — 19). 

— — Meddelanden, 40 (1913—14); 41 (1914—15); 42 (1915—16);, 
43 (1916—17); 44 (1917 — 18). 

— Societe de Geographie de Finlande; 

Kennia, 35; 36; 37. 885.395 40; 


Ithaka. American Physical Society: 
— — The Physical Review, second series, vol. XIV, number 2-6. 


Jena. Medizinisch-naturwissenschaftliche Gesellschaft: 
— — Jenaische Zeitschrift für Naturwissenschaft, Band L\V, Heft 4; 
Band LVI, Heft 1. 


Königsberg. Physikalisch-ökonomische Gesellschaft: 
— — Schriften, Jahrgang 59, 1918. 


121 


Kopenhagen. Conseil permanent international pour fexploration 
de la mer: 


— Bulletin hydrographique: Bulletin atlantique, 1900— 1913. 

— — Bulletin statistique des peches maritimes du pays du nord de 
l’Europe, vol. IX, 1913. 

— — Rapports et Proces-verbaux des R£unions, vol. XXV. 

— Kommissionen for Havundersogelser: 

— — Meddelelser, serie Fiskeri, hind V, No 3—8; serie Hydrografi, 
bind II, No 5—7; serie Plankton, bind I, No 13. 

— Kommissionen for Ledelesen of de geologiske og geogra- 


fiske Undersggelser i Gronland: 
— — Meddelelser om Gronland, bind LVI. 


Kongelige Danske Videnskabernes Selskab: 

— — Biologiske Meddelelser, I, 9—14. 

— Mathematisk-fysiske Meddelelser, I, 11, 12. 

— — Oversigt over Forhandlinger, Juni 1918—Maj 1919. 

— — Skrifter (naturv. og math. afdeling), raekke 8; III, No 3. 


Laibach. Musealverein für Krain: 
— — Carniola (Mitteilungen), letnik IX, zvezek 3, 4. 


Lausanne. Societe Vaudoise des Sciences naturelles‘ 
— — Bulletin, vol. 52, 1920, No 197. 
— — Üentenaire de la Societe. 


Leiden. Physical Laboratory of the University: 
— — Communications, No 153; Supplement No 41. 


Leipzig. Annalen der Physik. 
— — Annalen, Vierte Folge, Band 58, Heft 3—8; Band 59, Heft 1—8; 
Band 60, Heft 1—8; Band 61, Heft 1—4. 

— — Beiblätter, Band 42, 1918, No 24; Band 43, 1919, No 2—19, 21. 
— Fürstlich Jablonowski’sche Gesellschaft: 

— — Jahresbericht, 1919. 

—, — Preisschriften, XLVI. 

— Naturwissenschaftliche Monatshefte für den biologischen, 


chemischen, geographischen und geologischen Unter- 
richt. Band I, Heft 3—12; Band II, Heft 1, 2. 


— Physikalische Zeitschrift. Jahrgang 20, 1919, No 4—24; Jahr-, 
gang 21, 1920, No 1—4. 
— Sächsische Akademie der Wissenschaften: 


— — Abhandlungen (mathematisch-physische Klasse), Band XXXV 
No VI; Band XXXVI, No I. 

— — Berichte über die Verhandlungen (mathematisch-physische Klasse), 
Band LXX, 1918, II, III. 


Leipzig. Zeitschrift für Elektrochemie und angewandte physi- 
kalische Chemie. Jahrgang 25, 1919, No 5—24; Jahrgang 26, 
1920, No, 1—4. 


: % 
Lincoln. American Microscopical Society: 


— — Transactions, vol. XXXVII, No 1, 2. 


Lindenberg. Preußisches Aeronautisches Observatorium: 
— — Arbeiten, 1919, Band XII; XIII (Druckort Braunschweig). 


Lissabon. Instituto Bacteriolögico Camara Pestana: 
— — Arquivos, tome IV, fasc. III; tome V, fasc. 1. 


Liverpool. Biological Society: 
— — Proceedings and Transactions, vol. XXXII, session 1918/19. 


Madrid. Memorial de Ingenieros del Ejereito. Epoca V, ano LXXIV, 
1919, tomo XXXVI, num. V, VE IX, X. 
— Observatorio: 


— -- Anuario, 1920. 


Marburg. Gesellschaft zur Beförderung der gesamten Natur- 
wissenschaften: 


— — Sitzungsberichte, Jahrgang 1918. 


Mexico. Observatorio astronomico. nacıional de Tacubaya: 
— —  Anuario,.ano: 1916; 1917; 1918; 21919. 
— — Boletin, 1916, num. 5. 
— — Catalogo astrofotografico, 1900. 


— Sociedad cientifica »Antonio Alzate«e: 
— — Memorias y revista, tomo 38, 1919, num. 5—8. 


Modena. Istituto di Igiene Veterinaria: 
— — Biochimica e Terapia sperimentale, anno VI, 1919, fase. 1. 
— Societa sismologica Italiana: 
—- — Bollettino, vol. XVII, 1914, No-6;- vol. XIX, 1915, No 1-6; 
vol. XX, 1916, No 1—6; vol. XXI, 1917/18, No 1—6; vol. XXII, 
1919, No 1, 2: 


München. Bayerische Akademie der Wissenschaften: 
— — Abhandlungen (mathematisch-physikalische Klasse), Band XXVII, 
Abhandlung 11; Band XXIX, Abhandlung 1, 2. 
— — Sitzungsberichte (mathematisch-physikalische Klasse), 1915, Heft I; 
1918, Hettain:. 1979, SEleft 1° 1J. 
— Bayerische Meteorologische Zentralstation: 


— — Deutsches Meteorologisches Jahrbuch. (Bayern) für 1914; 1915; 
1916; 1917. 


\ 


München. Deutsches Museum: 


— — Verwaltungsbericht über das 15. Geschäftsjahr 1917--1918. 


— Sternwarte: 
— — Neue Annalen, Band V, Heft II. 


Neisse. Wissenschaftliche Gesellschaft „Philomathie“: 
— — (Bericht"37, 1913— 1917: 


Neuchätel. Societe des Sciences naturelles: 
— -— Bulletin, tome XLIII, annees 1917—1918. 


New-York. American Geographical Society: 
oO . 
— — The’ Geographical Review, July 1919. 
— Columbia University: 
— —' Publication No 8. 


Nürnberg. Naturhistorische Gesellschaft: 


— — Jahresbericht; 1913. 
( 


Oberlin. Wilson Ornithological Club: 
— -— The Wilson Bulletin, vol. XXVIIL No’ 3, #, vol. XXXI, No 2—4, 


Ottawa. Department of the Interior: 
— — Publications of the Dominian Observatoty,;. vol’ I, No 6—16: 
vol. U, No 1—15;, vol. IL Nol 1-12; ‘vol. IV, No 1—20. 
— — Report of the Chief, Astronomer, 1911. 


Palermo. Circolo matematico; 
— -—. Rendieonti, tomo XXXIX,ı anno 1915, fasc. II, II; tomo XL, 
anno 1916, fasc. I-III; tomo XLI, anno 1917, fase. I—IU;tomo XLI, 
anno 1918, fasc. I—III; tomo XLIN, anno 1919, fasc. I. 
» 
Paris. Observatoire: 
— — ‚Bulletin astronomique, serie. 2, partie 10," tome’I, 1919, Janvier— 
Mars. } < 


Pisa. II Nuovo Cimento. Serie VI, 1919, anno LXV, vol. XVII, semestre 1, 
fasc. 1—6; vol. XVII, semestre 2, fasc. 7—10. 


Portici. Laboratorio di Zoologia generale ’e Agraria: 
— — Bollettino, vol. XIII. 


Potsdam. Astrophysikalisches Observatorium: eydlurk 
— — Publikationen, No 73; 74. 


124 


Prag. Deutscher naturwissenschaftlich- medizinischer Verein 
Botosyz 


— — Lotos, Band 66, 1918, No 1—5. 


— Listy cukrovarnicke. Ro&nik XXXVIL, 1919, &islo 28—31, 33—52; 
roönik XXXVII, 1920, &islo 1—18, 20—24. 


Rotterdam. Bataafsch Genootschap der proefondervindelijke 
wijsbegeerte: 
— — Gedenkboek, 1769—1519. 
— — Herdenking van het 150-jarig bestaan. 
— — Verlag der Algemeene Vergadering van 20 September 1919, met 
Bijvoegsel. ? 


San Fernando. Instituto y Observatorio de Marina: 
— — Almanaque naäutico, 1917; 1918; 1919; 1920. 
— — Anales, secciöon 2a (Observaciones meteorolögicas, magneticas y 
sismicas), ao 1914; 1915; 1916; 1917. 


Sendai. Töhoku imperial University: 
— — Arbeiten aus dem anatomischen Institut, Heft I, II, II. 


Stockholm. Forstliche Versuchsanstalt Schwedens: 


— — Flygblad, No 16—18. 

— — Meddelanden, 1919, häfte 16, No 1—8. 

— Institut royal geologique de la Suede: 

— — Ärsbok, 1918. 

— Kung. Vetenskaps-Akademien: 

— — Arkiv för Botanik, band 15, häfte 1, 2. 

— — Arkiv för Kemi, Mineralogi och Geologi, band 7, häfte 1—3. 

— — Arkiv för Matematik, Astronomi och Fysik, band 13, häfte 1—-4: 
band 14, häfte 1, 2. 

— — Arkiv för Zoologi, band 11, häfte 3, 4. “ 

— — Ärsbok, 1918. 

— — Astronomisk iakttagelser och undersökningar ä Stockholms 
Observatorium, band 10, No 5, 6. 

— — Handlingar, band 52, No 1—17; band 57, No 1—9. 

— — Jac. Berzelius bref, III:1. 

— — Samuel Klingenstiernas levnad och verk, 1. 

— Nobelinstitut: 


— — Meddelanden, band 3, häfte 4; band 5. 


Stuttgart. Verein für vaterländische Naturkunde: 
— — Jahreshefte, Jahrgang 74. 


N 
DD 
or 


Toronto. University: 


Upsala. 


Papers from the Chemical Laboratories, No 101—110. 

Papers from the Physical Laboratories, No 47—61. 

Studies: Anatomical Series, No 2, 3; Biological Series, No 15—17; 
Geological Series, No 9, 10; Medical Research Fund, No 1—11; 
Physiological Series, No 10—16, 19—23. 

The Journal of the Royal Astronomical Society of Canada, vol. VII, 
1914, number 3—5; vol. IX, 1915, number 5—10; vol. X, 1916, 
number 1—10; vol. XI, 1917, number 1—10; vol. XI, 1918, 
number 1—10; vol. XII, 1919, number 1—10. 


Geological Institution: 
Bulletin, vol. XVI. 


— Observatoire meteorologique de l’Universite: 
— — Bulletin mensuel, vol. L, annee 1918. 


Utrecht. Kong. Nederlandsch Meteorologisch Instituut: 
— — Monthly meteorological data for ten-degree squares in the Atlantic 


and Indian Oceans, No 107, 41, 42. 


— PhysielogischLaboratorium der Utrecht’sche Hoogeschool: 
— — Register, reeks 5, 18837—1918. 


[4 


Washington. Carnegie Institution: 


— — Annual Report, 1916. x 
— — Communications to the National Academy of Sciences, No 37—43, 


87—62. 


— — Contributions from the Mount Wilson Solar Observatory, No 124— 


126, 167—169. 


Department ofCommerce and Labor (Bureau of Standards): 


Scientific Papers, No 335, 337, 347. 


National Academy of Sciences: 
— Proceedings, vol. 6, 1920, number 1. 


Naval Observatory: 


Annual Report, 1919. 


U.’S. National Museum (Smithsonian Institution): 


‘Bulletin, 105. 


Weather Bureau (Department of Agriculture): 


‚ Monthly Weather Review, vol. 47, 1919, No 12. 


‘Wien. Allgemeiner österreichischer Apotheker-Verein: 
— — Zeitschrift, Jahrgang LXXII, 1919, No 15—52; Jahrgang LXXIV, 


1920, No 1—11. 


126 


Wien. Elektrotechnik und Maschinenbau. Jahrgang 37, 1919, Heft 


15—52; Jahrgang 38, 1920, Heft 1—10. 

Geographische Gesellschaft: 

— Mitteilungen, Band 62, 1919, No 4—11. 

Geologische Reichsanstalt: 

— Jahrbuch, Band LXVII, Jahrgang 1918, Heft 1—4. 

— Verhandlungen, 1919, No 1-12. 

Gesellschaft der Ärzte: 

— Wiener klinische Wochenschrift, Jahrgang XXXII, 1919, No 15 -52; 
Jahrgang XXXII, 1920, No 1—11. 

Hydrographisches Zentralbureau: 

— Jahrbuch, Jahrgang XXI, 1913, I—VIII, XI. 

— Wochenberichte für die Schneebeobachtungen im österreichischen 

Rhein-, Donau-, Oder- und Adriagebiete für den Winter 1917/18. 

Monatshefte für Mathematik und Physik. Jahrgang XXIX, 1915, 
Vierteljahr 3, 4. 

Niederösterreichischer Gewerbe-Verein: 

— Wochenschrift, Jahrgang LXXX, 1919, No 16—52; Jahrgang LXXX|, 
1920, No 1-—12. 

Österreichische Fischereigesellschaft: 

— Österreichische Fischereizeitung, Jahrgang XVI, 1919, No 4—12: 
Jahrgang XVII, 1920, No 1—6. ’ 

Österreichischer Ingenieur- und Architektenverein: 

— Zeitschrift, Jahrgang 71, 1919, No 15-52; Jahrgang 72, 1920, 
No 1—11. 

Österreichischer Touristenklub: 

— Mitteilungen der Sektion für Naturkunde, Jahrgang XXXl, 
No 5—12, Jahrgang XXXIL, No 1, 2. 

Wiener medizinische Wochens.chrift. Jahrgang 69, 1919. 
No 16—52; Jahrgang: 70, 1920, No 1—12. 

Wissenschaftlicher Klub: | 

— Jahresbericht, Vereinsjahr XLII, 1918— 1919. 

— Monatsblätter, Jahrgang XXXIX und XL, 1918 und 1919, No 7, S 


Zeitschrift für das landwirtschaftliche Versuchswesen in 
Österreich. Jahrgang 22, 1919, Heft 3—12; Sonderheft. 

Zentralanstalt für Meteorologie und Geodynamik: 

— Klimatographie von Österreich, IX. 

Zoologisch-botanische Gesellschaft: 


— Verhandlungen, Band. LXVII, 1918, ,Heft 9, 10; Band LXIX, 1919, 
Heft 1—5. 


— 
[8) 
| 


Staats- und Statistische Ämter. 


Wien. Ackerbauministerium: 


— Anbauflächen und Ernteergebnisse im Gebiete der Republik Österreich 
im Jahre 1918. 

— Statistik des Bergbaues in Österreich für das Jahr 1914, Lieferung 2; 
für das Jahr 1915; Lieferung 2. 

Handelsministerium: 

— Statistik des österreichischen Handels im Jahre 1915, Band I—IV; 
im Jahre 1916, Band I—IV; im Jahre 1917, Band I, I. 


Deutschösterreichisches Unterrichtsamt: 

— Volkserziehung. Nachrichten des d.-ö. Unterrichtsamtes, Jahrgang 
1919, Stück X, XI, XIV, XV, XVIL XIX—XXV; Jahrgang 1920, 
Stück IV. 

Magistrat der Stadt Wien: 

— Statistisches Jahrbuch der Stadt Wien für 1914, Jahrgang 32. 

Niederösterreichische Handels- und Gewerbekammer: 

— Geschäftsberichte, Jahrgang 1919, No 1, 3—8. 

— Protokolle über die öffentlichen Plenarsitzungen, Jahrgang 1918, 
No 3, 4 (mit Beilage 1), No 5, 6 (mit Beilage 2—4); Jahrgang 1919, 
No 1 (mit Beilage 1, 2), No 2 (mit Beilage 3, 4), No 3 (mit Bei- 
lage 5, 6), No 4, 5. 

Österreichisches Staatsamt für Finanzen: 

— Mitteilungen, Jahrgang XXIV, 1919. 

Statistische Zentral-Kommission: 

— Österreichische Statistik, Neue Folge, Band 2, Heft 3; Band 4, 
Heft 3; Band 18, Heft 2. 


Winterthur. Naturwissenschaftliche Gesellschaft: 


— Mitteilungen, Heft 12, Jahrgang 1917 und 1918. 


Würzburg. Physikalisch-medizinische Gesellschaft: 


— Sitzungsberichte, 1917, No 7—9; 1918, No 1—6. 
— Verhandlungen, Neue Folge, Band 45, No 4—7. 


Zürich. Naturforschende Gesellschaft: 


— Neujahrsblatt, 1920, Stück 122. 

— Vierteljahrsschrift, Jahrgang 63, 1918, Heft 3, 4; Jahrgang 64, 
1919, Heft 1—4. 

Physikalische Gesellschaft: \ 

— Mitteilungen, 1919, No 19. \ 

Schweizerische Apotheker-Zeitung. Jahrgang 57, 1919, No 15 
bis 52; Jahrgang 58, 1920, No 1—11. 

Schweizerische Meteorologische Zentral-Anstalt: 

— Annalen, 1917, Jahrgang 54. 


—_—— 


erde samt Baur mars Ohadan, - 
| R De ar aa 
j' auıalsh) ji I lat Jah tray ei “ ee I sat 3lk as N 

| > Se "at ee sat 

r I ı his f ae N e iv war 

i un vr # IL PETER Efmuinst FrLEn A 
| bu Eror sit milelsbant asdseidoisrietrnl 23 Kiste, 


| \ n ö g \ ö BA. Ar , ET 
2 z MEDIEN / Bra ALU aid L mi 


Se aneardak Pit u ner Iomde, 196 Ad 14 nl, RT jaejhat 
L 


ER. BEI RCRBEEN RT „alabos ! 8 ET 


en TAT LER she, ‚ht 


u ee 


TEE RRELT ddakdäiauıd 


vih uw 
SE 


aahadaieı BERTTENE ih = 


a 


NAST® ih uoriannas! st 93t48 


2. Bel be Stall RS, banzk „mio“ un elijei Ada DEM ipia Do 


; Ai ' A | S Be > a ‚st al s #h ‚bay ü AL.) 


Wut. tstadsellagy: adetitadoanauelannthn. 


N 
ur 


anayıda!, 


EM ash uhr harte danäke 


U ILe ar) u I 
De Dark ar bi tb Astor sun. 


Is id WIRBeNnEL IHEBei N B Soden: 
ER N ER en De km 


‚A 8 ynagjdal  ı} EN N6Fl Bl 1 ve zus al, ; re {ul 


N € iv Muller. das 
Prem, ne WR ne 1.0 ‚ste A 
Wort arde paraana aan 4 ‚Aa #shast 
Bi x mat Br, a Ön. 


Hr 


u. ö [2 HiniahAeliner fi N 
in 


2? Pr si 
Yin la ken; je 


1920 
März 


Monatliche Mitteilungen 


der 


Zentralanstalt für Meteorologie und Geodynamik 


Wien, Hohe Warte 
48° 14:9' N.-Br., 16° 21°7' E. v. Gr., Seehöhe 202-5 m. 


Luftdruck in Millimetern 


Temperatur in Celsiusgraden 


Tao | Abwei- |ı Abwei- 
| z Tages- chung v. R r | Tages- |chung v. 
E ia 21n,| mittel Noean. IE 14 ah | mittelt !Normal- 
stand | stand 
1 OR de ne ll ee, | L.4 12.8 102 7.0 |+ 4.9 
2 an Sad wall 75121 188 1.4 12, Rs 7.0 |+ 4.9 
3 53.6 55.6 55.2 | 54.8 |+11.9 10.9 13.4 7.4 10.6 I+ 8.5 
4 52.09 4935749 19 50..45-E 747 2.9 1n.8 10.0 10.1 + 7.9 
5 7.9. 45.4 43.6 | 45.6 |+ 3.0 3.4 16.0 9.9 9.8 + 7.5 
6 Aa.) 4007 B39n27 VAL .ON 5 5.4 13.0 10.2 9.5 + 7.1 
7 88.41 33,4 281.59 84 .Aol— 8:0 a 18.0 15.8 13.1 )+10.5 
8 34.87 34.2 734.6.) 34.5.1 7.8 9,6 13.0 9.6 9.4 + 6.6 
9 45.4. 48:7 :51.01| 48.4 |+ 6.2 2 2.9 2.2 2.1 |— 0.9 
10 13a S0A7RES0 IE 507 0.4 2.9 1.4 1.07 |— 15 
11 43.03.4783 945.987 AU E DB 204 2.3 0.4 URSS- wor 
12 42.2410: 241.6 | 41.6,|— 0.5) — 0.6 0.3 1.0 0.3: |— 2.9 
13 42.3, 41.3 41.3 | 41.6.|— 0:5 1.9 BE 2.8 3.5 + 0.2 
14 88.434 36197 536.34] 87 32,1 AN8 N 0.9 4.7 21.% 2.81 |— 046 
15 31.97 2859 28.82 29.2.1 12738 || 0.9 ale 1%. 6.5 + 2.9 
16 81:30 3289 198.371 a4 DIE 78 59 14.6 s.1 9.4 + 5.6 
17 1242.92 45507 47.23 45 J0n 3121880 7.4 9.6 Ma 8.2 + 4.1 
18 47.4. 46.2 46.5, 46.7 | 4.8 ar 14.7 108,7 10.9 + 6.6 
19 47.3 48.4 49.4 | 48.4 |+ 6.5 8.0 8.8 7.8 8.2 + 3.7 
20 59.96 51250652451 51.6 21-1947 7.0 8.8 6.4 7.4 1-4 2.9 
21 50.0 AYIg FA8. Hr. Th Zug 1.8 11.9 1025 9.9 + 5.8 
22 47.0 Al.o 48.5| 47.9°-2 6.0 8.0 9.9 1 8847 |-- 8.8 
23 7.85, 46,5 A6.Lul 46.845, 449 8.6 OR 6.8 T.2  To92HR 
24 46.5 46.3 47.5 | 46.8 |+ 4.9 ‚3.0 8.6 2 6.3 + 1.6 
25 48.2 a2» AA Ar Nor 97 2:9 11.6 6.9 7.0 + 2.0 
26 7.8.46.6..46.5:146.9 |+ 5.0 1) 12.8 8.2 1.314 2.0 
27 45rk. 48.64 143, 10) 4849 1=22:0 3.3 14.6 exe) 9.9 + 4.21 
28 44,0: 425774252 1°431.0=8]2o 11 10.0 use) 12.4 12.7 + 6.7 
29 41.8 41.1 .41.4 | 41.4 |— 0.4 u) 10.5 9.6 9.3 |+ 3.0 
30 41.6 41.0 40.4 | 41.0 |-— 0.8 4.6 6.5 6.3 5.8 |— 0.7 
31 98: 81 ,94.1,.85506.11982.2,— 4,6 Gl 8.1 9.4 8.2 |+ 1.5 
Mittel|745..04 744.20 744.27|744.50|-+ 2.35 4,5 10.4 7.4 7.4 FH 8.4 


Temperaturmittel?: 7.4°C. 


‚Zeitangaben, wo nicht anders angemerkt, in 
| 


mittlerer Ortszeit; Stundenzählung bis 24, 


| beginnend von Mitternacht —= Oh, 


310229). 
Ballast 9 OH ON 


130 


Beobachtungen an der Zentralanstalt für Meteorologie 


48° 14°9' N.-Breite. . im Monate 
UBER ER Bo PURE GREFGAEE ORPSESE E PPBEKOR REBEL EPERERARBSERERHEE FREE ENERGIE SEREETESETGE FRGROCRTEE RG FLIESEN ERBETEN INEFGEEERTERERNEBFGSCSTORBEAIFSTIEEEAPEISEEFEERCKGGEKETERREESRERETEREEEN 
| Temperatur in Celsius Dampfdruck in mm | Feuchtigkeit in %/, || Ver 
| | ı I ı BERN] <> SAT ee 
Tao Mae ai ER g — 
= 54 | °» . al Ai Tas S- - c er . 
Max, „Min. E En 2 FE I nn nl An Du a | zu 14h. Sim 5 
Kae | [ER 
1.1 14.8. 1.1] 20, all 8.4.39 21 0 38 ‚68.35 Ga en 
PA 1.37 38 | — 2 Sr Be 4.5 70 »43) 66. 162 11027 
3 14.6 2,4327 reger 6.0 5757er 
4 1.18.0 2.8, Admlbeaudll 2.83 16.9 6m8 6.1 94 441.7 701 1.5J3- 
) ld 3.3.42... — 1 5.4 6.1 6.8 6.1 92 -45--74--70-)| 0.6 
6.1, 14.4 5.0| 88 | 2.5.9 16.946213 6.4 87 92, 68 I.z22 ar 
u 18:2 4.5 | 45 1 6.1 V6eRnost 3.9190. 41. .39] za 
| 183.9 2-0. #0 ol 17.07 V6hnD. 4 (OR 7182984 7 7 180 
ai kr Hager) 1.2724 0) 8.0 War oz 3.4 7260 6071 62a) 
10 229, OR NEE 2 8.83 lanlo 3.8 3.2 20. 109+-65, 168 || 71.20 
11 2:6 —I 9.3 | A198 3 3.6 3.2 4.4 3. 82 59" 93 78 1 0.6 
12 1 87 —: 028 are 1 3.7 AM 314 3:8 8.9 s5 91° 76 | 84 || 0.6 
13 9:7 030 Bl 3.0 4.3 4.6 4.0 57. 60% 82-167 || We 
14 4.7 ORS TON 1 A al 4.9 91 :830° 92.188 || 0.34 
| DRS 1 lo EN 9.1 93. 50, 78 PxX21 5:0 
16 14.9 5.2) 45 2 DD, MORD LO 6.3 ee le || 1 
17 9.8 49| 832 Bi) 6.0. Now os DW 77 364% 70,7 0100800 
18 | 14.9 4.9| 44 1 902 oe Bel 69 49° 74 164 || 2.2) 
1: LOS 3.0) 31 B 6.38 3.5 4.4 9.6 85 165° 55. 16877] 2 
20 8.9 9.4| 36. | „ 8.9 Non 5.8 4.3 52 44,7 6 || 2.0 
21 | 18.6 6.0.) 41 | 4 Oro NomDm le: 9.5 73.527 56 BO. 
22. 410. 33.90 184 6 0.0 AO Be. 63..°08* 691462 
23 1.10.8 4.0) 43 3 2.8. NAmOr Are 4.61. 78: 44 60461 || T.1 
24. 18,6 2.4| 37° | 2 4.4 4.4 4.7 4.5 77. 9528 613 
ZI) 2.9| 38,|—- 2 8.7 or 4,8 3.9] 67 Bar 57 1184 I De 
26 13.0 m A208 3 8.7 IELIM ArB 4.1 75 v7 00 MoB-l mies 
27 115.55 2.9) Aagijıı 1] .“.6 5.0" 5.6 | 95.1.7840" 54 |"57 || 049 
28 -1.116.0 Ara, 51 4 RN A A ri? 7..D 81. oA. 7: NGOR LOmE 
29 | 10.6 @w.O 15 4 7.4 6.8 6.4 6.9 92 War 72 lea | ee 
BD SD Ar 32 2 4.4 5.3. 5.9 5.2 fi 734. 82 Indo || QA6 
ol 9.4 6.2| 18 6 78 Non ep SE.D 96 92: 82: |-90 || Q,1 
| 
Mittel 11.1 3.2) 34.3 .1°0.9 5:0 Ior2# DcH d. 78:96 69168 | 
Summe! 33:3 
| ui 
5.8 Dat. 1 2 3 4 b. 6 7 8 9 10.9*1,1° 772. 339 A216: 
— g er ® 
32181818.6 3.8 4.2.4.8 5.45.6 6.0) 6.4612 51214.3 3.8 3.4 8.7 4.0 
Da BIS 
2 | A400 TEN A.2UNZ AAN A,5 8 5:0 05!4 155er 
oo. fe) . 
a7 810.619.6 5.600.656 5.6'5.7 19.7 5.7 "5.7 5.8.5.8 9.9 5.9 Sam 
Ban == : 
30 SSH an IM 7.08 AN 79187. 17:0- TROWTRONTRORFTE 04700873007. 070 
ms =8:618,6 8:68.85 85.8.5 18.2 STE BA 8.4 8.A0B.A Bea 
Re EEE u BEBE aeEnEBE WT WEREEeTBETEEEErDESC ERBE TLTEErEr EEE SEITE EEE CrumerzemrerarnEn 


Größter Niederschlag binnen 24 Stunden: 5.0 mm am 11. u. 12, Niederschlagshöhe: 15.7 mm. 
Zahl der Tage mit e (x): 12 (4); Zahl der Tage mit =: 2; Zahl der Tage mit R: 1. 
Prozente der monatl. Sonnenscheindauer von der möglichen: 36 0/,, von der mittleren: 100 0),: 


! In luftleerer Glashülle. i 
® Blankes Alkoholthermometer mit gegabeltem Gefäß, 0:06 m über einer freien Rasenfläche. 


131 


und Geodynamik, Wien, XIX., Hohe Warte (202'53 Meter), 
März 1920. 16° 21”7' E.-Länge v. Gr. 


. I! | 
Bewölkung in Zehnteln des || Dauer |, 


sichtbaren Himmelsgewölbes Io des 
55 Israel Bemerkungen 
- oe| in 
er 1) ei" a Stunden 
rt | 
| 
70 0 Ö 2.31 9.3 | -- 
0 60 0 2.01 9.7 ||-a0"1 mgns. 
30 101 30 5.31 2.2 || [J01 abds. zeitw. 
20 10 0) 1.0 10.0 | .al mgns. 
0 60 90 5.01 9.1 | a! mgns.; [Dt 19—23. 
90-1 60 0 5.01 3.9 — 
100 90-1 401 7.7| 5.9 ||eTr. 16%; al”? mens. 
11 10 91 3.7 9.6 || AL «0 e1 Böe mit < 2150 —23, x0 e07123 — 
g1 sı sl 8.3|1 3.3 |x0e0—1, xFl. 825 —9, 1620, 
101 101 sl 9.31. 0.0 — 
90-1 101 101x0-1| 9.71 0.6 | E01 mgns; x071 1515 — 
101%0 10ix0 101x0 110.01 0.0:||x071-—-9, x0 930— 15, 17— 
101 100-1. 101. .110.0| 0/9 |x0—1; &110—12. 
ROOT NOZTFRFTOL {0.01 0.0 |oal, =!mens. 
101=1 40=1 0 4.7) 5.5 |.2071, =! mens. 
9071 7071 101 8.7 5.0 ||al mgns. 
10180 9071 20 7.01 0.3 0 640 —8, 111572, 
90 80-1 70-1 | 8.01 6.9 ||(D1, @B1 mittags. 
10180 si 40-1 | 7,3| 1.7. ||e01 210 620, e0 7—1030. 
80-1 100-1 10160 | 9.3) 5.1 |e0 715-830 zeitw,, e0-1 1710-1845, 2045 — 2315. 
10071, 010071 90-1 | 9.7|° 0,7 || e0 9—11 zeitw., 1690. 
10071 91 3071 | 7.31 2,5 |e0 118%. 
90-1 41 0 4.31 5.0 — 
gan lesen lor! 8.31 4.6 ||.20 mens. 
30 10 0 1.3 10.7 ||.20 mgns. 
Ö 10-1 0 0.3 10.7 ||! mgns. 
4 5071 91 101 8.01 6.0 ||.a0 mgns. 
10041e1 3071 sı 7.01 3.4 ||eTr. 550—610, e1 650—730, &0 810730, 
80 101 10180 | 9.3) 0.0 ||e0 2015—21; almgns. 
7071 101 101 9.01 1.7 | mens. 
101 101860 101 10.01 0.0 |e0 4—6, @0-1 7101420, el 2200750, 
7.8 al 9. | 4 
134.3 | 


2.8.5.6 5/8 6.8.0.6. e6.7e 6.5°6.6.16.616.8 7.7.8.2 767 77915. 
4.8 4.9 5.0 5.2 5.4.5,6 Bimlsusöis/ne!aile.2 6.1 6.3 6.5 6.7 6,8158. 
8.0 6.0 6.0 6.0 6.0 6.01 6.0°6.1°6.1'6.2 6.2 6.3 6.3.6.3 6.4 6,4 5. 
7.0%.7:0' 7.0 7.0 17.00 7.0079007J0N 704:7.004760 7.0: 7.0,,7.01720,57.1117. 
BIN BB BB EERETLENT.TDER.D) 8.20F2 2 tl | 


Zeichenerklärung: 


Sonnenschein @), Regen e, Schnee x, Hagel a, Graupeln A, Nebel=,  Nebelreißen =;, 
 Tau.a, Reif, Rauhreif \, Glatteisru, Sturm 9, Gewitter, Wetterleuchten $, Schnee- 
_ gestöber #, Dunstoo, Halo um Sonne &, Kranz um Sonne (d, Halo um Mond (J, Kranz 

um Mond W, Regenbogen f, eTr. = Regentropfen, «Fl. = Schneeflocken, Schneeflimmerchen. 


132 


Beobachtungen an der Zentralanstalt für Meteorologie und Geodynamik, 
Wien, XIX., Hohe Warte (202-5 Meter), 
im Monate März 1920. 


1 


I i 
| Windrichtung und Stärke \WiRägeschwadper Niederschlag, 2 
| .n. d. 12-stufigen Skala in Met.in der Sekunde in mım gemessen 2 
Tag | | B 
| | D 
zh 14h ‘21h | Mittel | Maximum! 7 14h si 5 
N mn 
1 N 41.9002 TESHR IT, Ir Be 2769 = - = a 
2 ONBEDN LTM Sr 5.0 -— = . = 
3 W025 ENBRN N NETT WW NW 10.2 = = — — 
4.17.80. 18 WAS We 17 28 Ww 10.5 = = Se 
5 S . i- „SE-J .SSW 1 1-4 WER.B,O = — + _ 
6 N. Ba a Welt nam — _ = = 
7 SW 1:.SsSE.1.:Sssw.2| 3.3 | SSw.20.8 2 Bi 0.08 
8 |WSwWw2 WNW3 NW-2|| 4.6 | WSW 17.0 — — 2 — 
9 |WNW3 WNW4 NW 2 | A.7 | WSW 15.7 | 2.44 0.0 4 a 
10|NW3 N 2 -NNW2| 3.9 5.9.0 - - — | 
1.1: VINSV 1 EN. 8 INES NN EN W all.o = = 1.35% 1 — 
12 |WNWA WSW3 WSWA || 6.9 | WNW 15.0 | -2.3* ..1.%  0.0x IEl 
13 ww. 37 WS /NNETL- iM 425 | ıWSW .16.7 | .010% — a 
14 I. ESSEN ES 12.7 | ESE . 8.8 — . ne: 
15 | ESE 2 SSE4 SE 3 | 5.6 Sa > & ve 
| 
16 SEND. BE Cr Ey lad Si 18.7 1. —_ — 
17 2. 00 WW 813.04 WEW 15.93 Co Me 70.10 12 
18..|WSW3 ,W. 5. .W 3.l 6.8 | WSW 20.8 — — — | 
19 |WNW2 Ww 3 WNW5 | 6.0 | WNW 16.1 | 2.8e 1.86 + 
20 |WNW5 NNW4 WA 7.5-) WNW 22.2 = 0.06 10.08 1 
21 w5 w5 WAa|69 W 19.4|| ‚0.80 0.06 ., 0.06 | 
22 |WNW4 NW A NW 3 | 6.3 | WNW 18.2 = 0.08 — ne 
23 1 ENV BAND ON ER NED UN WAT N — — | 
24 N 1, NBA8: INBEH ea 8 SE” 0.7 ._ — 2 
25 NE. 1.4 B8E73, 1.SES 1 I 34 SE 12.8 — — . a 
26, \UNE .LA.SE i8- ssEii har sp 13. 00 0 2 — a 
27 A 0SEST LS. 1 —_ — —. Te 
23 IWNW2 NE 2 E 1| 1:9 |WNW. 9.0| 0.3e 0.9e =. B 
29 SE LIuSENN8 SR BEA FESBT2 6 = — .0e ur 
30 SE 1 8SSE A ESE3| 6.0 | ESE 15.1 0.08 en a MINE 
31 SE 3. SE..3,” E38 |. 5,8 |» ESB «415.3 |-%0.08):@1.40)) 70 les 
Mittel | 1.9 2,5 2.0 4.0 13.2 
Summe 8.7 A! 


I 
Ergebnisse der Windaufzeichnungen (nach dem Schalenkreuzanemometer): 


N. NNE NE ENE , E ESEi SEı SSE ,S. SSW SW »WSW Wı.WNW NW NNW 
Häufigkeit (Stunden) 
58 24 % 14 58.27 96 749,742, 25: 028 13 125 40 88: Hol 19 
Gesamtweg in Kilometern 
462. 140 35 : 68 234 1717 1120. 510 182: 205 151 2598 727 1645- 610 205 
Mittlere Geschvrindigkeit, Meter in der Sekunde 
2.3 1:7 1,4 1,4 2.5.4.7 04.213.3 1.9 220 Bol DB 10 0a ee 
Maximum der Geschwindigkeit, Meter in der Sekunde 
5.0 a lWU 0 7225,89 .8707075.170 78.01 10RB, GE a DE DE 
Anzahl der Windstillen (Stunden) = 18. 


ı Den Angaben des Dines’schen Druckrohr-Anemometers entnommen. 


Österreichische Staatsdruckerei. 505 20 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 Nr. 11 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 29. April 1920 


Ing. Rudolf Scheiber in Wien übersendet ein versiegeltes 
Schreiben zur Wahrung der Priorität mit der Aufschrift: 
»Planetare Nebel.« 


Das w.M. Hofrat Franz Exner legt vor: 


»Mitteilungen aus dem Institut für Radium- 
forschung. Nr. 130.” Zur Kenntnis der Zerfallskon- 
stante des Actiniums und des Abzweigungsverhält- 
nisses der Actiniumreihe«, von Stefan Meyer. 


Die Halbierungszeit des Actiniums wird mit rund 161), 
Jahren, ‘das Abzweigungsverhältnis der Actiniumfamilie aus 
der Uran-Radiumfamilie mit 4°/, gefunden. 


Prof. Dr. Oskar Lichtenfels in Graz hat zwei offene 
Schreiben seines im Jahre 1881 verstorbenen Stiefbruders 
Viktor Freiherrn v. Lichtenfels mit den Aufschriften: »I. Ideen 
des Herrn Dr. Freiherrn v. Lichtenfels über die Mecha- 
nik der Atome (gefunden in den Jahren 1868 —1874)« 
und »Il. Fragmente akustischer Untersuchungen von 
Herrn Dr. Viktor Freiherrn von Lichtenfels« mit dem 


17 


134 


Ersuchen übersendet, beide Schriften, welche Beziehungen 
zur Einstein’schen Relativitätstheorie enthalten, in das Archiv 
aufzunehmen und allen sich für die darin behandelten Fragen 
Interessierenden zugänglich zu halten. 

Interessenten können in diese beiden Schreiben nach 
vorhergehender Anmeldung bei der Kanzlei der Akademie der 
Wissenschaften in Wien, I., Universitätsplatz 2, Einsicht 
nehmen. 


Österreichische Staatsdruckerei. 506 20 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 Nr. 12 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 14. Mai 1920 


Die Mitteilung von dem am 6. Mai I. J. erfolgten Ableben 
des w. M. dieser Klasse, Hofrates Prof. Dr. L. Pfaundler in 
Graz, wurde der Akademie bereits in der Gesamtsitzung vom 
6. Mai 1. J. zur Kenntnis gebracht. 


Prof. Dr. E. Schweidler in Innsbruck dankt für die 
Bewilligung einer Subvention zur Fortführung und Ausgestal- 
tung seiner luftelektrischen Untersuchungen in Seeham. 


Folgende versiegelte Schreiben zur Wahrung der 
Priorität sind eingelangt: 

1. von Alois Reich in Wien mit der Aufschrift: »Elek- 
trische Insolation und Cyclone«; 

2. von Karl Reichel in Wiener-Neustadt mit der Auf- 
schrift: »Kritik der mechanischen Lokomotion.« 


Das w. M.R. Wegscheider überreicht zwei Abhand- 
lungen aus dem J. chemischen Laboratorium der Universität 
Wien: 


1.»Die Synthese‘des Sinapins«, von Ernst Späth. 


Verfasser beschreibt die Synthese des Sinapins, des 
Alkaloids der schwarzen Senfsamen, aus Sinapinsäure und 


18 


136 


Oxäthyldimethylamin. Sinapinsäure wird durch eine bequeme 
Synthese dargestellt und mittels dem daraus gewonnenen Acetyl- 
sinapinsäurechlorid die Hydroxylgruppe des Oxäthyldimethyl- 
amins verestert. Wird aus diesem Ester durch gelinde Ver- 
seifung der Azetylrest abgespalten und dannJodmethylangelangt, 
so entsteht ein quarternäres Jodid, welches mit dem natürlichen 
Sinapinjodid vollkommen identisch war. Durch diese Synthese 
erscheint die seinerzeit von Gadamer aufgestellte Konsti- 
tutionsformel des Sinapins bestätigt. Die intensive gelbe Farbe 
des freien Sinapins ist ohne Annahme einer ‚Umlagerung 
darauf zurückzuführen, daß durch die im Sinapin befindlichen 
Substituenten die Absorption des Benzolkernes in den sicht- 
baren Teil des Spektrums verschoben wird. | 


2.»Dije Synthesen des Ephedriıns, des Fsengs 
e&phedrinssihter optischen Antipedenmen 
Razemkörper«, von Ernst Späth und Rudolf 
Göhrine. | 
Den Verfassern gelang die besonders von E. Fourneau 
und E. Sehmidt ‚vergeblich ‚versuchte: Synthese, der, in 
Ephedra vulgaris vorkommenden mydriatischwirkenden Alka- 
loide Ephedrin und Pseudoephedrin. Zu diesem Zwecke wurde 
Propionaldehyd mittels Brom in a-Brompropionaldehyd um- 
gewandelt und daraus mit Methylalkohol und Bromwasserstoff 
.1,2-Dibrom, I-methoxypropan erhalten. Durch Phenylmagnesium- 
bromid entstand weiter 1-Phenyl, 1-methoxy, 2-brompropan 
und dann mittels Methylamin 1-Phenyl, 1-methoxy, 2-methyl- 
aminopropan, welches beim Erhitzen mit konzentrierter Brom- 
wasserstoffsäure und nachfolgenden Kochen mit viel Wasser 
in guter Ausbeute razemisches Pseudoephedrin gab. Die Spaltung 
dieser Razemverbindung glückte durch Darstellung der sauren 
Salze der /- und d-Weinsäure. Das synthetische d-Pseudoephe- 
drin erwies sich in allen Eigenschaften mit dem natürlichen 
Pseudoephedrin identisch. Die Pseudoephedrine wurden durch 
Erhitzen mit Salzsäure in die entsprechenden Ephedrine über- 
geführt, wovon das synthetische /-Ephedrin mit dem: natür- 
lichen Ephedrin identisch war. Durch Vermischen- von 
gleichen Teilen /- und d-Ephedrin entstand schließlich das 
razemische Ephedrin. 


Das w. M. Hofrat E. Lecher legt eine Mitteilung von 
Ernst Rie in Wien vor, betitelt: »Einfluß der Oberflächen- 
spannung auf Schmelzen und Gefrieren. (Vorläufige 
Mitteilung.)« | 

Pawlow hat eine Arbeit über den Einfluß der Ober- 
flächenspannung auf das Schmelzen und Gefrieren gemacht.! 
Während jedoch dieser von Überlegungen über den Dampf- 
druck gekrümmter Oberflächen ausging, gelangte ich durch 
rein thermodynamische Betrachtungen zu anderen Resultaten. 
Die Gleichgewichtsbedingung für die Existenz eines Krystall- 
kornes in seiner Schmelze lautet in sinngemäßer Übertragung 
der Formel von Gibbs im Einstoffsystem: 


dm(F,—-F,) = dm p (, = v,) —9344.0. 


Verzeichnis der in der Arbeit verwendeten Buchstaben: 


1° ‚Index des Gases 5 „SDes. Gew. 

2 Index der Flüssigkeit v Vol. der Masseneinheit 

3 Index der festen Phase T absolute, Temperatur 

2.2-Brück q  Schmelzwärme 

m. Masse O . Größe der Oberfläche 

S freie Energie der Ober-  # freie Volumsenergie' der 
flächeneinheit Masseneinheit 


r Kornradius 


Hierbei muß man unter dm die Masse einer gegen den 
Radius des Kıystallkorns unendlich dünnen Flüssigkeits- 
schichte verstehen, die an das Korn anfriert. Unter dO ist 
die Vergrößerung der Grenzfläche fest-flüssig bei diesem 
Prozesse zu verstehen. Diese bei beliebiger Krystallform . 
richtige Formel kann unter der Annahme, das Korn habe 
annähernd Kugelgestalt, folgendermaßen umgeformt werden: 


1 
u. ——, dO =8rrar; 
Ss 


dm. — 467 .S,.0r, U, — 
RAS, 3 


Sg 


& 


sr (R—FR)=rp er da ) — 2 9,;. 


1 Zeitschr. f. phys. Chem. 65, p. 1, 1909, 


138 


Wenn der Schmelzpunkt des kleinen Kornes 7, nicht 
sehr verschieden vom Grenzschmelzpunkt (so wollen wir den 
Schmelzpunkt ohne Berücksichtigung der Öberflächenenergie 
nennen) 7, ist, kann man diese Formel durch Anwendung 
einer Taylorentwicklung folgendermaßen umformen: 


Diese Formel, die einen Zusammenhang zwischen Öber- 
Nlächenspannung an der Grenze fest-flüssig, Kornradius, 
Schmelzwärme und Schmelzpunkt gibt, kann experimentell 
geprüft werden. Sie besagt, daß der Schmelzpunkt eines 
kleinen Krystalls im Inneren seiner Schmelze tiefer ist als der 
Grenzschmelzpunkt. 

Für den Schmelzpunkt eines kleinen Tropfens im Inneren 
eines Krystalls gelten analoge Formeln: 


dm (F,— F,) = dmp w— v,) + S,; dO, 
Ds | 
Ssrq l 


Tr, —T, = + Is 


Der Schmelzpunkt eines Tropfens im Inneren eines Krystalles 
ist also höher als der Grenzschmelzpunkt. 

Die Bedingungen für den Schmelzpunkt eines Tropfens 
an der Oberfläche eines Krystalles sind andere. Die thermo- 
dynamische Analyse ergibt: wenn S,>\S;o+S;, ist der 
Schmelzpunkt eines kleinen Tropfens an der Oberfläche 
eines Krystalles tiefer als der Grenzschmelzpunkt, das heißt, 
es gibt ein Temperaturintervall, in dem eine dünne Flüssig- 
keitsschichte an der Oberfläche eines Krystalles stabil ist. 
Wenn S,=S;+S;,, ist der Schmelzpunkt eines kleinen 
Tropfens an der Krystalloberfläche gleich dem Grenzschmelz- 
punkt, das heißt, ein Überhitzen der Krystalloberfläche ist 
nicht möglich. Ein Krystall muß beim Grenzschmelzpunkt 
von der Oberfläche ausgehend schmelzen. Dies scheint der 
in der Natur realisierte Fall zu sein. Wenn S,<S,5+ Sy5 
ist der Schmelzpunkt eines kleinen Tropfens an der Krystall- 
oberfläche gegenüber dem Grenzschmelzpunkt erhöht, ein 
Überhitzen der Krystalloberfläche möglich. Aus Beobachtungen 


| 


139 


über das Schmelzen von Krystallen kann man Schlüsse auf 
die in Betracht kommenden OÖberflächenspannungen ziehen. 

Aus den bisherigen Überlegungen ersieht man, daß der 
Schmelzpunkt eines Krystallkorns von dessen Größe abhängt. 
Bei krystallinischen Gebilden muß man unter der hier in 
Betracht kommenden Korngröße wohl die Größe der 
»Krystallite« (siehe Tammann, Metallographie) verstehen, 
Beim Schmelzen von sehr fein krystallinischen Gebilden 
sind daher Unregelmäßigkeiten in der Nähe des Schmelz- 
punktes zu erwarten (Unschärfe des Schmelzpunktes, 
Wachsen der großen Krystallkörner, deren Schmelzpunkt 
höher ist, auf Kosten der kleineren usw.) Wahrscheinlich 
sind die meisten amorphen Körper, die man wegen ihres 
undefinierten Schmelzpunktes gewöhnlich als unterkühlte 
Flüssigkeiten auffaßt, nur besonders fein krystallinisch (Korn- 
radius kleiner als 10° cm). 

Einige Folgerungen aus den dargelegten Theorien sollen 
experimentell überprüft werden, worauf eine ausführliche 
Publikation erfolgt. 


Weiters legt Hofrat Lecher eine Arbeit von Else Norst 
yor mit dem Titel: »Zur optischen Größenbesimmung 
Ehrenhaftscher Probekörperchen.« 


Es wird die vorläufige Unbrauchbarkeit dieser Methode 
dargelegt und die Übereinstimmung ihrer Resultate mit den 
Ergebnissen der Stokes-Cunningham’schen Formel für eine 
zufällige, durch inkorrekte Rechenführung und Nichtbeachtung 
der großen Unsicherheit ihrer Aussagen erreichte, erklärt. 


Das w. M.,Prof. Franz Exner legt vor: 


1. »Mitteilungen aus dem Institut fürRadium- 
forschung. Nr. 131. Über die chemischen 
Wirkungen der durchdringenden Radium- 
strahlung. 12. Über die Lage des Fumar- 
Maleinsäuregleichgewichtes in der durch- 
dringenden Radiumstrahlung und über die 


140 


Wirkungvonletztererundvonultraviolettem 
Licht auf wäßrige Lösungen von Harnstoff, 
Benzoesäure und Ameisensäures, von Anton 
Kailan. 


Es werden Gemische von Fumar- und Maleinsäure- 
lösungen durch 2— 3000 Stunden den Strahlen von SO — 110 mg 
Ra enthaltenden Präparaten ausgesetzt. Unter der Voraus- 
setzung, daß die sich ergebenden Titerabnahmen nur durch 
das Entstehen von Akrylsäure bedinst sind, ist die Lage des 
Gleichgewichtes in der Radiumstrahlung von der im Lichte 
der Quarzquecksilberlampe nicht sehr verschieden. 

Weder durch die Einwirkung der erwähnten Radium- 
strahlen noch durch die von Quarzglasultraviolett werden 
unter den Versuchsbedingungen das spezifische Gewicht, der 
Brechungsexponent oder die Umwandlungsgeschwindigkeit in 
cyansaures Ammon bei einer molaren wäßrigen Harnstoff- 
lösung in einer die möglichen Versuchsfehler übersteigenden 
Weise geändert. 

In wäßrigen Ameisensäurelösungen bedingen weder die 
einen noch die andern Strahlen Oxalsäurebildung; dagegen 
treten in beiderlei Strahlen Titerabnahmen ein. In Benzoe- 
säurelösungen bewirken beiderlei Strahlen die Bildung vom 
Ameisensäure und Oxalsäure nebst reduzierenden Substanzen: 
In allen Fällen sind nur Strahlen mit kleineren Wellenlängen 
als 0'341 wirksam. 


Derselbe legt ferner vor: 


8) 


»Zur Theorie der Röntgenspektren. (Zur Frage 
der Elektronenanordnung. im»Atom. (Il:-Mik 
teilung)«, von Adolf Smekal. 


Eine Zusammenfassung der bisherigen Arbeiten des Ver- 
fassers zur »Ring«frage zeigt, daß die mit der Ringvorstellung 
erhaltenen Widersprüche im: wesentlichen bloß noch die un- 
erläßliche Annahme exakter Giltigkeit der Bohr'schen Frequenz- 
bedingung zur Grundlage haben. Auch wenn man die äußeren 
Elektronenanordnungen der Atome als räumlich ansieht, scheint 
es notwendig, zu sein, 3'K-Elektronen anzunehmen, was zu 


141 


noch ungeklärten Schwierigkeiten mit dem periodischen System 
der Elemente, sowie dem Kossel’schen Emissionsmechanismus 
für die Röntgenlinien führt. 

Zu räumlichen Anordnungen auch der kernnahen Elektronen 
übergehend, wird die Zahl der bekannten L- und M-Absorp- 
tionskanten zutreffend wiedergeben. Es wird gezeigt, daß das 
sogenannnte »A-Dublett« der L-Serie auf einer Täuschung 
beruhen dürfte und daß die vierte von Wagner vermutete Z- 
Absorptionskante nicht existiert. Schließlich wird ein Vorschlag 
zur Erklärung des bisher rätselhaften «,-a,-Dubletts der L- 
Serie diskutiert, der darauf beruht, den K-Elektronen mehrere 
verschiedene (räumliche) Bewegungszustände zuzuschreiben, 
bei denen diese ‚nicht mehr in energetischer Hinsicht gleich- 
wertig sind. 


Das w.M.Hofrat G..Escherich. legt eine Arbeit von 
Dr. Bloch vor mit. dem Titel! Ȇber Gesamtschwankung 
von. Funktionen mehrerer Veränderlichen.« ? 


Prof. Dr. Th. Pintner, Universität Wien, überreicht eine 
Arbeit, betitelt: »Topographie des Genitalapparates von 
Eutelrarhynchus. ruficollis (Eysenhardt). 

Die vorgelegte Arbeit beschäftigt sich mit Autetrarhynchus 
ruficollis (Eysenhardt), einem Cestoden aus: Mustelus. Teile 
dieses Parasiten, der wohl der häufigste seiner Familie sowohl 
an den Mittelmeer-, wie an .den: atlantischen. Küsten ist, 
besonders .der komplizierte Bau des Kopfes, sind von mir 
vor 40 Jahren beschrieben worden: in einer: Arbeit, die: die 
Grundlage für die. Kenntnis ‚von der gesamten Familie der 
Tetrarhynchoideen bildet. Trotzdem wurde diese typische Form 
auch in Arbeiten jüngeren Datums mit weit verschiedenen ver- 
wechselt, wie ich in meiner im Jahre 1913 in den Sitzungs- 
berichten der hohen Klasse niedergelegten Veröffentlichungen 
dartun konnte. Es ergab sich daraus die Notwendigkeit, dieser 
Unsicherheit ein Ende zu bereiten, da sie in alle Neu- 


142 


beschreibungen besonders aus den Tropen reichlich zuströ- 
mender Formen immer wieder Verwirrung bringt und die 
Synonymik in lästiger Weise vermehrt. Diesen Abschluß 
versucht die vorliegende Arbeit. Ihr erster Teil gibt eine 
kritische Sichtung der vorliegenden Literatur, der zweite die 
eben unerläßlich breite Schilderung des äußeren Habitus von 
Kette und Gliedern und von der Topographie des Sexual- 
apparates, die auch für die Kenntnis der Cestodenorganisation 
überhaupt von Wichtigkeit ist. 


Plantae novae Sinenses, diagnosibus brevibus de- 
scriptae a Dr. Heinr. Handel-Mazzetti (4. Fortsetzung).! 


Arenaria Fridericae Hand.-Mzt.? 


Subg. Odontostemma sect. Yunnanenses Wills. 

Tota pilis sordidis eglanduloso-hirsuta. Caules steriles et 
floriferi 7—12 cm Ig. debiles pluries dichotome ramosi 4anguli 
internodiis 1'9—2'5 cm lg. Folia ovata 10X6—12X7 mm 
acutiuscula subsessilia crasse herbacea tenuiter uninervia. 
Flores terminales et hic illic alares singuli + 15 mm diam., 
pedicellis angulatis 10—15 mm Ig. apice nutantibus serius 
deflexis. Calyx late campanulatus basi truncatus; sepala por- 
recta ovata 9'959 — 6°5X2 — 25mm ovata obtusa herbacea 
nonnulla anguste hyalino marginata, nervis medianis basi 
incrassatis. Petala alba calyce ad 1!/,plo longiora late cuneato- 
obovata 5—6 mm It. unguiculata breviter biloba et in dentes 
ad Imm |1g. lacerata. Discus glandulis 5 carnosis bilobis 
stamina exteriora fulcrantibus. Stamina 10; filamenta vix 
2 mm |g., antherae minutae hyalinae inclinatae. Ovarium 
globosum 4 loculare; styli 2, raro 3, 3 mm Ig. 

Prov. Yünnan bor.-occid.: In glareosis calceis montis 
Piepun ad austr.-or. oppidi Dschungdien, 44 — 4700 m, legi 
11. VIII. 1914. 


1 Vgl. Akademischer Anzeiger, 1920, Nr. 10. 
fo} 2 
2 In honorem matris meae nominata. 


143 


Species inter ceteras suae sectionis praecipue indumento 
insignis, forte etiam glandularum structura mihi ob ceterarum 
defectum nondum comparabili. 


Haplosphaera Hand.-Mzt. nov. gen. Umbelliferarum. 


Umbella simplex, involucro polyphyllo, floribus herma- 
phroditis proterandris. Sepala distincta. Petala cucullata apice 
acuto longe inflexo. Filamenta brevia. Discus depressus pul- 
viniformis subinteger stylos breves crassos ad stigmata haud 
dilatatos in sulco transversali cingens. Fructus (immaturus!) 
obovato-obconicus. Mericarpia pentagona aequicrassa ac lata; 
juga undulato-subalata, dorsale ceteris paulo maius, ad com- 
missuram latam distantia; valleculae latae jugis secundariis 
nullis; vittae valleculares 3 (raro 1—2); endocarpium par- 
enchymaticum molle; exocarpium leve glabrum; endosper- 
mium liberum ovoideum. 

Genus disei structura et umbella simpliei Sanicnloidearum 
sed vittis in valleculis locatis et habitu Apioidearum prae- 
ditum inter has tribus ambigens, sed verosimiliter Zigustico 
affine. 


Haplosphaera phaea Hand.-Mzit. 


Herba perennis elata (45—90 cm) glaberrima. Rhizoma 
descendens longum collo sparse squamatum folia 1 vel 2 et 
caulem 1 erectum simplicem crassiusculum teretem 2—4folia- 
tum emittens. Folia triangulari-ovata 11—15 cm Ig. et It. ter- 
nata herbacea infra pallida margine scaberula; foliola longi- 
petiolata ternata vel perfecte vel imperfecte biternata seg- 
mentis ultimis ovatis 19x38, 3X4—5xX8cm crebre irregu- 
lariter inciso-crenatis; inferiora petiolis longis basi vaginanti- 
bus, superiora pedunculos sparsos erectos 4— 32 cm 1g. ful- 
crantia in vaginis lanceolatis inflatis sessilia segmentis angu- 
stioribus sparsius dentatis. Umbella subglobosa 19 —2 cm 
diam. dense ca. 100flora. Bracteae numerosae subulato-lineares 
flores aequantes. Pedicelli crassi 3 mm |g. Sepala minuta ovato- 
triangularia, petala phaea, antherae griseae, styli denique 
0:4 mm Ig., fructus immaturi ad 3 mm Ig., 1:7 mm It. 


Anzeiger Nr. 12. 19 


144 


Prov. Yünnan bor.-occid.: In silvis abietinis inter Bödö 
et Alo ad austro-orient. oppidi Dschungdien. (»Chungtien«), 
ca. 3800 m, legi 8. VIII. 1914. 


Saussurea centiloba Hand.-Mzt. 


Sect. Caulescentes Hook. fil. 

Rhizoma simplex vel pluriceps fibris brunneis involu- 
cratum, foliis 2"s et caulibus singulis rigidulis 17— 37 cm Ig. 
simplicibus 3foliatis e quoque capite. Folia. radicalia et cau- 
linum infimum subbasale brevissime anguste vaginanti-petio- 
lata, anguste lingulato-lanceolata 14—22 cm lg. usque ad 
35 It. cum caule brunnescenti-furfuraceo-pilosa et supra 
floccosa infra .albo-tomentella vel glabrescentia, usque ad 
rhachides anguste integro-alatas 18 —28jugo pinnatisecta, 
lobis late sessilibus in lacinias 2—3 aequales lingulato- 
lineares interdum inferne paucilobulatas mucronulatas versus 
bases usque fissis, terminali subminore; caulina supera 
minora lobo terminali multo longiore, summum-saepe calathio 
approximatum subintegrum. Calathium 1, ovatum 2:5 cm lg; 
Phylla sub öseriata herbacea & 1'5 cm Ig. saepe fusca linearia 
acuta breviter floccosa, exteriora e basibus anguste triangulari- 
bus induratis patula. Paleae setaceae 4 mm 1g. flavae. Flores 
numerosi violacei. Pappi setae brunnescentes exteriores nume- 
rosae caducae hirtellae interioribus 12 mm Igis. sordide plu- 
mosis 4P!® breviores. Corollae tubus limbum campanulato- 
eylindricum ad !/, inferum fissum — aequans: antherarum 
caudae dense albo-barbatae. Germen glabrum. 

Prov. Yünnan: Eiusdem ditionis in pratis subalpinis 
montis Piepun, 3500 m, legi 10. VIII. 1914. 

Species foliorum segmentis duplicatis et triplicatis valde 
insignis. 


Saussurea Wettsteiniana Hand.-Mzt. 


Sect. Obvallatae Maxim. typus aberrans. 

Rhizoma validum ramosum sursum petiolis emortuis 
flaccidis involucratum, foliorum fasciculos et caules com- 
plures edens. Caulis 23—50 cm (et ultra) |g. crassiuseulus 
apice nutans, cum foliis bracteisque glandulis. et pilis albis 


145 


hirtus. Folia fasciculorum erecta et caulinum imum ligulato- 
lanceolata acuta in petiolos anguste alatos laminis 11X4cm 
metientibus subaequilongos sensim attenuata, herbacea remote 
minutissime denticulata infra strigilloso-pilosa; folium cau- 
linum medium saepe unicum basi vaginante amplexicauli 
sessile; summum auriculato-amplexicaule, triangulari-ovatum 
usque ad 12X7 cm Calathia late ovata ca. 2:5 cm Ig., ter- 
minalia singula vel ad 6 cm subter, 1—2 sessilia et brevi- 
pedunculata nutantia, quidque bractea | amplexicauli cymbiformi 
obtusa 5—8 cm Ig. et multo latiore pallida reticulato-venulosa 
desuper obvolutum, saepe bractea ima paulum distante inani. 
Involucri phylla adpressa 3seriata acuta, extima e basi trian- 
gulari medio tantum duriuscula lanceolata fusco-scariosa et 
sericeo-pilosa, cetera paulo longiora angustius lanceolata mar- 
ginibus erosulis tantum scariosa. Paleae tenuissime setaceae 
Ss mm lg. Flores numerosi violacei. Pappi setae brunneae, 
exteriores caducae Scabrae breves, interiores plumosae. Corollae 
tubus tenuis limbum cylindricum ad !/, in lobos anguste 
lineares fissum aequans; antherarum caudae valde laceratae. 
Germen glabrum. 

Prov. Yünnan bor.-oce.: In pratis juxta jugum Niutschang 
inter Bödö et Dschungdien aliisque eiusdem ditionis locis 
humilioribus, copiose, 3500 — 4100 un, legi VII. 1914. 


Selbständige Werke oder neue der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Technische Hochschule »Fridericiana« in Karlsruhe: 
Akademische Dissertationen 1919. 
Wilkens, A.: Die absolute Bewegung des Trojaners 884 
Priamus (Abdruck aus den Astr. Nachr. Nr. 4984, Bd. 208, 
April 1919). Kiel 1920, 4°, 
— Eine Methode der Bahnbestimmung für die Exzentrizitäten 
(Abdruck aus den Asir. Nachr. Nr. 5022—23, Band 210, 
Dezember 1919). 


Aus der Staatsdruckerei. 


L 


ra Ba ha airHelnD er Ars bs 19mpl@ 
isch: 19 aifiapse 


ansehen ae sank: Bensninceszelihtugß 


; voting ‚pib ar Pe j ; 


olsiy rail erreE muoluagr tan): za: ewige 
we, wi Lirkssiaknakremiels erg uh)eoiaihgge 

ar Baarnde isinotalmlense 20gnoliupandisa auditaeit 
„rg  misilot aaclig-oselligiiie ind stalınünob emiseilun 
Hunnizalgma. eiiknidhr RA moin sagen! .miibane ist 
ndeus-ttehrgheinh alt sötlnelgras-Olelusfiun  mumnaue, ‚alizes 


ade Dre ehöri@Taila ri; 
smelidenyn Ayedimpfqaet saios he suneilinsäiniie Mi 
enlunayrotains kerbinbille merteli eilt sriaisal mar era 
> iayiuagp sei arand aqssaz nnttg vos Jomtra 
singe eiudaentsinse lirßeeargban siinddenon a. 
NER TEIe®n age Sialaasnali iunef nukalueinek oibattt nel ew pP 
ir inlospaph natzimehrolutiel ı eg Er ‚Bei ag | 
era El or P61 77079203 SF Le ERROR KackEsıd mitt. EHLEOIS are 


selleto) „seaonilg erraten ar sadsandare s»auubinastce | 
era ade nu. ee atmudan: Sa 
aelmsse' ahlow..dabe BEN IRRE REDET 20 
ta erbaten 1b De Ir ash 
Sasdoaruli sinn are ah OR re A 
siaolinaimeiib patsbauidalanpaiiise: naibwfinrsedk; Id: Se 
merossasalV‘ ya we Se saoilgas anding türen 
„interioribrs LE sn Nr ea 
mog ash - ranpAng 
3Hldia Sehe ESS BETTRRTE, 67) sis: sb We 
1Ea7e ranalsgahs ‚bit esons Bersranoogus 


h 1 Wise Hoss in. Dias) Sch 
| ad en ZH, gi uBA yahab Ta yalsipapoah sd: 


if» ah. BL 
ICH nr 


% Die IMMER nz, raligz ‚te RR T= E NED 


re IR FIRAR Dee al a | 
BER rate wort aeb yaugewusäd oinloede 2 BE ET 


EN ba „ad ‚A zuhaull, seh. mob lie soınbadA) eyıne 
rs RER: "RERSOR BT IRLQE 


IER Auadl; 98 N 


AL di 2 avahterakäin ioton: N 


{ 
N 


Heaser'ta er Canliar 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 Nr, 48 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 20. Mai 1920 


——— 


Erschienen: Sitzungsberichte, Bd. 128, Abt. I, Heft 4; Abt. IIa, Heft 4; 
Heft 5; Abt. IIb, Heft 5 bis 7. 


Das w. M. Prof. A. Durig legt folgende Arbeiten vor: 


1. »Zur Physiologie der Gewichtsempfindung auf 
Grund von Versuchen an Amputierten«, von J. Borak 
(aus dem physiologischen Institut der Universität Wien). 


Es sollte die Frage zur Entscheidung gebracht werden, 
welche Momente bei: der Beurteilung von Gewichtsunter- 
schieden in Betracht kommen. Die Prüfung geschah an drei 
Versuchspersonen mit Amputationsstümpfen an der oberen 
Extremität, welche nach Sauerbruch operiert worden waren. 
Die Prüfung erfolgte sowohl statisch, durch bloße Belastung, 
wie auch dynamisch unter Hebung von Gewichten durch die 
Versuchsperson. Es ergab sich, daß sowohl am gesunden 
wie am operierten Arm das dynamische UnterscheidungS- 
vermögen hinsichtlich der Feinheit der Unterschiedsschwelle 
dem statischen überlegen ist, daß aber nennenswerte Unter- 
schiede zwischen dem Verhalten jener Extremität, an welcher. 
eine Wirkung auf Sehnen und Gelenke durch die Amputation 
nicht stattfinden. kann und der normalen nicht zu’ beobachten 
sind. Es folgt daraus, daß weder die Gelenke noch die Sehnen 
für die Beurteilung von Gewichtsunterschieden von ausschlag- 


20 


145 


gebender Wichtigkeit sind, sondern daß das wesentliche 
Substrat bei der Gewichtsempfindung durch Änderungen im 
Kontraktionszustand der beteiligten Muskeln gegeben wird. 


2. »Untersuchungen über den harten und den 
weichen Stimmeinsatz bei Natur- und Kunststimmen«, 
von Emil Fröschels (aus dem phonetischen Laboratorium 
des physiologischen Universitätsinstitutes in Wien). 


Pneumographische und laryngostroboskopische Unter- 
suchungen von hartem und weichem Stimmeinsatz bei Natur- 
und Kunststimmen ergeben, daß, während bei Naturstimmen 
eine je nach dem Einsatze geringere oder kräftigere An- 
näherung der Stimmlippen aneinander erfolgt, Kunststimmen 
Stimmlippenbewegungen ‚in. diesem Sinne nicht ausführen, 
sondern das gewünschte akustische Resultat durch verschieden 
starke Stauung der Luft unterhalb der Glottis erreichen. 


Das k. M. Oberbergrat Fritz Kerner-Marilaun über- 
reicht eine Arbeit mit dem Titel: »Geographische Analysis 
der ozeanischen Temperaturen am 45. Parallel.« 


Es wird versucht, diese Temperaturen als das Ergebnis 
der Einwirkung von erwärmenden und abkühlenden Kräften 
auf die Normalwärme im reinen Seeklima rechnerisch dar- 
zustellen. Die Wärmezufuhr hängt zunächst von der Aus- 
dehnung der Passattriftflläche ab. Zwecks ihrer analytischen 
Bestimmung werden die Lage des Stromäquators und die 
Lage des Randes der äquatorialen Rückströmung in ihrer 
Abhängigkeit von den Größenverhältnissen der Weltmeere 
aufgezeigt und dann die Lage des inneren und die des 
äußeren Randes der Passattrift in Beziehung zu morpholo- 
gischen Größen gesetzt. An der Passattriftfläche als Maßzahl 
der Erwärmung werden dann Korrektionen in Bezug auf die 
mittlere Breitenlage und in betreff der Stromstärke angebracht. 

Als Kältebringer kommen zunächst die subpolare Meeres- 
äche und die dem betrachteten Ozean tributäre zirkum- 
polare Landfläche in Betracht, Das Maß, in welchem ihre 


149 


Wirkung Platz greift, hängt von der Stärke der Entfaltung 
einer zyklonalen Strombewegung in der subpolaren Zone 
und von der Kraft der Ansaugung polaren Wassers durch 
Beschleunigung der Westwindtrift infolge von Strom- 
verengerung ab. Dann ist noch die Abkühlung zu erwägen, 
die aus der winterlichen Antizyklonenbildung auf dem 
Kontinente im Westen des Ozeans den Lüften über diesem 
selbst erwächst. Die abkühlenden Einflüsse werden durch 
drei Formelglieder dargestellt, in denen die morphologischen 
Werte, teils Flächen, teils lineare Größen, zumeist mit Potenz- 
exponenten versehen und zum Teil in ihren reziproken 
Werten als Variable erscheinen. 


Dr. Rudolf Wagner überreicht eine Mitteilung: »Über 
die Existenz alternierender I-Sympodien (bei (Chrozo- 
phora sabulosa Kar. et Kir.).« 


Die Akademie der Wissenschaften hat in ihrer 
Gesamtsitzung am 29. April 1920 über Antrag der Gezeiten- 
Kommission beschlossen, Prof. R. Sterneck in Graz für die 
Ausführung der Tafeln zu seiner Arbeit »Die Gezeiten der 
Ozeane, I« K 1000° — aus dem Gezeitenfonds zu bewilligen. 


19 bh 


InoMırdt 


j vr 
anstou u 


BERHTIE 
mug. 


Mr BE Aa ; 
NEIN 


" 


; “ 
»lis}. Sie) N. 


eh 
NiizE: , 


3:13 $; N 
sent um 
soltlagad Ba 


ve) bu 


FR) 


st u in 


‚Wkeen) ut ib 1’ 


1920 
April 


151 


Monatliche Mitteilungen 


der 


Zentralanstalt für Meteorologie und Geodynamik 


Wien, Hohe Warte 
48° 14:9' N.-Br., 16' 21:7' E. v. Gr., Seehöhe 2025 m. 


| 


Temperatur in Celsiusgraden 


Luftdruck in Millimeter | 

Fa | Abwei- | Abwei- 
“8 Tages-Ichungv.| _ ı Tages- |chung v 
7 l 94] oO ke) h hı DEB| Do RE 

j 2 AL mittel | Normal | ; 1: Aue | mittel! |Normal- 

“ stand. nd } Zee stand | 

l 3011. 785.9 78%£.0 | 86.8 ı 590 ss 1214 922 9,8 |+ 2.9 
2 37.9 36.7 37.7 | 37.4 |— 4 5.4 1641, - 1254 1 wife ran 
3 42.5. 41.4 41.0.1 41.6 |— 0.2 6.8 Wild] 11.3 I1.1|+ 3.8 
4 39183313716 .88.1104387.8 |— 40 m 1 ORG 10.8 + 3.3 
5 36.8 37.4 883.6 | 37.6 |— 4.2 6.9 13.0 8.9 9.6 + 1.9 
6 40.2..39.9 41.8 | 40.6 ı— 1.2 27. 11243 3.0 9.3 + 1.4 
7 43.6 43:6 44.3 | 43.8 + 2.0 6.00. 11286 el 8.8 |+ 0.6 
8 44.4 42.6 42.8 | 43.3 + 1.5 #.6  16J90+ 11:7 MR | 2.7 
9 42,4139183. 87.9.4.39.9 1 149 6.9 © 1818 14.2 13.1 |+ 4.6 
10 39,6..39,2 38.1 1.39.0 I— 1218 10.6 12045 15%7 15.6: |+ 6.9 
11 3619, 34.98 84.01 1 85.0 1 69 ar, » 1913 194.9, 1622 | Qu3 
12 3948 80.30.83. 84.10, | 7.0 2.9 1612 0104 13.8 |+ 4.8 
13 30:1 29.2 31.6 | 30.3 —11.5 11.7» 20130" 1484 1949 572.088 
14 34.2 36.8 40 37.0 |— 4.8 9.3 12.6 or2 11.4 |+ 2.0 
15 41.35 41.0 40.2 | 41.0 I— 0.8 10,2 18.7 1580 14:6 |+ 5.1 
16 40:4..39.7: 40.5 | 40.2 |— 1.6 Nele, 2042 15.0 15.6 |+ 6.0 
17 44,8 43.1 42.3 | 43.4 1.806, (430 0 2192 ls 17.9 8.1 
18 41.3-339.7 .38.3| 89.8 |— 2.0 [82.31 # 221908 2144 19.2 |+ 9.3 
19 40: 509 3719..40.6 1 .389.7 |— 221 18.1 24,3% 15%4 18.3 |+ 8.2 
20 43.9. 41,7 40.6 | 42.1 |+ 0.2 12.4 % 1813 1# 1988 14.7 |-+ #.4 
21 1092, 39,82 40.1.4 40.0 1 — 1,9 12.0 9.9 8.4 10.1 |— 0.4 
22 39.6 40 41.3 | 40.5 |— 1.4 129 9.5 8.0 8.2 |— 2.5 
23 417 44.1 46.5 | 44.1 | 2.2 6.06. „Az ad a la 
24 47.7 47.6 479.7 | 472.7 +58 9.69.7125: 2.,6#10=0 17:80, | -u081 
25 45.6 42.5 41.0 | 43.0 + 1.1 10.1 18.2 13.8 [AO a 
26 33.0 36.0 38.2 | 37.4 |— 4.5 132802 15R 52721085 13.1 [+ 1.7 
27 DIES SETe UT 2.4 Se te 9.8 10.2 |— 1.4 
28 385.0. 81.07 280202 802 AT, N 12.8 |+ L.0 
29 37.8, 42.6 44.3 | 41.6 — 0.3 10.1 8.2 8.5 8.9 |— 3.1 
30 46.2 45.7 45.7 | 45.9 |-+ 4.0 8.4 14.4 9.8 1059 Fr 

31 | 
Mittel|740.23 739.61 739.93]739.92|— 1.92 ST loxse 12.1 12.5 |4+ 2.9 


Er Temperaturmittel?: 12.4° C. 


Zeitangaben, wö nicht anders angemerkt, in Mittlerer Ortszeit; Stundenzählung bis 24 


beginnend von Mitternacht — ON, 


2 902,9. 
2), (7,.2,:9, 9). 


Beobachtungen an der Zentralanstalt für Meteorologie 


48° 14°9' N.-Breite. im Monate 
j 
Temperatur in Celsius Dampfdruck in mm | Feuchtigkeit in ®/, || Ver- 
| dun- 
Tag IS I | 42 \stung 
Er el Ta 2 1) SF RSES "71 EEE RS ass 
Max. Min. E 142) 212 | mittel | ag 2 EEE in mm 
2 | | : Kir % 7h 
1 13.7 U Risd4 5 nA Es rl 7.81 94 75 93 | 87 || 0.8 
2 Lese senken un 4 (5 Sn HORN  YEBe: WARF 5 PR 6.3. 92...46:59--=66=]johrB 
3 191 6.2|.45 2 Da Meder 8..0,,20, Day Salenaelen 
4 een 7 DR On OR 6.1 71:54. 65 | 69.|| 1222 
D Tan 6.7| 43 3 8.7. vBeronan 4.9 72, ‘35... 99:0 990 En 
6 12.9, 26.142 42 3 942.,.49. 9.0 4.9| 66 42 63 | 57 || 2.0 
7 lS20 res 2 .2 8 9.1 71 44 69 | 61 || 1.6 
S 17.6 2.0) 45 — 2 5.5.8.6 6.2 5.1 87 .(25) 60 | 57 || 1.2 
9 192 9.9| 44 1 9.82 10022.050 6.0 78 39 49 .|.088 11253 
10 20.6 1027) 49 8 8.6 6.0 6.8 6.0 597 33,48, 747 128 
11 1928 Tagaılr 44 10 9.8 4160 7.0 5.611: 46 . 27 52 | 42 || 254 
12 16.6 11.6| 48 8 8.837. 1601 828 2.81.28 80° 77 KB 
13 2025 198051748 5 1.6 Ds m 2.2 1.74 8858598 Sn leles 
14 Va RoNo AA 8 re eo at 7..2|| 89 69,72. za ae 
15 on 3822245 5 MS. MS 8.01 84 46 64 | 66 || 1.1 
16 a0. Oele 46 6 Br 7 ea 39 8.91 385° 49 72. | 69 || 1.4 
17 2136 13801 47 8 6.5. 929 0.9216 8.5| 52 50 64 | 55 || 1.4 
18 24.5 11781 50 10 9.5 10.5 11.2 | 10.4| 83 50 59.| 64 || 1.9 
19 25.0. 18.21, 54 le a 35 re 9.2 || "36° 35, . 65, 1702 Jam 
20 ten 11907) 48 8 (Re 12 64 44 68 | 59 || 1.4 
2 14:0 ° 8.2:|; 39 7 187 6294377.3 1.311.738. ZRESI | 179 1ER 
22 94a NER 23 % 6.6 10925 6.6 6.55.88 69448221480 1ER 
23 233 66527 38 6 6:7..172.00 72 7.01: 92 7011792] 180) 029 
24 12.85 18,6. 48 6 RN EL 1.8, 74. 200 zo za 
25 18.5 8.4| 47 B) 7.1.2 n Dear 1.0, 77724277612 7608220 
26 1813 8.210 48 8 DT 18898 820 s.1||.67 65.84 | 72 | 154 
27 N) 7 6r4 BJOC 5.7 6.2.08 61766321707] 102 
28 184 144872|1 41 3 »-6:6° 7:00 8,0 7.21.81 46147471287 1 048 
29 N ee 6 8.4 .7.2.9.% 7.1 90 89. ,68,| .32=7076 
30 19.4 172445 U aD an Or 6.8|. 87 49780772 1055 
31 
Mittel 167%  18%2148.4.1075.84.6.9 BMA ZE2 6.91.77 51726871165. || IRA 
Summe 43.3 
ELBE EN IE FAT ET BET CREMA CT TU BEN ERS OZBERCT UBER KENT BT OST PORT BRESAERE TERROR ET SEE EEEEEEEEEREEFEREEEEEEERCRBETEn 
49 Pl 2.35% Sort. Bi ae IB arts a ER 
a 2Ol|s Kai B _ 
5 = anlleoıl 7.0, 8.83 8.951038 1998219..68 9972.,92821025 11% 5.12.93, 1274215 Warzen 
Eslelaıe.s|6.9 7.0 7.2 7.5 7.alz.e 7.9 8.2 8.3.8.0 89 08 Oase 
En lea |l.8.5106.5\.6.6.6.7 6,7 8.7 16.7.6.7 ,6,9.17.0. 721, 2 Ze 
es Sal 7.117 ers 7.10 7.1.07 Re eat De Se 
el ll 8:0: 8.0, 8.0 8,0 8.0.8.0 8.0.8.0'8.0 8.0.8.0 80 Son 
Größter Niederschlag binnen 24Stunden: 20.7 mım am 22, u.23..Niederschlagshöhe: 50.5 mm. 


Zahl der Tage mit ® (x): 12 
Prozente der monatl. Sonnenscheindauer von der möglichen: 


') In luftleerer Glashülle. 
”) Blankes Alkoholthermometer mit gegabeltem Gefäß, 0:06 m über einer freien Rasenfläche, 


; Zahl der Tage mit 


1; Zahl der Tage mitR: 1 
450/,, von der mittleren: 1090/,. 


) 


153 


und Geodynamik, Wien, XIX., Hohe Warte (202:5 Meter). 
April 1920. 


16° 21:7" E.-Länge v. Gr. 


Ve - 
Bewölkung. in Zehnteln des || Dauer 
sichtbaren Himmelsgewölbes IM des 
\Sonnen- ge Lfd LER 
TE znllechese Bemerkungen 
zu 14h oh He in 
i = | 'Z |Stunden 
90-1 gyu=1 20 6.7| 1.2 |e0 3—4. 
101 80-1 10071 | 9.31 6.7 ||=V mens. 
20 71 gl 6.0720 _ 
10 40-1 6071 3.7) 9.1 ||e0”1 Böen in der Umgebung 16—18. 
90-1 gu Sl 8.3| 4.2 || el Böe 315, e! 4630, 1530 — 1615, 18-20 zeitw. 
5071 9071 0) 2.71.2050 — 
YuT1g0 6071 (0) 5.01 8.0 || el! 6—7. 
79 30-1 0) 3u8l 9.6 - 
90 79 101 s.7| 9.0 | a! mgns. 
70 90 31 6.31 6.8 IR inSW 16-17. 
101 9071 0 6.8 ale7 — 
30 3.31 6.1 | e0 1715 — 1930, N 6. 
10 ml 5071 | 3.01 9.0 || al mens.; &" 15%. 
1018) 90-1 100-1 9.71 3.0 el 525 —71, 80 174511. 
10 70-1 0) 27 \1lelen — 
90 [a 0) 5.31 10.4 | al mens. 
19 g0-1 0 3.0 10.7 
9071 19 0) 3.93 11.2 |< in NW>23. 
10071 su 40 7.31 2.6 |<in NW 1828. 
70-1 201 (0) 3.0 11.1 = 
10 1007180 101el | 7.01 5.1 ||e! 13—16. el 1710- 
10180 » 101 10172e1[10.0| 0.0 || e0=1— 710. 1550 — 
1017281 10! 40-1 S.0 9 || el—915, 1010 —11. 
80-7. 91 101 9.01 1.4 | Di! 630. 
1071 31 20 2.01 12.1 | al mens. 
B0=1 12701 10180, 1,8 01h. 1% 3;)lm0r1 1620-23. 
101 91 30 7.3) 3.1 |e0 7, eTr. 11—12. 
10071 7071 11 6.01 6.0 || al mens. 
20 1017281 91 7.01 1.8 ||e! 105 —1510, e! 15—20. 
100=1 su=1 0 6.01 4.6 —_ 
Ber 689, 42.15.09] 6.2 | 
186.7 | 


1.17. 918,5. 19,. 2900,21 22 729: (Ban Vo. EBe Ana Ber als al. Mittel 
18.8 14.6 19.4:16.2.16.3.16.0 14.012.3.12.0.12.718.713.212.813.012.2 12.3 
EN 12104 10, ILL 11 ZT 9 10 10212: 9.6 
ed üst.. 7.9 8.008218. 8,5524728202.840,7968 92.9.28:.09.9:.0 981 7.6 
a Ar 70, Tasdın 1 DO LO 12010 31.9, 2.90,9r0) 5.0 7.4 
Selena. 1, 8.1 soalme Sierselememle 81778. 178.11°8.210°8.177852 8.1 


\ 
* 


Zeichenerklärung: 


Sonnenschein (*), Regen e, Schnee x, Hagel a, Graupeln A, Nebel =, Nebelreißen =', 
Tau a, Reif, Rauhreif \/, Glatteis ry, Sturm 9, Gewitter R, Wetterleuchten <, Schnee- 
gestöber #, Dunstoo, Halo um Sonne ®, Kranz um Sonne P, Halo um Mond U. Kranz 

h um Mond W, Regenbogen N), eTr. = Regentropfen, xFl. — Schneeflocken, Schneeflimmerchen. 


\ 


154 


Beobachtungen an der Zentralanstalt für Meteorologie und Geodynamik, 
Wien, XIX., Hohe Warte (202:5 Meter), 


im Monate April 1920. 


Me a a a en { / \ | 


Windrichtung und Stärke |Windgeschwindgsnan | Niederschlag, 2 
nach der 12-stufigen Skala |in Met. in d. Sekunde ! in mm gemessen > 
lag I | 3 
| [eb] 
za 14 21% Mittel | Maximumi || 7h 14h. he 
| | 2 
1 ESE 1 ESE 4 ESE 2 4.9 ESE, 17.5|| 0.9e - = 
2 I — 0, SE, SH, 2.2.2.7, WSW, 1946 = = — 
3 NW 22 DZ Si 3.6.1.WSW 21.8 - - 
4 NOT ENE 2 NER 1.6 SE Ta, — — —- 
5 IWSW5 W 4 WSWA 5.4 | WSW 17.5| 0O.le 0.1e 
6 IWNWA WA WW 4 6.8 |: WSW.17.2| -O.1e — 
7 W 4, ,W.:4 WNWi 5.5 |.WSW 16.2 d= - 
3 —  OMESEHH ISSW Il 1.5.) WSW 11.2 —_ - 
) S 7 SSE 57 #SSE 2 4,2 SA = - 
10 NNE I E72 SI? 3.0 SI 87, _ — 
11 Sr. 20 4Sie 0 I ,SE, 42 4.8 ESE 17.0] < — 
12 W 2 WSW3, SE: ıl 3+6. |117WBW,, 14.94. — 0.08 
13 S’ 1 SSE 4 SSW 2 4.4 SSE 16.7|| 0.0e = 
14 N ee ES EN ©) 5.9 | WSW 18.0 l.5e 3.0e — 
15 — 7 072SSE"1 7SSE 4 2.9 SE "12.0 = -— 
16 EINE SRSENEN SEM 1.8 E 8.2 = - 
17 Va ln SS 752, Sr = 3.874 W.S3W.. 12.2 I - 
15 EINE 1727SSB il SW 4 1) SIWVa 217.6 — = — 
19 ENE 1 SSE 5 WSW5 4.4 | WSW 20.6 —— - 
2) Va WW. ee) 27 SW 15.5 3 — 
| ; 
21 W 43.W 35  WwuB uB.Sı WEW: 19.0 5 — 0.00 2.70 
NEW W6 W 5 | 10.0). WSW. 22.1. .14.0e . 0.5e 0.2e 
23 |wWSswWw5 w A w 3| 6:8 |.WSW 21.04 15.50 5.08 I 
24 NW 4 WA 4NW 8 4.7 WNW 16.3! O.le - — 
29 W. 2. WNW3 VIE 3.8 WSW 10.6 —— — 
26 |WSW3.SW 3 WSWA4 || .4.9.|..W8W 15.4 = - D.6@ 
27 WNW4 "WNW4 Ww 4 5,1 WSW 14.8 0.78 0.0e -— 
28 N SL SIE 2.5 SE 3.1 - — 
29 NE SIZENNW 2 NV 2 NW 12.2 = 4.60 0.4e 
30 NNWI WSW1 Sl 1.6 SSE 7.5 == _ — 
31 | 
Mittel ZEN 3-0 Das 4.2 8401| 232.92 21826 4.0 
ii 


Ergebnisse der Windaufzeichnungen (nach dem Schalenkreuz): 


"N: NNE:"NE-ENE =E ESE SE SSE S SSW SW WSW.W WNWNW NNW 
Häufigkeit, Stunden 

120. 110 Fo «022, 198: 746,60 54 5 286 21 4.587 <E7E 1 200 VE 
Gesamtweg, Kilometer 

i82. 69 69. 141 451 807 965 644 182 110 886. 5945 290 185 80 l 

Mittlere Geschwindigkeit, Meter in der Sekunde 
1:12,19 13183 9. BEN ERBEN Bee 
Maximum der Geschwindigkeit, Meter in der Sekunde 
ORTE DR ZAHN 185, TIERIPEONT U 


Anzahl der Windstillen (Stunden) —= 21. 


1 Den Angaben des Dines’schen Druckrohr-Anemometers entnommen. 


Österreichische Staalsdruckerei. 508 20 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 Nr. 14 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 10. Juni 1920 


Erschienen: Sitzungsberichte, Bd. 128, Abt. Ilb, Heft 8 bis 10. — 
Monatshefte für Chemie, Bd. 41, Heft 1. — Mitteilungen der 
Erdbeben-Kommission, Neue Folge, Nr. 55; Nr. 56. 


Das k. M. Hofrat B. Hatschek legt folgende Mit- 
teilungen vor: 


»Mitteilungen aus der Biologischen Versuchs- 
anstalt der Akademie der Wissenschaften. Zoo- 
logische Abteilung, Vorstand: H. Przibram. Nr. 47. Die 
Körpertemperatur junger Wanderratten (Mus  decu- 
manus) und ihre Beeinflussung durch die Temperatur 
der Außenwelt. (Die Umwelt des Keimplasmas VIII)«, 
von J. A. Bierens de Haan (Amsterdam). 


A. Bei Ratten von 38 bis 54 Tagen, die in einer Kon- 
stanten Temperatur von 25° C. lebten, war die durchschnitt- 
liche Körpertemperatur 36°4° C. Hierbei war ein deutlicher 
Unterschied zwischen den Geschlechtern zu beobachten, durch- 
schnittlich war die Körpertemperatur bei den Weibchen 36°87°, 
bei den Männchen 36'13°. Der Sexualunterschied betrug also 
0:74° zugunsten des Weibchens. Die Unterschiede zwischen 
Morgen- und Abendtemperatur waren nur gering, durchschnitt- 
lich 0:16° €. Es waren weiter Tage mit höheren und Tage 
mit niedrigeren Temperaturen zu unterscheiden. 


21 


B. Die Körperwärme von jungen Ratten (3!/, Wochen 
alt) variierte mit der Temperatur der Umgebung, so daß eine 
Steigerung der Außentemperatur um 5° eine Erhöhung der 
Körpertemperatur von durchschnittlich je 0:70° verursachte. 
Die Geschlechtsunterschiede in der Körperwärme werden 
größer, wenn man in niedrigere Temperaturen kommt, be- 
tragen bei diesen jungen Tieren bei 10° C. aber nur durch- 
schnittlich 0°20°. 


»Mitteillungen aus der Biologischen Versuchs- 
anstalt! der Akademie der: Wissenschaften: Z00- 
logische Abteilung, Vorstand: H. Przibram. Nr. 48. 
Erniedrigung der Körpertemperatur junger Wander- 
ratten (Mus decumanus) durch chemische Mittel und 
ihr” Bintluß "auf die Schwanzlaner. (Die Umwelt des 
Keimplasmas IX.)«, von J. A. Bierens de Haan (Amster- 
dam) und Hans Przibram (Wien). 


Drei- bis vierwöchentliche albinotische Wanderratten (Maus 
decumanus) erhalten in den nächsten 9 bis 11 Lebenstagen 
eine relative Schwanzverkürzung, wenn ihre Körpertemperatur 
durch Injektion fieberlegender Mittel herabgesetzt wird. 

Diese Schwanzverkürzung ist um so beträchtlicher, je 
geringer die durch giftige Nebenwirkung hervorgerufene Be- 
einträchtigung des Gesamtwachstums ist, daher auch deut- 
licher bei Antipyrin als bei dem giftigeren Chinin. 

Aus diesem Grunde und nach den von Jackson und 
Hatai an unterernährten Ratten gewonnenen Erfahrungen 
kann die Schwanzverkürzung nicht auf eine allgemeine Wachs- 
tumshemmung infolge ungünstigen Befindens zurückgeführt 
werden. 

Die Schwanzverkürzung gegenüber nichtinjizierten Kon- 
trolltieren ist größer bei niedriger als bei hoher Außen- 
temperatur. 

Bei Erniedrigung der Außentemperatur stets auftretende 
Verkürzung der relativen Schwanzlänge ist nach den Ver- 
suchen mit Herabsetzung der Körpertemperatur durch chemi- 
sche Mittel auf die gleichzeitig eintretende Erniedrigung der 


RE 


157 


Innentemperatur zurückzuführen, nicht auf eine Reizwirkung 


von Seiten der Außentemperatur. 


Obzwar es bisher nicht gelang, künstliches Fieber bei 
den Ratten herbeizuführen, um auch zu prüfen, ob umgekehrt 
durch Steigerung der Körpertemperatur ohne Steigerung der 
Außentemperatur eine relative Langschwänzigkeit hergestellt 
werden kann, so ist es doch nach den erwähnten Hunger- 
versuchen nicht zweifelhaft, daß die durch Steigerung der 


Außentemperatur bewirkte Schwanzverlängerung nicht einer 


ungenügenden Nahrungsaufnahme zugeschrieben werden kann, 
sondern der mit der Außentemperatur steigenden Körperwärme, 
denn die durch extremes Fasten auf konstantem Körpergewicht 
gehaltenen Ratten zeigen eine weit geringere relative Schwanz- 
verlängerung als die ad libitum genährten und fast ebensogut 
wie in normalen Außentemperaturen heranwachsenden Hitze- 
ratten. 


»Mitteilungen aus der Biologischen Versuchs- 


anstalt der Akademie der Wissenschaften in Wien 
(zoologische Abteilung, Vorstand: H. Przibram). Nr. 49. 


DiePuppenfärbungen desKohlweißlings, Pieris brassicae 
L. Siebenter Teil: Wirksamkeitreflektierten und durch- 


gehenden Lichtes«, von Leonore Brecher. 


Wurden in weißer, gelber und schwarzer Umgebung 
befindliche Raupen zeitweise der Bestrahlung durch eine 
Quarzlampe ausgesetzt, so traten in weiß und gelb nicht . 
mehr die für diese Umgebungen charakteristischen Puppen 


auf, sondern solche mit stärkerer schwarzer Pigmentierung. 


Dagegen erfuhr die schon im starken Tageslichte maximale 
Wirkung des Schwarz durch die Bestrahlung keine weitere 
Verstärkung. Hierdurch erfährt die Tatsache von der positiven 


Wirkung der ultravioletten Strahlen auf die Bildung des 


schwarzen Pigmentes eine weitere Bestätigung. 
Durchgehendes farbiges Licht wirkt genau sowie reflek- 
tiertes auf die Puppenfärbung ein. 
Hiervon weicht rotes Licht scheinbar ab, indem eine 
rote Fläche im weißen Licht sehr dunkle Puppen, durch 
Filter durchgehendes rotes Licht aber grüne Puppen ganz 


ohne schwarze Pigmentierung entstehen läßt. Dieser Unter- 
schied wird dadurch erklärt, daß im ersteren Falle die dunklen 
Puppen als Folge der von roten Flächen reflektierten ultra- 
violetten Strahlen entstehen, diese jedoch durch die Filter 
zurückgehalten werden, wodurch die schwache gelbähnliche 
Wirksamkeit der durchgelassenen farbigen Strahlen in der 
Puppenfärbung zum Ausdruck kommt. 

Goldglänzende Umgebung führt ähnlich wie gelb zur 
Entstehung grüner Puppen. Andersfarbige metallglänzende 
Umgebungen haben nicht diesen Einfluß; es entstehen auf 
Silber und metallglänzendem Blaugrün mittlere, auf metall- 
sglänzendem Rot und metallglänzendem Violett sehr dunkle 
Puppen, Somit kann dem Metallglanz selbst (d. h. dem 
unpolarisierten Licht im Vergleiche zu den von matten 
Flächen reflektierten polarisierten) auf die Puppenfärbung 
von Pieris brassicae kein Einfluß zukommen. Vielmehr wirken 
auch die von metallglänzenden Umgebungen reflektierten: 
Strahlen nur mittels ihrer spezifischen Wellenlänge ein. 

Durch direkte Messungen mit einem nur für ultraviolette 
Strahlen empfindlichen Papier ließ sich die Anwesenheit 
solcher Strahlen bei gerade jenen Flächen nachweisen, aus 
deren Wirksamkeit bei der Schwärzung der Puppen die 
Refiexion ultravioletter Strahlen erschlossen wörden war. 


»Mitteilungen aus der Biologischen Versuchs- 
‚anstalt der Akademie der Wissenschaften in Wien 
(Zoologische Abteilung, Vorstand: H. Przibram). Nr. 50. 
Die Zeichnung von Salamandra macnlosa im durch- 
fallenden farbigen Lichte«, von Paul Kammerer. 


Werden Feuersalamander (Salamandra maculosa Laur. 
forma typica aus dem Wienerwald) nahezu von Geburt an 
unter Glasstürzen (Senebier'schen Glocken) einfallendem 
gelben: Licht ausgesetzt, so legen sie bei der Meta- 
morphose ein gelberes Kleid an, als es ihrer Farb- 
vasse entspricht und als es die unbeeinflußte Mutter sowie 
die. unter. andersfarbigen und farblosen Glocken, endlich die 
im Dunkeln aufgezogenen gleichaltrigen Geschwister zeigen. 


Das durchfallende gelbe Licht unterscheidet sich daher 
in seiner farbspezifischen Wirkung nicht vom auf- 
fallenden (reflektierten), dessen Einfluß in früheren Versuchen 
des Verfassers (Kammerer 1913) an verwandelten Feuersala- 
mandern, in Versuchen anderer Forscher (Sec rov, Frisch, 
Dembowski, Herbst, Przibram) an Larven inbezug auf das 
bleibende Farbkleid geprüft worden ist. 

Bei hoher Lichtstärke des gelben durchfallenden Lichtes 
erreichen frischverwandelte Feuersalamander ein und derselben 
Generation im Sommer (Versuchsdauer: 4 Monate) denselben 
hohen Grad der Gelbfärbung, der in den zuvor erwähnten eigenen 


Versuchen — bei Beeinflussung der fertig verwandelten 
Volltiere, Nichtbeeinflussung der Larven — erst im Laufe 


dreier Generationen (Zuchtdauer: 9 bis 10 Jahre) erreicht 
werden konnte: nämlich totale Gelbfärbung des Rückens, nur 
durch wenige schmale, von der Bauchseite über die eben- 
falls vorwiegend gelben Flanken heraufziehende Zungen 
schwarzer Grundfärbung unterbrochen. Diese unregelmäßigen 
Einkerbungen der sonst reingelben Dorsalzone reichen aber 
hin, um den in gelbem Lichte verwandelten Salamandern das 
Aussehen der forma Zypica zu bewahren, während die durch 
mehrere Generationen in Richtung auf das Gelbwerden be- 
einflußten Zuchten sich von der Tochtergeneration an in 
die symmetrisch gezeichnete forma faeniata umgestaltet hatten. 
Der Reichtum an gelbem Farbstoff hängt also nicht 
von der Generationenzahl, sondern ausschließlich 
von der Intensität und Dauer farbiger Bestrahlung 
Ab” Dasceben Scheint "der Zeichhnungscharakter mur 
unter Mitwirkung des generativen Prozesses ab- 
Beändert'werden zu können. 

Werden Glasglocken von verschiedenem Helligkeits- 
und Sättigungsgrad des Gelb -— helles Zitronengelb, 
erzeugt durch Pikrinsäurefüllung der Senebier’schen Glocke; 
dunkleres Orangegelb, erzeugt durch Kaliumbichromatfüllung 
der Glocke — verwendet, so entwickeln sich bei den unter 
hellgelbem Lichte gezogenen Larven die bleibenden gelben 
Chromatophoren am frühesten und erreichen das Maximum 
ihrer Verbreitung auf der pigmentieiten Körperdecke. Die von 


160 


ihnen erzeugten, großen, konfluierenden Bezirke ähneln bei 
der Larve auch in ihrer spezifischen Tönung (des hellen 
Grünlichgelb der Pikrinsäure) der Umgebung, was bei den: 
verwandelten, im Sommer 1919 in sämtlichen hellbeleuchteten 
Kulturen satt orangegelb ausgefallenen Tieren nicht mehr 
zutrifft. 

Auch die in dunkler gelb einfallendem Lichte gezogenen 
Salamanderlarven aber erreichen bis zur Metamorphose einen 
Grad der Gelbfärbung, der weit aus dem Rahmen aller 
Kulturen herausfällt, wo (statt der gelben) farblose Glocken 
oder offenstehende, unbedeckte Gefäße verwendet wurden. 
Die Farbveränderungen von Salamandra maculosa in 
verschiedenfarbigem Lichte sind daher Wirkungen 
der Farbenqualität und nicht bloß der Lichtquantität. 
Die Lichtmenge ist nicht belanglos, wirkt aber lediglich als 
voraussetzender (realisierender) Faktor für den: spezifisch 
farbbestimmenden (determinierenden) Faktor. 

Werden Feuersalamander bei hoher Lichtstärke nahezu 
von Geburt einfallendem dunkelvioletten oder tief dunkel- 
blauem Lichte (erzeugt durch Lösungen aus Kupferoxyd- 
ammoniak) ausgesetzt, so legen sie’ bei der Metamorphose 
ein, sehwärzeres ‘Kleid „ an,-sals-es;Sihrer „Darbiasse 
entspricht und als es ihre unbeeinflußte Mutter sowie unter 
andersfarbenen, farblosen und im Finstern stehenden Gläsern 
aufgezogene Geschwister gleichen Wurfes zeigen. Die Schwarz- 
färbung (Verdrängung der gelben Zeichnung) reicht aber 
auch bei den deutlichst beeinflußten Tieren nicht an jene 
heran, die bei Haltung auf schwarzer Unterlage (im reflektierten 
ultravioletten Lichte) erzielt wurde. 

Werden Feuersalamander nahezu von Geburt an bei 
.mannigfaltig abgestuften Lichtmengen gemischtem Tages- 
lichte ausgesetzt, aas durch Glasglocken einfällt, gleich denen, 
die zu den Farbversuchen Verwendung fanden, so legen sie 
bei der Metamorphose das wenig um den Mittelwert gelber 
und schwarzer Pigmentierung schwankende Farbkleid an, wie 
es ihrer Rasse entspricht und wie es sehr ähnlich stets auch 
die unbeeinflußte Mutter zeigt. Eine hellblaue Glocke ergab 
dasselbe Resultat wie farblose Glocken. 


161 


Werden Feuersalamander nahezu von Geburt an bei 
(selten und kurz unterbrochenem) Lichtabschlusse gehalten, 
so bleiben sie im Wachstum zurück und entwickeln sich viel 
später als alle im Lichte gehaltenen Geschwister zu Voll- 
molchen. Nach vorübergehender, tiefer Verdüsterung bleichen 
die Larven aus, sind aber im frischverwandelten Zustande von 
Normaltieren, die sich im gemischten Tageslichte verwandelten, 
makroskopisch nicht ständig zu unterscheiden. Mikroskopisch 
fallen Stellen undichter Lagerung des schwarzen Pigments 
auf, Zusammenbaliungen desselben, die von Lücken unter- 
brochen werden, ohne daß aber ‚diese Lücken eine Ausfüllung 
mit gelbem Pigment erfahren. 

Werden 5 bis 6 Wochen alte Salamanderlarven in 
0'25prozentiger Chlornatriumlösung gehalten, so gelangen 
sie (in Bestätigung eines Befundes von Pogonowska) mit 
einem Mindestmaß an gelber Zeichnung, Höchstmaß an 
schwarzer Grundfarbe zur Verwandlung. Dann gleichen die 
Tiere solchen, die auf schwarzen Böden gehalten worden 
waren. Durch Verwendung der dunkelvioletten Glocke wird 
diese Wirkung des Kochsalzes nicht verstärkt; durch Ver- 
wendung gelber Glocken (nahezu von Geburt an) wird sie 
aufgehoben: im Wettbewerbe zwischen gelb machendem Licht 
und schwarz machender Salzlösung siegt jenes in dem Grade, 
daß vom Einflusse dieser (die allerdings erst mehrere Wochen 
später einzuwirken Gelegenheit hatte) nichts übrig bleibt. 

Salamanderlarven, die unter zitrongelber Glocke gehalten 
werden, bilden absolut weniger schwarze Chromatophoren 
aus als irgend eine andere Kultur, wie durch Zählungen der 
Chromatophoren in 30 Gesichtsfeldern jedes Präparates 
(Reichert, Ok. IV, Obj. 5) festgestellt wurde; aber relativ wre 
absolut die meisten schwarzen Chromatophoren verharren im 
Kontraktionszustande. Gleichaltrige Larven, die unter dunkel- 
violetter oder dunkelblauer Glocke gehalten werden, bilden 
absolut mehr schwarze Chromatophoren aus als irgend eine 
andere der in vorliegender Arbeit beschriebenen Kulturen: und 
absolut wie relativ die meisten schwarzen Chromatophoren 
verharren im Expansionszustande. 


Diejenige Art von Chromatophoren also (denn vice 
versa gilt dasselbe von den nicht gezählten gelben), die in 
Ausdehnung übergeht und ausgedehnt bleibt, ist bei 
der Zellteilung begünstigt. Anhaltende Ausdehnung 
der mit ihrer Umgebung gleichfarbigen Farbstoff- 
zellen hat deren Vermehrung zur Folge, mittelbar 
die Verdrängung der andersfarbigen, anhaltend in 
Zusammenziehung verbleibenden Farbstoffzellen. Hie- 
durch bestätigt sich, was Frisch (1911) an Fischen, Babak 
(1913) an Axolotln bereits beobachteten und was Kammerer 
(1913) und Herbst (1919) auch für Salamandra maculosa 
vermutet hatten. Unabhängig und unbeschadet von der Er- 
klärung, wie der Farbenwechsel chemisch zustandekommt, 
wird durch den Übergang von Zell-Expansion zu 
Zell-Division aufgedeckt, wie physiologischer und 
morphologischer Farbwechsel,labile Farbveränderung 
und stabile Farbanpassung einander ablösen. 

Die ausführliche Arbeit (mit Tabellen, Tafeln. und Text- 
abbildungen) wird in Roux’s Archiv für Entwicklungsmechanik 
der Organismen erscheinen. 


»Mitteilungen aus der Biologischen Versuchs- 
anstalt der Akademie der Wissenschaften in Wien 
(Zoologische Abteilung, Vorstand: H. Przibram). Nr. 51. 
Der Einfluss gelber und schwarzer "Umeebüune der 
Larven auf die Rleckenzeichnüng des Vellmelche 
von Salamandra macnlosa Laur. forma typica, zugleich: 
Ursachen tierischer. Farbkleidung V«, von... Hans 
Przibram (unter Mitwirkung von Jan Dembowski). 


Werden Feuersalamander (Salamandra maculosa Laur.) 
der forma typica als Larven bei hoher Lichtintensität gelbem 
oder schwarzem Untergrunde ausgesetzt, so legen erstere bei 
der Metamorphose ein gelberes, letztere ein schwärzeres Kleid 
an, als ihrer Farbrasse sonst entspricht und als es die un- 
beeinflußte Mutter sowie die auf neutralem Grunde aufge- 
zogenen Geschwister nach der Verwandlung zeigen. 

Diese Farbänderung geht bei solchen’ Exemplaren, welche 
(vielleicht wegen vorübergehender Augenerkrankung ?) gleich 


163 


nach der Methamorphose noch nicht annähernd voll aus- 
gefärbt sind, bei fortgesetzter Haltung in derselben Umgebungs- 
farbe erst nach der Verwandlung vor sich. 

Die Wirkung der gelben Umgebung auf die Larven 
wird durch gemischtes Licht selbst höherer Intensität selten 
erreicht, geschweige denn übertroffen. Werden Larven 
der forma typica bei weniger hohen Lichtintensitäten in 
verschiedenen Umgebungsfarben gehalten, so nähern sich die 
frisch methamorphosierten Tiere um so mehr einer mittleren, 
Farbverteilung, je geringer die Intensität des Lichtes ist, 
so daß in Finsternis gezogene diesen mittleren Zustand 
repräsentieren. - 

Werden jedoch die Larven durch Entfernung beider 
Augen geblendet, so zeigen sich dann die Vollmolche um so 
weniger gelb gezeichnet, je höher die Lichtintensität gewesen 
war, so daß in der Finsternis noch die am meisten gelben 
unter den geblendeten Molchen entstehen. 

Reflektiertes oder durchfallendes Licht üben auf 
Salamanderlarven in bezug auf die Ausfärbung des Voll- 
molches ein und dieselbe Wirkung aus, sobald Strahlen- 
gattung und Intensität die analogen sind. 

Aus allen diesen experimentell ermittelten Prämissen 
muß der Schluß gezogen werden, daß der Einfluß verschieden- 
farbiger Umgebung auf die Erwerbung des Vollmolchgewandes 
von Salamandra macnlosa forma typica eine spezifische 
Wirkung des Lichtes verschiedener Wellenlänge darstellt 
(genau ebenso wie bei der zur Puppe sich wandelnden Raupe 
mancher Schmetterlinge). 

Die Richtigkeit der verwendeten Versuche-ist nicht nur 
an derselben Form durch Frisch und Fischel, sondern 
auch für die forma taeniata durch Secderov, Frisch und 
Herbst bestätigt worden. Für diese Form gilt daher der 
gleiche Schluß. 

Ein Gegensatz zwischen den Versuchsresultaten von 
Kammerer und Herbst besteht nicht: die von letzterem 
betonten Differenzen sind auf Verschiedenheiten der Bedin- 
gungen (Lichtintensität, Stadium, Farbrasse) zurückzuführen 


[e>) 
RS 


Insbesondere wird auch durch Herbst’s Versuche be- 
stätigt, daß auf gelbem Boden stärker gelbe, auf schwarzem 
oder braunem weniger gelbe Vollmolche zustande kommen, 
sowie daß die Zeichnungen von forma taeniata und forma 
typica keine absolut feststehenden sind und durch äußere 
Einflüsse in einander übergeführt werden können. 

Die positive schwärzende Wirkung einer schwarzen 
Umgebung im Gegensatze zu der Wirkungslosigkeit von 
Finsternis kann (ebenso wie bei den Schmetterlingspuppen) 
auf die von schwarzen Wänden reflektierten ultravioletten 
Strahlen zurückgeführt werden. | 

Überhaupt legt die weitgehende Parallele zwischen der 
Farbanpassung sich verwandelnder Schmetterlingsraupen und 
Salamanderlarven in bezug auf die Farbkleidung des nächsten 
Stadiums (Melanin, Lipochrom, Tyrosinase; spezifischer 
Farbeinfluß; Rolle des Auges) nahe, für den Salamander eine 
ähnliche Erklärung zu suchen, wie sie durch Aufdeckung 
der lichtempfindlichen Enzyme und des durch diese ge- 
gebenen Chemismus für die Puppenanpassung geliefert 
worden ist. 


»Mitteilungen aus der Biologischen Versuchs- 
anstalt der Akademie der Wissenschaften in Wien 
(Zoologische Abteilung, Vorstand: H. Przibram) Nr. 32. 
Die Farbmodifikationen der Stabheuschrecke Dirippus 
morosus Br. et Redt. (zugleich: Ursachen tierischer 
Farbkleidung VI)«, von Hans Przibram und Leonore 
Brechber | 

Die bleibenden Farbunterschiede verwandelter Dixippus 
morosus beruhen nicht wie der physiologische Farbwechsel 
dieser Stabheuschrecken auf der Wanderung histologischer 
Elemente (Pigmentkörnchen), sondern auf verschiedenem 
Mengenverhältnis von drei Pigmenten, einem dunkelbraunen 
Melanin, einem grünen und einem orangeroten Lipochrom. 
Das Vorherrschen bestimmter Farbtypen ist von der Be- 
leuchtung vor der Verwandlung abhängig und zwar übt 
dieselbe Farbe gleichen Einfluß, ob reflektiertes oder durch- 
gehendes Licht gleicher Intensität verwendet wird. 


165 


Wird derselbe Beleuchtungseinfluß zwei (partenogene- 
tische) Generationen hindurch zur Einwirkung gebracht, so 
steigert sich der Prozentsatz von Exemplaren, welche die 
für den gewählten Einfluß charakteristische Farbe tragen. 

Neben dem Einfluß des äußeren Faktors macht sich 
aber auch die Farbe der Mutter in der Färbung ihrer Nach- 
kommenschaft geltend, so daß also vorausgegangene Modi- 
fikationen übertragen werden können. 

Ähnlich wie bei manchen Schmetterlingspuppen, z. B. 
Pieris brassicae, erzeugt weißliche Umgebung helle; rote, 
violette, blaue und schwarze dunkle; graue und Finsternis 
mittelfarbige, nämlich grünliche und bräunliche; gelbe rein- 
grüne Dixippus. 

Neben den grünen kommen aber in gelber Umgebung 
auch ganz dunkle Dirippus zum Vorscheine, was mit der 
verschieden langen Einwirkung gelber Strahlen erklärt wird, 
während bei den Schmetterlingsraupen stets nur dasselbe 
kurze empfindliche Stadium dem Farbeneinflusse offensteht. 


Folgende versiegelte Schreiben zur Wahrung der 
Priorität sind eingelangt: 


1. von Prof. Dr. J. Blaas in Innsbruck mit der Aufschrift: 
»Töne sprechens; 

2.'von-.Leo.-Diet.-in. Graz, mit.-der: Aufschrift: »Drei- 
teilung des Winkels und grundlegende goniometri- 
sche Gleichungen«. 


Das w.M. Hofrat Franz Exner legt folgende Arbeit vor: 


»Mitteilungen aus dem Institut für Radium- 
forschung. Nr. 132. Elektrizitätsleitung und Diffu- 
sion in festen Salzen«, von Georg Hevesy. 


Die Elektrizitätsleitung in Salzkrystallen wird dadurch 
erklärt, daß einzelne Ionen extreme Elongationen vollführen 
und so in die Lage versetzt werden, an eine andere Stelle 


166 


des Gitters zu gelangen. Nach dieser Anschauung ist auch 
ohne Feldwirkung ein Platzwechsel der Ionen im Krystall, 
eine Selbstdiffusion zu erwarten, deren Geschwindigkeit sich 
aus der Leitfähigkeit berechnen läßt. Sie ist bei Zimmer- 
temperatur ganz außerordentlich klein; die Selbstdiffusionskon- 
stante der Ionen des Steinsalzes beträgt kaum 3. 101° cm?/Tag. 

Mit zunehmender Temperatur nimmt sie sehr stark, etwa 
einer Exponentialfunktion entsprechend, zu; im Falle des bis 
knapp zu seinem Erstarrungspunkt erhitzten Steinsalzes beträgt 
die Platzwechselkonstante bereits 0'014 cm?/Tag; im Falle des 
Chlorbleis 30° unterhalb seines Schmelzpunktes 0'027 cm?/Tag. 

Beim Chlorblei läßt sich der Platzwechsel mit Hilfe radio- 
aktiver Indikatoren experimentell verfolgen. Die Konstante wird in 
guter Übereinstimmung mit der berechnetee zu 0:029 cm’/Tag 
gefunden. | 

Aus der nunmehr bekannten Diffusionsgeschwindigkeit 
des Bleiions im festen und geschmolzenen Chlorblei sowie 
der Leitfähigkeit in beiden Aggregatzuständen läßt sich der 
Dissoziationsgrad des geschmolzenen Chlorbleis annähernd 
berechnen. Die Dissoziation ist eine sehr weitgehende, doch 
eine geringere als die des wahrscheinlich vollständig dis- 
soziierten Silbernitrats. 


Das w. M. Hofrat J. M. Eder legt eine Abhandlung vor 
mit dem Titel: »Das Bogenspektrum des Terbiums.« 


Die Akademie der Wissenschaften hat in ihrer 
Sitzung vom 6. Mai 1920 beschlossen, Prof. R. Sterneck in 
Graz zur Ausführung der Tafeln seiner Arbeit »Die Gezeiten 
der Ozeane, I« K 1000 °— aus dem Gezeitenfonds zu be- 
willigen. 


167 


Preisaufgabe 


für den von A. Freiherrn v. Baumgartner gestifteten 
Preis 


(Ausgeschrieben am 31. Mai 1920) 


Die mathematisch-naturwissenschaftliche Klasse der Aka- 
demie der Wissenschaften in Wien hat in ihrer außerordent- 
lichen Sitzung vom 31. Mai 1920 beschlossen, folgende Preis- 
aufgabe erneuert auszuschreiben: 


»Es werden Versuche gewünscht, ‚welche die Dis- 
krepanz zwischen den verschiedenen experimen- 
tellen Bestimmungen des elektrischen Elementar- 
quantums erklären.« 


Der Einsendungstermin der Konkurrenzschriften ist der 
31::Dezember 1921; die Zuerkennung‘ des“ Preises! "findet 
eventuell in der Feierlichen Sitzung des Jahres 1922 statt. 

Zur Verständigung der Preisbewerber folgen hier die auf 
Preisschriften sich beziehenden Paragraphen der Geschäftsord- 
nung der Akademie der Wissenschaften: 

»S 57. Die um einen Preis werbenden Abhandlungen dürfen 
den Namen des Verfassers nicht enthalten und sind, wie allge- 
mein üblich, mit einem Motto zu versehen. Jeder Abhandlung hat 
ein versiegelter, mit demselben Motto versehener Zettel beizu- 
liegen, der den Namen des Verfassers enthält. Die Abhandlungen 
dürfen nicht von der Hand des Verfassers geschrieben sein.« 

»In der Feierlichen Sitzung eröffnet der Präsident den ver- 
siegelten Zettel jener Abhandlung, welcher der Preis zuerkannt 
wurde, und verkündet den Namen des Verfassers. Die übrigen ' 
Zettel werden uneröffnet verbrannt, die Abhandlungen aber auf- 
bewahrt, bis sie mit Berufung auf das Motto zurückverlangt 
werden.« 

»8 59. Jede gekrönte Preisschrift bleibt Eigentum ihres 
Verfassers. Wünscht es derselbe, so wird die Schrift durch die 
Akademie als selbständiges Werk veröffentlicht und geht in das 
Eigentum derselben über. Ein Honorar für dasselbe kann 
aber dann nicht beansprucht werden.« 


»$ 60. Die wirklichen Mitglieder der Akademie dürfen an 
der Bewerbung um diese Preise nicht teilnehmen.« 

»8$61. Abhandlungen, welche denPreis nicht erhalten haben, 
der Veröffentlichung aber würdig sind, können auf den Wunsch 
des Verfassers von der Akademie veröffentlicht werden.« 


Selbständige Werke oder neue, der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Bucura, C. Dr.: Die Eigenart des Weibes. Ursachen und 
Folgerungen. Wien und Leipzig, 1918; Groß-8". 

— dGeschlechtsunterschiede beim Menschen. Eine klinisch- 
physiologische Studie. Wien und Leipzig, 1913; Groß-8°. 

— Über Hämophilie beim Weibe. Kritische Studie nebst Er- 
örterungen der gynäkologischen Blutungen. Wien und 
Leipzig, 1920; Groß-8°. 

Gay, Frederick P. und Claypole, Edith J.: The »Typhoeid- 
Carrier« State in Rabbits as a Method of Determining 
the Comparative Immunizing Value of Preparations of the 
Typhoid Bacillus. Studies in Typhoid Immunization, I 
(Reprinted from the Archives of Internal Medicine, Decem- 
ber, 1913, vol. XI, pp. 613—627). Chicago, 1913; 8°. 

— und Force, John N.: A Skin Reaction Indicative of Im- 
munity Against Typhoid Fever. Studies in Typhoid Im- 
munization, III (Reprinted from the Archives of Internal 
Medicine, March, 1914, vol. XII, pp. 471—479). Chicago, 
1914; 8°. 

Ohara Institute für landwirtschaftliche Forschungen 
in Kuraschiki: Berichte, Band I, Heft 1, 2, 3. Kuraschiki, 
1918; Groß-8°. 

University of Akron: Faculty Studies No 1. A special 
library for the rubber industry. Akron, 1920; Klein-8°. 


Österreichische Staatsdruckerei. 509 20 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 Nr. 15 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 17. Juni 1920 


Das w. M. Hofrat J. M. Eder übersendet eine Arbeit 
aus der Graphischen Lehr- und Versuchsanstalt: Ȇber die 
sphärische Korrektion von photographischen Objek- 
tiven«, von K. W. Fritz Kohlrausch. 

Darin wird gezeigt, daß das von Gauss aufgestellte 
Prinzip, wonach die durch die sphärische Aberration hervor- 
gerufene Undeutlichkeit visuell gewertet wird an der Größe 
des Ausdruckes fr’ids (ds ein Flächenelement des Zer- 
streuungsscheibchens von der Helligkeit z, r der Abstand 
dieses Elements von der Achse), in seinen Konsequenzen in 
befriedigender Übereinstimmung mit der Erfahrung steht und 
bei optimaler Einstellung zu einem mittleren Durchmesser 27 
des Scheibchens führt, der gegeben ist durch 


| 2R 
27° = -—A.v(k), 
‚= 7 b 


2R : 
wo —— die relative Öffnung ist und A sowie die Funktion d (k) 


F 
nur von der Güte der Konstruktion abhängen. 
27 
F 
auf sphärische Aberration eingeführt und aus den beobachteten 
Längs-Aberrationskurven für eine große Zahl verschiedener 
Objektivtypen berechnet. 


— p wird als Maß des Korrektionszustandes in bezug 


to 
[Se 


170 


Das k.M. Prof. Dr. Anton Skrabal übersendet eine Ab- 
handlung aus dem Chemischen Institut der Universität in Graz 
von Dr. Alois Zinke und Johanna Dzrimal mit dem Titel: 
»Zur Kenntnis von Harzbestandteilen. 7. Mitteilung.« 


Das w. M. R. Wegscheider überreicht eine Abhandlung 
aus dem Laboratorium für anorganische, physikalische und 
analytische Chemie an der Deutschen technischen Hochschule 
in Brünn: »Über die oxydimetrische Bestimmung des 
Mangans in flußsaurer Lösung. I. Mitteilung«, von Josef 
Holluta und Josef Obrist. 


Wegscheider überreicht ferner eine Abhandlung aus 
dem I. chemischen Laboratorium der Universität Wien: »Die 
Konstitution des Laudanins«, von Ernst Späth. 


Verfasser bestimmt im Opiumalkaloid Laudanin C,,H,,NO,, 
das nach O. Hesse durch Methylieren in das genau studierte 
Laudanosin C,,H,,NO, übergeht, den Ort der phenolischen 
Hydroxylgruppe durch Oxydation von Äthyllaudanin zur 
Äthylisovanillinsäure und von Carbäthoxylaudanin zu Carb- 
äthoxyisovanillinsäure und Isovanillinsäure. Demnach kommt 
dem Laudanin folgende Konstitutionsformel zu: 


co ZN N 
eno-\ | nen 
cn, 
| 
Zah 


Se 
RIES 
| OH 


OCH;, 


1741 


Das w. M. Hofrat Fr. Exner legt vor: »Mitteilungen 
aus dem Institut für Radiumforschung. Nr. 133. Über 
Konvektionserscheinungen in ionisierten Gasen«, von 
Viktor F. Hess, 


Die in ionisierten Gasen bei Anlegung eines elektrischen 
Feldes auftretenden Winderscheinungen (»lonenwind«) wur- 
den einer eingehenden theoretischen und experimentellen 
Untersuchung unterzogen. Zunächst wurde für den Fall der 
Öberflächenionisation eine einfache Formel abgeleitet, welche 
den Winddruck des Ionenwindes als Funktion der Strom- 
stärke, Ionenbeweglichkeit und der von den Ionen unter der 
Einwirkung des Feldes zurückgelegten Distanz darstellt. Die 
Formel wurde für den Fall der Koexistenz von Ionen ver- 
schiedener Beweglichkeitsstufen verallgemeinert. Da der Wind- 
druck der Beweglichkeit verkehrt proportional ist, liefern die 
schwerbeweglichen Ionen den weitaus größten Anteil des zu 
beobachtenden Winddruckes. 

Die Übertragung der theoretischen Überlegungen auf 
den Fall der gleichförmigen Volumionisation liefert auf kurzem 
Wege eine Formel, die von Greinacher in anderer Weise 
abgeleitet worden ist. Es wurde ferner auch die Formel für 
den lIonenwinddruck im allgemeinsten Falle der ungleich- 
förmigen Volumionisation abgeleitet und für den Fall der 
linearen Abnahme der lonisierungsdichte angewendet. 

Die experimentellen Untersuchungen beziehen sich 
durchaus auf den Fall der Oberflächenionisation durch 
o-Strahlen ganz kurzer Reichweite. 

Die geforderte lineare Abhängigkeit des Ionenwinddruckes 
von der durchlaufenden Distanz wurde genau bestätigt. Der 
aus den absoluten Winddruckmessungen resultierende Wert 
der durchschnittlichen lonenbeweglichkeit in Luft beträgt 
ungefähr 0:01 cm/sec :Volt/cm und variiert sehr stark je nach 
der Zahl der langsamen Ionen. Es wird eine Formel auf- 
gestellt, die nach Einsetzung der bekannten Beweglichkeits- 
werte für leicht- und schwerbewegliche Ionen den prozen- 
tuellen Anteil der beiden Arten an der Gesamtionisation zu 
schätzen gestattet. 


172 


Dieser ergab sich in Einzelfällen variierend im Mittel 
zu 2 -bis 3%, d.h. 2. bis, 3%), der pro'sec: jerzeugten, lonen 
werden in schwerbewegliche Ionen bei den herrschenden 
Versuchsbedingungen (Feldstärke 100 bis 700 Volt/cm) um- 
gebildet. 

Durch Untersuchung der Abhängigkeit des Ionenwind- 
druckes von der Spannung und gleichzeitige Aufnahme der 
Stromspannungskurven wurde gezeigt, daß im Falle der 
Oberflächenionisation beide Kurven praktisch zusammenfallen. 
Einige Eigentümlichkeiten dieser Windsättigungskurven im 
Falle der ungleichförmigen Volumionisation fanden volle 
Aufklärung. 

Die in einer früheren Arbeit aufgestellte Energiebilanz 
für Aufrechterhaltung des lonenwindes wurde einer durch- 
greifenden Revision unterzogen. 

Die Bestimmungen des Ionenwinddruckes in Luft, Kohlen- 
säure, Wasserstoff, Sauerstoff, Stickstoff und : Leuchtgas 
lieferten absolute Werte für die durchschnittlichen Ionen- 
beweglichkeiten in diesen Gasen, welche wieder: deutlich das 
Überwiegen der schwerbeweglichen Ionen bei der Wind- 
wirkung erkennen lassen. Die Relativwerte der Beweglich- 
keiten, bezogen auf Luft, stehen in Übereinstimmung mit den 
nach den bisherigen Methoden erhaltenen Werten. Anwesen- 
heit von Staub, Wasserdampf, Chloroformdampf u. dgl. erzeugt 
bedeutende Erhöhung des lonenwinddruckes entsprechend 
der Herabsetzung der mittleren Beweglichkeit. Dabei werden 
die negativen Ionen im allgemeinen etwas stärker beeinflußt. 

Dennoch ist der Ionenwinddruck in allen untersuchten 
Fällen für die positiven Ionen größer als für die negativen, 
d. h. auch bei den schwerbeweglichen Ionen überwiegt noch 
die Beweglichkeit des negativen Ions. 

Die Untersuchung der Abhängigkeit des lonenwind- 
druckes vom Gasdruck zeigte, daß die durchschnittliche 
Ionenbeweglichkeit nicht genau proportional dem reziproken 
Gasdruck, sondern anfangs, d. h. von 750 bis zu etwa 600 mm 
noch rascher wächst. Bei höheren Drucken sind also relativ 
mehr schwerbewegliche Ionen anwesend. 


173 


Plantaenovae simenses, diagnosibus brevibus descriptae 
a Dr. Heinr. Handel-Mazzetti (5. Fortsetzung).! 


Primula refracta Hand.-Mzt. 


Sect. Monocarpicae Fr. 

Radix perennans foliis emortuis paucis, scapis singulis 
vel pluribus. Folia membranacea oblonga 12x15, 14x25 — 
20x37 et 24x38 mm, rotundata basi saepe leviter cordata, 
ad 1/;—!/s lat. 4—6jugo lobulata et late dentata; petioli 
— aequilongi angusti. Scapi gracillimi 1—4 cm lg. umbelli- 
feri vel praeterea cum verticillis 1—2, 2—18 mm distantibus et 
tunce ad nodos infracto-flexuosi. Bracteae subulatae 2°9— 
6 mm 1g. Pedicelli 3—6"! tenuissimi 10—25 mm Igi. floriferi 
erectopatuli fructiferi secus scapum refracti. Indumentum pilis 
glanduliferis inaequalibus praecipue inferne densis et ara- 
chnoideo-conglutinatis et farina alba densissima vel initio 
tantum sparsissima constans. Flores rosei 7—9 mm |1g., 
12— 17mm It., hypocrateriformes. Calyx campanulatus, 4mm 1g. 
ad dimidium ca. in lobos triangulares obtusiusculos fissus, sicut 
extus corolla brevissime glandulosus et — farinosus, fructifer 
paulum dilatatus ad 6 mm Ig. Corollae intus glabrae et nudae 
tubus cylindricus ad antheras paulum dilatatus, ca. 1!/, mm It.: 
limbi plani lobi lati ad !/; bifidi lobulis obtusis. Antherae 
1?/; mm 1g. Capsula globosa subinclusa. 

Prov. Yünnan: In fissuris rupium calcearum umbratarum 
ad templa montis Hsi-schan prope urbem Yünnanfu, 2300 m, 
leg. II. 1914 et serius XI. 

Species inter affines foliis angustioribus, scapis abbreviatis 
flexuosis, pedicellis denique refractis, statione valde insignis.- 


Gentiana epichysantha Hand.-Mzt. 


Sect. Chondrophylla Bge. 

Biennis flaccida parce asperula. Caules 1—10, 4—6 cm 1g. 
quadranguli internodiis 8—35 mm |g. ubique divaricato-dicho- 
tomi. Folia crassiuscula viridia in vaginis brevissimis sessilia 


1 Vgl. Akademischer Anzeiger, 1920, Nr. 12, 


174 


patula triangulari-ovata et -lanceolata, acutissima, basi 
latissima, rosulantia usque ad 12X6 mm, caulina opposita 
9X2—8xX3 mm summa breviora et latiora subauriculato- 
amplexicaulia. Pedicelli singuli ramulos terminantes 6— 22 m Ig. 
Calyx et corolla infundibuliformes, ille tubo + 3 mm Ig. et 
ore It. dentibus subulatis erectis 2—3 mm |g. dorso carinatis 
sinubus rotundatis, haec 9— 12 mm I1g. et ore 7—9 mm It. 
alba extus viridis, lobis tubum aequantibus et directione 
continuantibus ovatis apiculato-acutis ad °/, cum plicis aequi- 
latis et !/, brevioribus regularibus dentatis connatis. Stamina 
profunde inserta inferne bialata. Capsula stipite crasso 
3— 10 mm 1g., latitudine subduplo longior, antice alata. Semina 
acutangule triquetro-ellipsoidea transverse tuberculato-rugulosa. 
Prov. Yünnan bor.-oce.: In turfosis et pratis subalpinis 
ad pedem austro-occ. montis Piepun inter Dschungdien et 
Bödö, 3500 — 4000 mn, legi 7. et 9. VII. 1914. 
Species ramificatione et foliorum forma notabilis, illa 
G. apertae (cfr. ic. Kanitzianam!), hac etiam G.: Prattüi folüs 
margine ciliatis et calycis lobis lanceolatis diversae similis, 


Cremanthodinm microcephalum Hand.-Mzt. 


Rhizoma crassum ramosum foliorum fasciculos steriles et 
caules crassiusculos 12—20 cm lg. 1—2-foliatos apice in pe- 
duneulos 2(—3?) 3—7 mm |g. dense atro glanduloso-pilosos 
bractea subulata aequilonga suffultos partitus. Folia obcordato- 
reniformia, 3—6 cm Ig. et paulo latiora sinu angusto ultra 
1/; inciso, grosse multidentata dente medio maiore, praesertim 
subtus sicut petioli laminis ultra duplo usque triplo longiores 
vaginis linearibus insidentes sparse pilosula, nervis 5 palmatis 
et venis laxe reticulatis prominuis; caulina vaginis laxe con- 
volutis 15—25 mm |1g. et (apertis) It. extus glabris intus 
pubescentibus, subbasalia longipetiolata ceteris similia, sub- 
apicalia brevipetiolata minuta vel obsoleta. Capitula nutantia 
discoidea late hemisphaerica multiflora 8 mm I1g. Involucri 
phylla phaea glabrescentia extima pauca brevia subulata cetera 
rotundato-elliptica 25—3 mm It. Flores fragrantissimi omnes 
tubulosi involucrum aequantes dilute flavi superne cum antheris 


175 


3 mm lg. phaei tubo angusto 3 mm lobis 1'/; mm lg. Pappi 
setae 5 mm 1g. rubellae longe denticulatae; stigmata paulum 
exserta fusca lorata retusa tota crasse pilosa. 
Prov. Yünnan bor.-occ.: In fossis montis Piepun ad austr.- 
occ. opp. Dschungdien, s. calc., ca. 4500 nz, leg. 11. VIII. 1914. 
Species habitu magis Lignlarias parvas revocans, sed 
stigmatibus ed odore aromatico Cremanthodium sese praebens. 


Allium funckiaefolium Hand.-Mzt. 


Sect. Rhiziridum Don. 

Glaberrimum. Bulbus rhizomati brevissimo fibrifero insidens 
eylindricus 5X1'5 cm, vaginis brunneis densissime reticulatis. 
Caules pauci + 40 cm Ig. tenues teretes paulum supra basin 
unifoliati. Folium petiolo tenui semiterete lamina aequilongo, 
tenue, e basi cordata sinu 1 cm alto marginibus se tegentibus 
clauso late ellipticum 13X 75 cm, apiculatum, undulatum nervis 
11—13 tenuibus arcuatis. Umbella globosa + 30 flora. (Spatha’?) 
Bracteolae minutae membranaceae. Pedicelli tenues 1—2'5 cm Ig. 
Flos stellatus albus. Tepala elliptica 3X 15 mm obtusa. Stamina 
subduplo longiora; filamenta simplicia aequilonga, exteriora 
anguste linearia, interiora inferne sensim dilatata. Germen 
brevistipitatum ad medium fere trilobum; stylus stamina aequans. 
Capsula 2 mm lg, 5 mm It. lobis rotundatis divaricatis. 

Prov. Hupe: Hsingshan, leg Henry, Coll. fr. Centr. China 
1885—88, Nro. 5590 F s. n. A. Victorialis, Herb. Naturh. Mus. 
Wien. 

Species foliis Hostam Sieboldianam aemulans A. Victoriali, 
quocum etiam a cl. Forb. et Hemsl. confusum est, caule 
crassiore versus medium foliis pluribus angustioribus haud . 
cordatis crassis instructo et capsulis angustioribus diverso vix 
arcte affinis. 


Nannoglottis carpesioides Max. var. Yüannanensis Hand.-Mzit. 


Differt a typo (sec. discriptionem: exemplaria inaccessibilia 
sunt!) floribus femineis 2—3seriatis, ligulis glaberrimis, pappo 
disci ac radii subaequali setis ad 8 composito. Planta robusta 
1:10 m alta, foliis praeterea basi cordato-truncatis, ad 20 cm 


diam., obsolete dentatis, pedunculis ad 30 cm longis, specifice 
separanda si speciei descriptio orig. exacta est, quod dubitari 
potest. 

Prov. Yünnan bor.-oce.: In pratis subalpinis montis Piepun, 
3500 »», leg. 10. VIIL 1914. 


Festuca Vierhapperi Hand.-Mzt.!) 


Extravaginalis (stolonifera?), fasciculis paucifoliis mox mar- 
cescentibus et culmis sparsis ascendentibus 60—90 cm altis 
levibus. Folia surculorum plicata 3—7 cm lg. 2 mm It. 7 nervia 
obtusiuscula marginibus dense pectinato-ciliata, vaginis ad basin 
usque fissis pubescentibus; caulina plana flaccida 13 .nervia, 
35—5'5 mm It. margine scabra, supra pilosa, infima brevia 
vaginis pubescentibus, summa 13--17 cm lg. longe acuminata, 
vaginis arctis glabris longis, ligulis brevissimis 'subtilissime 
ciliatis. Panicula laxa, 13—17 cm lg. scabra, ramo imo sub 
internodio ad 6cm lg. subpatulo paniculae 0'5 aequante 
o—10 spiculato, basi vel paulo supra ramo 2—-3 spiculato 
addito. Spiculae brevipedunculatae paulum violascentes, opacae 
scaberulae cuneato-obovatae 9—12 mm Ig., laxe 3—5florae. 
Glumae steriles marginibus scariosae lanceolatae subulatae, 
superior carinato 3—5 nervia quam inferior Inervia 39 —45 mm 
lg. sub 1:5—2plo longior. Rhachilla strieta scabra. Gl. florifera 
8s—65 mm 1g. teres Imm diam. subtiliter 5—3Snervia, in 
aristam scabram 35 —7'5 mm lg. longissime attenuata. Palea 
aequilonga bifida carinis ciliato-scabra. Lodiculae laceratae, 
Antherae lineares ochraceae 2 mm lg. Ovarium glabrum. 

Prov. Yünnan bor.-occ.: In pratis montis Piepun prope 
opp. Dschungdien, 3500 m, leg. 12. VII. 1914. 

Species inter Eufestucam et Schedonorum locanda habitu 
et foliis caulinis f. arundinaceam, panicula, aristis, foliis 
surculorum F. rubram admonens. 


1 In honorem Prof. F. Vierhapper Vindobonensis Graminearum peri- 
tissimi nominata. 


16% 


Corrige: 

Meconopsis leonticifolia Hand.-Mzt. in Sitzgsber. v. 
5. Febr. 1920 est nomen delendum synonymum Mee. venustae 
Prain, in Hooker’s Icon. plant., tab. 3036 (1915). Species a 
cl. Prain »ovario e carpellis 4 composito« descripta, sed 
recte triloculari illustrata, sicut M. concinna Prain trimera 


quoque illustrata etsi non commemorata Meconopsidem cum 
Cathcatia jungens. 


Selbständige Werke oder neue der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Ängström, Anders: Die Konvektion der Luft (Separat-Abdruck 

aus der »Meteorologischen Zeitschrift«, Heft 11/12, 1919). 

— Über die Schätzung der Bewölkung (Separat-Abdruck aus 

der » Meteorologischen Zeitschrift«, Heft 9/10. 1919). Braun- 
schweig, 1919; 4°. 


Aus der Staatsdruckerei in Wien. 510 20 


Anzeiger Nr. 15. 23 


at fi 
N BE 


a 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 Nr. 16 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 1. Juli 1920 


Bu len ——. 


Dr. Ernst Späth dankt für die Verleihung des J.L. Lieben- 
Treises. 


»Mitteilungen aus der Biologischen Versuchs- 
anstalt der Akademie der Wissenschaften in Wien 
(Zoologische Abteilung, Vorstand: H. Przibram). Nr. 53. 
Versuche über Polaritätsumkehr am Tritonenbein, 
von Oskar Kurz. 


Mit dem ursprünglich distalen Ende an den quer entzwei- 


geschnittenen Femur implantierte Unterschenkelknochen re- 


generieren an der nunmehr distal sehenden, ursprünglich 
rumpfwärts gerichteten Fläche einen Fuß. Es liegt demnach 
Polaritätsumkehr vor. 

Hiebei kann ein Doppelfuß entstehen, dessen Bildung 
vielleicht durch das Bestreben jedes der beiden Unterschenkel- 
knochen, einen Fuß herzustellen, erklärt werden kann. 

Wo das Implantat nicht mit der Femurschnittfläche ver- 
wachsen ist, pflegen Doppelfüße gebildet zu werden, deren 
Zehen in zwei (oder mehr) Ebenen liegen und deren Ent- 
stehung durch gleichzeitige Regeneration von: Femur und 
Unterschenkelknochen aus zu erklären ist. 

Auch wenn nur Reste des Implantates in das vom Femur 
ausgehende Regenerat aufgenommen erscheinen, kann es zur 


24 


180 


Bildung eines Doppelfußes kommen. Ist es zu keiner Ver- 
wachsung zwischen Femurschnittfläche und Implantat ge- 
kommen, sondern dieses dem Femur parallel gelagert, so 
regeneriert das implantierte Unterschenkelstück, wenn ent- 
sprechend günstige Raumverhältnisse vorliegen, nach beiden 
Seiten hin; d.h. es kommt nicht nur an dem derzeit distalen 
Ende zur Bildung eines Fußes, sondern auch an dem ursprüng- 
lich distalen Ende zu einem deutlichen Ansatz von Regeneration. 

Die bei Amphibien (auch Anuren, z. B. einer im Prater 
gefangenen Unke, Bombinator igneus) natürlich vorkommenden 
Mehrfachbildungen von Fußteiien können auf die Fähigkeit 
der Beinknochen (bei dieser Kröte des Mittelfußes), beiderseits 
die distalen Teile (im vorliegenden Falle die Zehen) zu 
regenerieren, zurückgeführt werden. 


Das k. M. C. Doelter übersendet eine Abhandlung mit 
dem Titel: »Neue Untersuchungen über die Farben- 
veränderungen von Mineralien durch Strahlungen.« 


Prof. Dr; ‚Alfred Tauber ‚in. Wien übersenget ein wer 
siegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schrift: »Zur  Integration:.- der linearen Different 
gleichungen.« 


Das w. M. R. Wegscheider überreicht eine Abhandlung: 
»Zur Jodjodionenkatalyse des Wasserstoffsuper- 
oxyds«, von Prof. E. Abel. 


Auf Grund der seitens des Verfassers durchgeführten 
Untersuchung über die Kinetik der Wasserstoffsuperoxyd-Jod- 
Reaktion werden die Bedingungen für Eintritt der Jodjod- 
ionenkatalyse des Wasserstoffsuperoxyds formuliert und 
wird der bezügliche Zusammenhang an der Hand des vor- 
liegenden Versuchsmaterials geprüft und bestätigt gefunden. 


181 


Für den speziellen Fall dieser Katalyse, der Jodionenkata- 
Iyse des Wasserstoffsuperoxyds, werden an einem Beispie) 
die Lage des sich selbsttätig einstellenden »katalytischen 
Gleichgewichtes« und die zu dieser Einstellung führenden 
zeitlichen Verhältnisse berechnet und diskutiert. 


Das w.M. Prof. C. Diener legt eine Abhandlung vor, be- 
titelt: »Neue Ceratitoidea aus der karnisch-norischen 
Mischfauna des Feuerkogels bei Aussee.« 


Das w.M. Hofrat Hans Molisch legt eine Arbeit unter dem 
Titel vor: »Aschenbild und Pflanzenverwandtschaft.« 


Die vorliegende Arbeit zeigt, daß für die Beschreibung 
und Erkennung eines Pflanzenobjektes nicht bloß die Anatomie 
des Gewebes, sondern auch die Morphologie seiner Asche 
herangezogen werden kann, da das Aschenbild entweder 
durch sein Zellenskelett oder durch bestimmte Inhaltskörper 
oder Leitfragmente und ihre bestimmte Anordnung für jede 
einzelne Pflanzenart sehr charakteristisch ist. 

Dadurch, daß die Zellwände hochgradig verkieseln oder 
verkalken oder sowohl verkieseln als auch verkalken, bleiben 
die Gewebe nach ihrer Veraschung in ihrer zellulären Struk- 
tur scheinbar so gut erhalten, daß man glaubt, das noch in- 
takte Gewebe vor sich zu haben. Dazu kommen dann 
häufig noch Haare und verschiedene in der Asche noch wohl 
erkennbare Inhaltskörper, z. B. mannigfach geformte Krystalle, 
Zystolithen, Kieselkörper, und zwar oft in so charakteristischer 
Anordnung, daß man in dem so  zustandegekommenen 
Aschenbild oder Spodogramm einzelne Familien, Gattungen 
oder Arten erkennen kann. 

Man könnte vielleicht einwenden: Wozu benötige ich 
die Asche, wenn das Gewebe zur Verfügung steht? Das 
Gewebe zeigt doch mehr als die Asche. Gewiß bietet das 
Gewebe Einzelheiten, z. B. im Zellinhalt, die bei der Ver- 
aschung zerstört werden und die daher in der Asche nicht 


182 


mehr gesehen werden können, aber anderseits bietet 
die durch einfaches Verbrennen rasch gewonnene 
Asche oft in größerer Klarheit und in besserer Über- 
sicht gewisse besondere morphologische Verhält- 
nisse. 

Wer einen raschen Überblick über die Verteilung der 
Zystolithen bei den Acanthaceen und Urticaceen haben will, 
wird ihn leicht und ausgezeichnet an der Hand von Aschen- 
präparaten gewinnen. Gramineen sind durchwegs durch das 
Vorhandensein der solid verkieselten Kieselkurzzellen, 
die Cyperaceen stets durch die eigenartig geformten, ver- 
kieselten Kegelzellen und viele Orchideen, die Marantaceen, 
Musaceen und Palmen durch die als Deckblättchen oder 
Stegmata bekannten Zellen mit bestimmt geformten Kiesel- 
körpern, manche Familien durch Raphidenbündel oder Krystall- 
sand ausgezeichnet. 

Ja sogar große und auffallend gestaltete Einzelkrystalle 
von Kalkoxalat können für Vertreter einer ganzen Familie 
bezeichnend sein, wie die mächtigen Kalkoxalatspieße der 
Iridaceen. 

Alle, ndiese’nLeitiraemente, Aretien aber an Re 
Asche mit viel größerer Deutlichkeit und Übersicht- 
lichkeit hervor als im Gewebe, zumal sie bei der Ver- 
aschung auf ein kleines Volum zusammenrücken und so 
leichter sichtbar werden. Die Zystolithen, Kieselkurzzellen 
und Kegelzellen stellen einen Familiencharakter dar, der sich 
in der Asche in besonders prägnanter Weise zu erkennen 
gibt. 

Wenn man die modernen Bücher über Pharmakognosie, 
Drogen, Nahrungs- und Genußmittel und andere Rohstoffe 
des Pflanzenreiches durchblättert, so ist hier vom Aschenbild 
kaum die Rede und doch würde das Spodogramm die Be- 
schreibung des zugehörigen Pflanzenteils in vielen Fällen 
wesentlich ergänzen und durch die Herbeiziehung des Aschen- 
bildes in vielen Fällen die Erkennung des Objektes sowie 
die Feststellung seiner Echt- oder Unechtheit sicherlich er- 
leichtern. Ja bei der Diagnostizierung. prähistorischer Pflanzen- 
aschen würde die mikroskopische Untersuchung ‘der Asche 


183 


überhaupt die wichtigsten, wenn nicht sogar die einzigen 
Erkennungsmittel bieten. 

Mit anderen Worten: Wie die Form und die Stellung 
des Blattes, der Bau der Blüte, die. Zahl der Staubgefäße 
und die Form der Samenanlage für diese oder jene Pflanzen- 
familie oder Gattung charakteristisch ist, so kann in zahl- 
reichen Fällen auch die Morphologie der Asche oder das 
Spodogramm einen Hinweis abgeben für die systematische 
Stellung der die Asche liefernden Pflanze. Dies sollte in 
Zukunft mehr beachtet werden, als dies bisher geschehen ist. 


Derselbe legt ferner eine im Pflanzenphysiologischen 
Institut der Wiener Universität von Herrn Dr. Gustav Klein 
ausgeführte Arbeit vor: »Studien über das Anthochlor.« 


Neben den Carotinen und Anthokyanen findet sich bis- 
weilen auch ein im Zellsaft gelöster gelber Farbstoff in Blüten 
vor, das Anthochlor. 


1. Dieser. Farbstoff wurde auf seine Verbreitung im 
Pflanzenreich und Verteilung im Gewebe der Blütenblätter 
hin untersucht. Von zirka 300 untersuchten Arten mit gelben 
Blüten führen 60 Anthochlor, die übrigen meist Carotine. 

2. Es wurde sein gelegentliches Zusammenvorkommen 
mit Carotin, Flavon und Anthokyan geprüft und seine nahen 
Beziehungen zum Anthokyan bei nahe verwandten Pflanzen 
und in ein- und derselben Blüte anatomisch festgestellt. 

Seine chemischen Eigenschaften wurden mikrochemisch 
untersucht. 

3. Danach ist das Anthochlor nicht ein einziger Farb- 
stoff, sondern stellt eine Gruppe von verschiedenen, einander 
nahestehenden Farbstoffen vor. 

Seine Löslichkeitsverhältnisse decken sich .im allgemeinen 
mit denen des Anthokyans. 

Wie dieses zeigt auch das Anthochlor Farbenumschlag. 
mit Säuren und Alkalien, nur oft nicht so intensiv und bei 
den einzelnen Farbstoffgruppen verschieden. 

4. Die Glykosidnatur des Anthochlors wurde wahrschein- 
lich gemacht. 


5. Besonders charakteristisch ist das Verhalter gegen 
konzentrierte Mineralsäuren, speziell Schwefelsäure, und 
gegen Alkalien, auch in verdünnter Form, sowohl im Blumen- 
blatt wie in der Lösung. 

Danach kann man drei Gruppen deutlich voneinander 
unterscheiden. 

Eine große Gruppe gibt mit den genannten Reagenzien 
rote Farbentöne, was auf eine chinoide Bindung im Molekül 
schließen läßt (Dahlia). 

Eine zweite zeigt dunkelgelbe bis orangegelbe Farbe 
(Papaver). 

Die dritte gibt mit Säuren grüne bis braune, mit Alkalien 
tiefgelbe Krystallisationsprodukte (Verbascum). 

6. Die Anthochlore lassen sich zu farblosen, beziehungs- 
weise roten Körpern reduzieren (Flavone). 

Sie geben mit Metallsalzen gelbe bis. rote Metallnieder- 
schläge und färben gebeizte Faser schwach an. 

Sie sind höchstwahrscheinlich Flavonabkömmlinge mit 
nahen Beziehungen zum Anthokyan, dem der gelbe Papaver- 
farbstoff am nächsten steht. 

7. Endlich wurden Vertreter der einzelnen Gruppen auf 
mehrfache, verschiedene Art und Weise zur Krystallisation 
gebracht und die hierbei auftretenden Erscheinungen näher 
studiert, so daß eine Reindarstellung für die makrochemische 
Analyse möglich gemacht wurde. 


Das w.M. Hofrat K. Grobben überreicht eine Abhand- 
lung von Dr. Fritz Früchtl in Innsbruck mit dem Titel: 
»Planktoncopepoden aus der nördlichen Adria.« 


Der Arbeit liegt das vom »Rudolf Virchow« (Forschungs- 
dampfer der Deutschen Zoologischen Station in Rovigno) im 
Juli—August 1811 längs der Ostküste der nördlichen Adria 
in 23 Fangstationen gesammelte Copepodenmaterial zugrunde. 
Insgesamt wurden 31 Gattungen mit 59 Arten und 2 Varietäten 
erbeutet. Darunter sind die folgenden für die Adria neu: 


feat 


Encalanus elongatus Dana, 

Calocalanus styliremis Giesbrecht, 

Scolecithrix tenuiserrata Giesbrecht, 

Oithona plumifera var. atlantica G.P. Farran, 
Cyeclops bicuspidatus Claus var.? 

Dermatomyzon nigripes Ö Brady et Robertson, 
Corycaeus (Ditrichocorycaeus) anglicus Lubbock. 


IE ET 


er 


N 


Prof. Dr. Wolfgang Pauli überreicht eine Mitteilung über 
mehrere am Laboratorium für physikalisch-chemische Biologie 
der Universität Wien ausgeführte Untersuchungen, betreffend 
»Komplexionisation und Kolloidbildung.« 


In einer Mitteilung an die Akademie! und einer folgen- 
den ausführlichen Veröffentlichung war auf Grund einer ein- 
gehenden physikalisch - chemischen Analyse insbesondere 
mittels potentiometrischer Ionenbestimmungen gezeigt worden, 
daß das bekannte Eisenoxydsol als ein Komplexsalz von der 
Zusammensetzung rFe(OH),.yFe|An anzusehen ist, worin 
An das Anion des zur Herstellung verwendeten Ferrisalzes 
bezeichnet. Die geladenen Kolloidteilchen stellen sich dem- 
nach als Komplexionen mit dem betreffenden Hydroxyd als 
Neutralteil dar. Daraus wird ohne besondere Annahmen das 
physikalisch-chemische Verhalten des Eisenoxydsols in allen- 
Hauptzügen verständlich. 

Wir haben nun angestrebt, diese Auffassung auf die 
wichtigsten Typen der Kolloide auszudehnen und zu diesem 
Zwecke auf der einen Seite die Komplexionisation in solchen 
polyvalenten Elektrolyten geprüft, die zur Herstellung von 
Kolloiden besonders geeignet sind, auf der anderen Seite 
die physikalisch-chemische Analyse an verschiedenen Kolloiden.. 
weitergeführt. 

Einen guten Überblick über die Komplexionisation ge- 
währen die Beobachtungen an dem wohl definierten Zirkon- 
oxychlorid. Ermittelt werden die elektrische Leitfähigkeit, die 
H- und Cl-Ionenkonzentration (Cu und Cc, auf elektro- 
metrischem Wege, ferner werden, wo es angeht, Gefrier- 


1 Akad. Anz. Nr. 12; 1917. 


186 


punkte und elektrische Überführung bestimmt. Die Resultate 
lassen sich nach den folgenden Gesichtspunkten verwerten: 
Sämtliche H-Ionen entstammen der Hydrolyse, es wird also 
auf je zwei H-Ionen ein Molekül Zr(OH), entfallen und es 
verbleiben m-2Cn Moleküle für den Rest ZrOCl,, wenn m 
die analytische molekulare Konzentration des ganzen Salzes 
bedeutet. Da Zr(OH), praktisch unlöslich ist, so ist in der 
klaren Lösung alles Zirkonhydroxyd als Komplex anzunehmen. 

Es kann ferner CH = Ca), Ca > Ca (hroder C7 2 
sein (Ill). Im Falle I bestehen anionische und kationische 
Zr-Komplexe von gleicher Ladungszahl nebeneinander, in Il 
überwiegt die Ladung der anionischen, welche einer kom- 
plexen Säure Zzugehören, in II Tüberwiegt der "Anteil der 
kationischen Zr-Komplexe. 

Der Nachweis solcher entgegengesetzter Komplexe läßt 
sich mit Hilfe der elektrischen Überführung erbringen.‘ Eine 
große Bedeutung erhält weiter die Bestimmung der aus dem 
Gefrierpunkt ermittelten Molekülzahl neben der analytischen 
molekularen Konzentration. Die erstere kann : bei hoher 
Komplexbildung aus 3 und 4 Molekülen trotz des ionischen 
Zerfalls beträchtlich unter die letztere sinken. Auch die auf 
den metallischen lIonenanteil entfallende äquivalente Leit- 
fähigkeit kann wertvolle Anhaltspunkte insbesondere bezüg- 
lich der Wertigkeit der Komplexe liefern. Die Beweglichkeit 
des zweiwertigen Ions Zr(OH), ZrO wurde im Mittel gleich 
93 rezipr. Ohm bestimmt und die Gültigkeit der Stokes- 
Einstein’schen Beziehung von Ionenradius und Beweglichkeit 
für komplexe Ionen dieser Art sehr wahrscheinlich gemacht. 

Die Versuche haben ergeben, daß in Zirkonoxychlorid 
und analogen Oxysalzen die einfache lonisation gegenüber 
der komplexen fast ganz zurücktritt. Im wesentlichen liegt 
ein Gleichgewicht zwischen Hydrolyse und Komplexbildung 
vor, wobei die Hydrolyse bis zum vollständigen Aufbrauche 
der gebildeten Hydroxyde zu Komplexen fortschreitet. Diese 
haben die Werner'sche Koordinationszahl 6, wobei an 
dem Zr als Zentralatom, z. B. neben 4 (OH) ein Molekül 
ZrOCl, bald mittels Cl,, bald mittels der zwei negativen 
Ladungen des O angeheftet erscheint. Im ersten Falle wird 


= 


187 


der negative Komplex [(OH),ZrCl,]”, im zweiten der positive 
[(OH),Zr.O.Zr]" entstehen. Ein Gleichgewicht Zr(OH), Cl, > 
ZrOCl, in der Lösung könnte solche Verschiedenheiten der 
Anlagerung im Sinne vonW.Kossel’s physikalischer Auffassung 
der Valenzkräfte verständlich machen. Die Kurven der freien 
H- und Cl-Ionen überkreuzen sich in zwei Schnittpunkten, 
für die Cu=Ccı und die zwischen sich eine Zone über- 
wıegend anionischer Komplexe mit Cn> Ccı einschließen. 


Labeille, 
Am | Molekülverhältnis lonenarten 
2 X [Zr(OH),.Zr(OH),. 
50 [Zr(OH),.ZrOCl,] .‚ZtOC1.ZrO]C1s*, | 
023 a ® E 
30 X ZrOCl, ZrOH,.ZrOCl,.ZrO|Ch* | 
2X Zroci|cı 
| 0:334 Zr(OH),.ZrOCl, | Ha* 
Zr(OH), ZrOCl, N en 
| 4 Zr (OH),.ZrO C1,C1,.H, 1 X Zr(OH),.ZrOC1,|H,* 
0°25 SEA TERN: ‚ p 
3[ZrOH,.ZrOCl,] 3X Zr(OH),Cl, |ZrO 
0: 130 er Zr (OH), .ZrOC1, Cl, |H,* 
ZrOH,.2.ZrOCk, i f 
CHh=Ccı ZrO|Cls 
f 2 Zr(OH),.ZrOCl,.ZrO| CI1,* 
00625 2 ZrOH,.3.ZrOCl, > ö 
Ä Zr Oct] Cl 


ZrOH,.ZrOCl, le 
00312 r davon 


ale: 0-3 m Zr(OH),.ZrOCl,.ZrO. |Clz* 


y Fi Een In | 
ee ZrOH,.ZrOCl, Zr(OH),.ZrO | Cl, 
0018 a 
01m ZrOCl, Bey Y > | 
5 01m Zr(OH),.ZrOCl,.ZrO | Ch,* 


In dem vorstehenden Überblick der in den verschiedenen 
Konzentrationen vorhandenen Komplexe sind jene mit * 
gekennzeichnet, deren Homologe aus konzentrierten Zirkon- 


188 


sulfatlösungen auskrystallisieren und von ©. Hauser und 
H. Herzfeld! bestimmt wurden. 

Demnach würden sich zwei komplexe Säuren, acht Zirkon- 
salze mit Zirkon im Anion und Kation und vier komplexe Chlo- 
ride ergeben. Die besondere Leichtigkeit der Anlagerung von 
Metallhydroxyd an ionogene Salzmoleküle schafft jenen Übergang 
zu den Metalloxydsolen, welche aus solchen Komplexen nach- 
weislich durch Hydrolyse entstehen. So haben sich auch der 
dem Eisenoxydsol analoge Aufbau des Zr-Oxydsols und 
darin wieder Anklänge an die Komplexbildungen im Zirkon- 
oxysalz selbst mit einem merklichen Anteil -anionischer 
Komplexe nachweisen lassen. Ähnliche Verhältnisse wie bei 
den Zirkonsalzen finden sich bei den Salzen des Thoriums, 
nur wird die Komplexbildung bei diesem stärker positiven 
Metall mit seiner geringeren Salzhydrolyse sehr stark erst 
in niederen Konzentrationen, wohin auch- die Schnittpunkte 
Ch = Ce; rücken. 

Wir sind jedoch auch umgekehrt in der Lage zu zeigen, 
daß manche zu kolloidchemischen Untersuchungen viel 
benutzte Sole im chemischen Sinne einfache oder nur 
aus wenigen Varianten zusammengesetzte, echte .Oxysalze 
darstellen. So erwies sich bei der typischen Darstellung 
des Aluminiumoxydsols aus essigsaurer Tonerde dieses 
sehr charakteristische Kolloid als ein Aluminiumoxyacetat 
AIO.GH3;0,. Mit Hilfe der H-Ionenmessung konnte darin 
das Verhältnis der Essigsäuremoleküle zu den Acetationen 
festgestellt werden. Dieses Salz bildet darnach infolge seiner 
mächtigen Hydrolyse schon in 0'14-normaler Lösung die 
positiven Komplexionen 3AI(OH); . Al(OH)*, deren Zu- 
sammentreten ihm den kolloidalen Charakter verleiht, wobei 
die anwesende, in ihrer lonisation stark zurückgedrängte 
Essigsäure nicht merklich stört. Die Darstellung des Al-Oxyd- 
sols nach A. Müller durch Peptisation von frischem Al(OH)s 
mittels AlC1; führte zu dem Salz AI(OH), . AlCOH), |Cl, dessen 
lonisationsverhältnisse vollständig aufgeklärt werden konnten. 


1 Unveröffentlichte Versuche nach R. J. Meyer und O. Hauser, Die 
Analyse der seltenen Erden. Stuttgart 1912, p. 144. 


al Zi al Pina nl u Le Ze 


= 
£ 
4 
j 

< 

fi 


189 


Die Ionenbeweglichkeit dieses einwertigen Komplexes betrug 
im Mittel 55 reziproke Ohm. Die kolloiden Merkmale sind 
hier naturgemäß viel schwächer ausgeprägt. 

. Für jedes Sol erscheint die Höchstzahl neutraler Moleküle, 
die auf eine einfache Ladung entfällt, als eine charakte- 
ristische Größe, welche die Stabilitätsgrenze bestimmt. Alle 
Metalloxyde, sowohl die als Laugen als auch die als Säuren 
in Wasser funktionierenden, bilden ihre Sole nur durch die 
entsprechende Komplexionisation, wobei das unlösliche Metall- 
hydroxyd seine Ladung durch das positive Ion, das saure 
Oxyd durch das negative Ion des (dissoziierenden hinzu- 
tretenden Moleküls empfängt. Man kann diese Komplexbildung 
von allerreinster unlöslicher Zinnsäure ausgehend bis zum ein- 
fachsten Stannat in entgegengesetzter Richtung verfolgen, wobei 
sehr bemerkenswerte theoretisch verständliche Eigentümlich- 
keiten im Gange der -Jonenbeweglichkeit auftreten. Die 
kolloiden Metallsulfide sind den sauren Oxyden analog. 

Alle Kolloidkoagulation kann nur auf zwei grundsätzlich 
zu trennenden Wegen erfolgen, die zu verschiedenen Koagu- 
laten führen. Der erste ist die äußerste Dialyse, welche durch 
fortschreitende Hydrolyse bei den positiven Metalloxydsolen 
zu reinen Metallhydroxydniederschlägen bei den negativen zu 
unlöslichen Säuren führt. Die Koagulate sind identisch mit 
den infolge Laugen-, beziehungsweise Säurenzusatz auf- 
tretenden. Der zweite Weg der Ausflockung ist die Umsetzung 
in unlösliche Komplexsalze durch Salzzugabe. 

Die Edelmetallsole, als deren Typus das kolloide Gold 
untersucht wurde, bilden eine Klasse für sich, indem hier 
nicht Metalloxyde, sondern die Mcetallmoleküle zu dem Neutral- 
teil zusammentreten. Allein auch hier ist die Ladung nicht 
auf Metallionenaussendung, sondern auf eine Komplexioni- 
sation nach Art der bei negativen Oxydsolen zurückzuführen. 
Dies konnte sowohl indirekt physikalisch-chemisch als auch 
au direktem chemischem Wege in höchstem Grade wahr- 
scheinlich gemacht werden. Dagegen führt die bisherige An- 
schauung zu Widersprüchen mit fundamentalen Eigenschaften 
des kolloiden Goldes. Schließlich ließ sich die Flockung 


‚der positiven Metalloxydsole mittelst der durchdringenden 


Ra-Strahlung als eine Ausfällung vom Typus der gesteigerten 
Hydrolyse erkennen. 

‘Die Versuche an Zr-, Th-, Ti-Salzen, beziehungsweise 
Solen wurden mit Frau Dr. Mona Adolf, an Al-Oxydsolen 
mit Herrn Franz Jandraschitsch, an der Zinnsäure mit 
Herrn Adolf Stiegler, an acht Arten des kolloiden Goldes 
mit den Herren Walther Friedländer, Erich Knaffl-Lenz 
und Johann Matula und schließlich über den Mechanismus: 
der Ra-Wirkung auf Kolloide mit Herrn Albert Fernau aus- 
geführt. 


Die in der Sitzung vom: 20, Mai 1. .J. (siehe Anzeiger 
Nr. 13 vom 20. Mai 1920, Seite 149) vorgelegte Mitteilung 
von Dr. Rudolf Wagner: Ȇber die Existenz alter- 
nierender I'-Sympodien (bei Chrozophora sabulosa Kar. & 
Kir.)« hat folgenden Inhalt: 

Wie schon aus der Autorenbezeichnung hervorgeht, 
handelt es sich bei der in Frage stehenden Euphorbiacee 
um eine zentralasiatische Pflanze; es ist ein ästiges, reichlich 
fußhohes Kraut, das von G. Karelin und J. Kirilow auf 
Grund von Exemplaren beschrieben wurde, die sie »in collibus 
sabulosis Songoriae inter fontem Sassyk-pastau et montes. 
Arganaty« gesammelt hatten; die Beschreibung findet sich 
in ihrer »Enumeratio plantarum in desertis Songoriae orientalis 
et in jugo summarum alpium Alatau anno 1841 collectarum«,! 
indessen war sie schon von dem ersteren der Verfasser in 
den dreißiger Jahren im Westen ihres Verbreitungsgebietes 
gesammelt worden, »in peninsula Dardscha«, das ist auf 
jener an der Südostküste des Kaspisees gelegenen Halb- 
insel, von der aus die transkaspische Bahn nach Merw, 
Buchara und Samarkand führt. Erwähnt, aber nicht beschrieben 
wird sie unter dem Namen Crozophora gracilis F.& M.? in 


2 L. c., Vol. XII, p. 171. Auf die etymologische Unhaltbarkeit der von 
Friedr. Ernst Ludw. v. Fischer (1782 bis 1854) und Karl Anton Meyer 
(1795 bis 1855) beliebten Schreibweise hat Ferd. Pax 1912 in seiner Mono- 
graphie der Familie hingewiesen (Pflanzenreich, IV., 147, VI., p. 27). 


DBERT: 


IK: 


der 1839 erschienenen »Enumeratio plantarum quas in 
Turcomania et Persia boreali legit G. Karelin«, doch muß 
dieser Name als nomen nudum nach den gültigen Nomen- 
kKlaturgesetzen unterdrückt werden. j 

Eine ausführliche Beschreibung hat 1912 Ferd. Pax im 
»Pflanzenreich« gegeben,! doch konnte bei dem Umfange 
dieses gewaltigen Unternehmens auf Einzelheiten wie die hier 
zu erwähnenden nicht Rücksicht genommen werden. a 

Die unmittelbare Veranlassung zu dieser Mitteilung gab 
die in Sepia entworfene Zeichnung einer Chrozophora, die 
ich in einer Pergamenthandschrift vom Ausgange des 
Quattrocento oder Anfang des Cinquecento fand; der sym- 
podiale Charakter, der sich beim Herbarexemplar weniger 
aufdrängt, trat darin deutlich hervor. Die flüchtige Unter- 
suchung einiger Exemplare ergab nun, daß die konsekutiven 
Achsen meistens drei Laubblätter entwickeln, nämlich die ein 
Hypopodium von einem oder mehreren Zentimetern ab- 
schließenden Vorblätter und ein drittes Blatt, das der 
Gpisthodromie der Sprosse entsprechend schräg nach vorne 
fällt. Dieses letztere Blatt stützt den Ersatzsproß, mittels 
dessen sich das Sympodium weiter entwickelt. Fällt nun das 
%-Vorblatt nach links, so erhält der Fortsetzungssproß den 
Richtungsindex as und sein erstes Vorblatt fällt nach rechts, 
ist also von der Abstammungsachse zweiter Ordnung abge- 
wandt; mutatis mutandis findet man das nämliche bei nach 
rechts fallendem «-Vorblatt. Daraus muß eine Alternation 
der Richtungsindices bei konsekutiven I'-Sprossen resul- 
tieren, wenn, wie die Analyse ergeben hat, diese .Gesetz- 
mäßigkeit aufrecht erhalten wird. 

Diese Erwägung veranlafßtte mich, ein stark verzweigtes 
Exemplar zu untersuchen, das von der von Alexander 
Schrenk 1840 und 1841 durch die russische Kirgisensteppe 


nach der Grenze Chinas geführten Expedition herrührt. Aus- 
gegeben vom St. Petersburger botanischen Garten, "trägt es 


als Fundort lediglich den Vermerk »Songaria« und als 
Sammler wird Meinshausen genannt.” Die Analyse schien 


Re le 


2 Vermutlich jener Karl Meinshausen, dessen Synopsis plantarum 


‚diaphoricarum Florae ingricae 1869 in St. Petersburg erschien. 


sehr schwierig, ließ sich jedoch in einwandfreier Weise durch- 
führen, da beim Schrumpfen der Gewebe Rillen entstehen, die 
eine absolut sichere Orientierung der morphologischen Ele- 
mente erlauben. Sehr wahrscheinlich kommen bei unserer Art 
gleich wie bei den anderen einjährigen Repräsentanten der 
Gattung Kotyledonarsprosse vor, doch handelt es sich 
hier wohl bei dem abgerissenen Zweig um eine andere Seiten- 
achse, vielleicht sogar um eine höherer Ordnung. 


u ul 
Asa | ads l as6 


TV, d6 I 57 
| A, 6 I: 7 er d s) 
Bas | Ass(slaar) 
Bss PR 7 (s Auas) 
a Bar (S N) 
ade 
T,„;; abgebrochen 
A, 5 lU’as 6 Da dq 
r B, B) I d6 Pas 7S Taas 4 . 
Vaas dAas 
| Bsslasz STaas abgebrochen 
2 Ba: STaas 
"aus | ne f (sBs» 
Er I 16 ds (d Ts) 


Ba: 


Dass ‘ lass | 


D» 


Y 
Er 


DrB,sushag, 
A,3 SAs 
dAsge 
Dass Bl (Sl aas) 
J Ba: (Saas) 
| Tasz (STaas) 


I adı 


Taas 


Von 57° Sprossen erweisen sich 38, also volle zwei 
Drittel, als T-Sprosse, deren Verkettung stets Wickel- 
charakter aufweist, wie aus den alternierenden Richtungs- 
indicibus hervorgeht, so z.B. 


7 hi \ 2 ) 
D: Das Vaaı Nass l ad6 l as“ l ads l @.S10. 


Du 


193 


Diese Form von Wickelzweigen ist mir aus keiner anderen 
Pflanzengattung bekannt, wennschon I[’-Sympodien verschie- 
dentlich vorkommen. Bei der zentrifugalen Entwicklung kommt 
dann der B-Sproß und darauf der A-Sproß zur Entwicklung. 
Meist verbleiben diese im Knospenstadium. 

Es erübrigt noch der progressiven Rekauleszenz 
zu gedenken, die beim I'-Sproß sich im Außmaße von einigen 
wenigen Millimetern geltend macht und durch die herab- 
laufende Basis des langgestielten Blattes deutlich zum Aus- 
druck gelangt. 


Selbständige Werke oder neue, der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Secretaria de Agricultura y Formento: Programa de la 
direccion de antropologia para el estudio y mejoramiento 
de las poblaciones regionales de la republica formulado 
por el director Manuel Gamio. Segunda edicion. Mexico, 
1919537, | 

— Apuntes acerca de un nuevo manual de arqueologia 
Mexicana. Critica cientifica por Hermann Beyer. Mexico, 
1918; 8°. 


2 


wien m 


1920 Nr. 5 
Mai 


Monatliche Mitteilungen 
der 
Zentralanstalt für Meteorologie und Geodynamik 


Wien, Hohe Warte 
48° 14°9' N.-Br., 16' 21:7' E.v. Gr., Seehöhe 2025 m. 


| Luftdruck in Millimeter Temperatur in Celsiusgraden 

R | | Abwei- | Abwei- 
Tag En: 1qlı oh | Tages-ıchungv.| -, 14h oh | Tages- |chung v. 
x ji | mittel | Normal-| ei | mittel! |Normal- 

k km: sa, PR stand 

747.1 745.6 744.1 | 45.6 + 3.7 EAN 14.6 14.2 + 1.7 

2 42.5 41.3 40.7 | 41.5 |— 0.4 Innos 219287167 16.7 |+ 4.0 
3 42.9 43.7 43.5 | 43.4 |+ 1.4 14 24. 14.8 17.7 |+ 4.8 
4 47.3 47.5 45.2 | 47.1 |+ 5.1 12.9 1622 11.9 | 13.7 + 0.6 
5 45.5 48.4 51.8 | 48.6 + 6.6 8.2 7.4 76 1.7 — 96 
6 54.5 53.0 51.8| 53.1 |+11.1 6. u 10,8 8 | 850 
7 49.2 46.4 45.5 | 47.0 + 5.0 6.1 9.4 12.6 11.4 |— 2.3 
8 47.7 47.9 46.7 | 47.4 |+ 5.4 ja 15.0 11.3 | 12.6 |— 1.2 
9 45.1 45.2 46.9 | 45.7 |+ 3.6 Slot 1922 12.5 12.5 |— 1.5 
10 48.2 48.9 49.0 | 48.7 + 6.6 le 1416 18 11.6 |— 2.5 
11 50.7. 90-1 50.2 1530.837=.:8.2 10.6 14.2 9.4 11.4 2.8 
12 49.4 47.3 47.4 | 48.0 |+ 5.9 el 16.4 Bald 12.1 |— 2.3 
13 47.3 46.2 45.7 | 46.4 |+ 4.2 Bist, 18.1 13.5 13.8 |— 0.7 
14 45.4 43.8 45.6 | 44.9 |+ 2.7 11.4 A) 1329 15.4 |+ 0.8 
15 47.6 45.4 44.9 | 46.0 1+ 3.8 126 16.0 13.4 13.7 |— 1.1 
16 44.0 41.5 40.2 | 41.9 |— 0.3 9.3 16.1 13.9 13.1 |— 1.8 
1b? 40.3 40.6 40.2 | 40.4 |— 1.9 2m Sat 13.0 17.6 |+ 2.6 
18 44,58 44.7 43.9 | 44.5 |+ 2.2 18.0) 72823 18.4 20.0 |+ 4.8 
19 44.6 44.9 45.3 | 44.9 + 2.6 7A 72401 1956 20.4 + 5.1 
20 46.7 45.6 44.9 | 45.7 |+ 3.3 18.4 24.5 20.4 21.1 |+ 5.6 
21 45.3 45.0 44.9 | 45.1 |+ 2.7 I u NS 22.3 |+ 6.6 
22 46.8 48.2 49.9 | 48.3 |+ 5.9 17.3 16.7 Tori 16.4 + 0.6 
23 50.9 49.9 48.7 | 49.8 |+- 7.4 13.1 1087 15.4 15.1 |— 0.9 
24 47.1 45.9 44.8 | 45.8 |+ 3.93 De es! 18.6 19.1 |+ 3.0 
25 45.9 44.8 44.3 | 44.9 + 2.4 17.4 23.4 20.0 20.3 |+ 4.1 
26 44.4 43,0 43.2 | 43.5 |+ 1.0 19.7 25.8 21.4 22.3 |+ 5.9 
27 43.6 42.0 43.0 | 42.9 |-+ 0.3 19r0 Zoom 20.5 21.7 |+ 5.2 
28 43.6 42.4 43.2 | 43.1 + 0.5 18.6. 2229 18.3 19.9 I+ 3.3 
29 44.2 43.4 44.0 | 43.9 |+ 1.3 18.2, 28:4... 20.0 20.5 |+ 3.8 
30 44.4 43.3 43.4 | 43.7 + 1.0 14.0.022859, 2 2052 20.4 |+ 3.5 
31 45.9 47.2 46.7 | 46.6 |+ 3.9 16:3 18.4 16.5 Kae] 0.0 
Mittel|746.21 745.57 745.50/745.76/+ 3.5 13.05. 21972 15:6 16.1 + 1.2 


Temperaturmittel®: 16.0° C. 


Zeitangaben, wo nicht anders angemerkt, in Mittlerer Ortszeit; Stundenzählung bis 2 


beginnend von Mitternacht = ON, 


1 Us (7, 2, 9. 
)4 2%, 9, 9. 


[59 
wu 


Anzeiger Nr. 16. 


196 


Beobachtungen an der Zentralanstalt für Meteorologie 


48° 14°9' N.-Breite. im Monate 

Temperatur in Celsius Dampfdruck in mm | Feuchtigkeit in ®/, || Ver- 

dun- 

Tag | 4 ||stung 
Max. Min zh j4l 2 Tages. 7b gabe 9 | De inmm 

mittel s'E 

| | FE zu 

1 OD 6.1] 46 4 Bor 8. Su mel S9 8936281 | 72089 

2 NO) ar 8 ee Elke) 9.6 92 _ 49 68 | 702] eel 

3 2a... 12720154 HS EEUNSSORBENOT NO 87 3: "80. | Ren leg 

4 16.7 9.2] 46 Bil 820.7.2..0% 184.0 7.8 2.954 77 | Sslleer 

5) 972 Bra 20 8 7. 6-0moN8 6.9 87: 86. 74.82 le 

6 1 DES 42 M) AN END DE 4.7 66 "432162 | B7 eleb 

z 16.5 2.4 3 1 DD TZ N 1.6 92. 55, 83 777. 1108 

Ss 15.2 991749 10 9: DO AI 98 93 .81. 94.) 890.2 

3) 16.0 s.4| 44 5 re le) een 7.9 98 54. H2] Ze ee 

10 15.1 10.4] 48 9 Do 7. Smmord | 66: 73rn68! Bee 
1 19.20. 623,745 6 4.7 4.0 6.0 4,8 49. 383....68..| SD. | 122 
2 16.5 4.2| 46 3 Rr2, 6.8 6.7 76.49.6921 ,65. 10028 

3 18.9 6.51 47 > Tir2 Sl 4.838 8.0 719: 92,.7602 692 

21.6 8.4| 49 fl 8.0. 142.6: 10:20 21092 84 63 88 78 Il 

19 OB 1OMORN 215 8 1:4 6.87 074 6.4 72. a6 AT IR 

16 7.8 8.2| 45 7 6782 78:30 2971 8.2 47 89, 2621 22 E00 

17 22.40) - 122300749 11 10:6 13.1 14.& | 12.7 97. 10: 87,1, 802 MORE 

18 28.0, 1439 23 3 oe ee, 1.1 DEE le 7 pe 

19 24... 14.81.50 8 12.8,18.2 14,2 13.4 86 :-59 83 | TER 

20 DAS DET 14 18.5. 12843 REN 85. 62 79N To EZ 

21 25.28 6800255 10. 1914.0 141..9 43:92 128.23, 883 748,.2722 7ASseen 

22 20.22. 142181 162181288 12 46 2054 1.9 81° 88 8] SH le 

23 EDEL 8.0| 40 13 8:0, 10,29 Al050 I) °2 74... 76.| »72 1.089 

24 24.1". 323.91 053 12 1.10.4 11.9:.12,3 | 11.81 78.06 77 1 700 ae 

25 241 14.6| 00 13217 118..8, 18.0428 Mor 90: . 63: H821778 11. 082 

26 26.0: 1527,56 a N ee 18:59, 6021 Bor ala 

27 ae al 151, 1220.183.01258 h3.7 1 56. : 712) (060 W 205 

25 23.40. DROHT [3-1 1232 1820 4235 1 14159 16 283-, 796 209u ln 
29 24.07 17 92 ta 1170270, 051220 7 51- 69 | Geo 
30 Zange. 1420000 EN RE et 12.2 75. 56 .7& 1:68 || 1.9 

Sl 1929. 102047..39 19.1028, zes ed RL LIESS ER 0.9 
Mittel. 20:1 11:3147.23|.10.3 96 9;9,10,.3-) 9.9): 80° 58, 7527 Ziemre 
Summe Pr : 
LEBE NEN 27PUBaE 0 7 CZBET ROBERT HEISE Ve. SUB anRgPe = EB BEE NR ERLEBT. dm CINE ER SCHEIBEN WERTE TE n2 ET FEST? PPLIENEIE RIEF LTD Er Tee 

„E| Ball). 12.73.22 8 FETT, on. 
5 #|5| 213.0 14.4 16.0 16.2 14.7 12.9 12.9 13.7 13.6 13.8 14.2 14.6 15.1 15.9 16.0f 
23 = |5114.211.311.5.11.8 12.3 12.3 12.1.11.9 12.0 12,0 2.7 22 Degen 
5 el 9.1.9.1.9.259.3 9.3 949.4 9,5 9.6 9.7 9.798 Va aaa 
9317/51 8.118.2 8.2 8.2 8.8 8.318.3 8A 89 808.0 86) Bora 
Sl |S|8.2)8,3 8.3 8,8378.3 8.8 8.3.8.4 8.4 Ba Won Ss Ko 


Größter Niederschlag binnen 24Stunden: 25.7 mm am 17. u. 18. Niederschlagshöhe: 81.0 .mm 
Zahl der Tage mit e (x): 15; Zahl der Tage mit =: 0; Zahl der Tage mitR: 10. 
Prozente der monatl. Sonnenscheindauer von der möglichen: 58®/,, von der mittleren : 1160, 


') In luftleerer Glashülle. 
®) Blankes Alkoholthermometer mit gegabeltem Gefäß, 0:06 m über einer freien Rasenlläche. 


197 


und Geodynamik, Wien, XIX., Hohe Warte (202:5 Meter). 


Mai 1920. 


16° 21 7, , E-Länge v. Gr. 


‚ Bewölkung in Zehnteln des || Dauer | 
„ sichtbaren Himmelsgewölbes ls des | 
ER Ta ee | ) 3jemerkungen 
Io ol”; a 
71 I 9ıl En 
er Lan A| = Stunden] 
20 20 60 3.3| 12.7 |-almgns. 
40 0) 0) 1.3] 12.1 | al mgns. 
10-1 2 9071 | 5,71 9.2 ei 16—-1750. 
7071 gı 10lel 8.7] 2.6 |e0 7 162-175, «0 1910720 622040. — 
10lel 10lel 101 10.01 0.0 | el—-1910, 
91 70-1 0) DE: .2R8 - 
10 80 9071 | 6.01 12.9 | al mens. 
| 10181 90-1 0) 6.31 1.8 || 8071 430830, &) vorm. zeitw., 17—18. 
| 90-1 100-1 100-1 | 9.7 2.5 le Tr. 1635; na? mgns. 
61 10lel 704 7.7) 8.4 || s1g11250-15, ed "11131015; nchm. eBöen in Umgeb. 
0 11 0) 0.7 13.8 _ 
30 70 60 5.3 10.1 = 
10 20 0 1.0| 12:4 || at mens. 
650 10071 10lel 8.7) 7.2 el 16% — 2330; a” mens. 
40-1 70-1 80-1 6.3| 9.6 Be? 
F 9071 601 4071 6.31 6.9 _ 
10071 4071 101e0 | 8.0) 7.1 || 8071 010720, 410 —650, &0 10, el KR! 20° — 
. 10 30-1 ) 1.3 13.5 || e®® —030. 
B 0) 11 30-1 1.31 12.4 || al mens. 
0) al 0 0.7 13.5 ar 
10 30-1 90 4,31 10.6 || al mgns.; R in NW 22—23. 
{Ole 10180 101 10.0 0.0 I! ed 55 —6%, el R 705930, 0 ] 12014. 
101 101 Ol 92.77 1,6 
| 7971 Sr 20 4.01 10.3 || ed71 1555750, el R! 1650 17207 RI! @ Kae on: 
; 9) 11 7971 2.71 14.2 — 
s 1071 al g0 4.0 11.1 | al mgns.; RinSu.E 14— 16. 
i 30971 21 sı2el| 4.3 12.7 | el RK) 21—22. 
j0 10071 9071 | 6.7 10.3 IRin E 15, e! RO 1750— 1810, 
30 gl 0) 2.01 13.1 — f 
90 Be! 9074 | 7.7| 10.9 ||e0 2210; R in NW 22—23. 
101 10! 101 10.01 0.8 ||e0”1 750—1055, e0 1135. 
4.5 9.6 8.9 5.4) 8.8 
272,1 


86. 17. 


8.7 99 
8.5 8.6 


18. 


15.6 16.117.218.5 19 
12.9 13.1 13.2 13.6 13.914.5 14.9 15 
"10.0 10.1 10.110.210 


8.9 
8.6 


19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. |Mitte 
.5 20.9 20.8 18.6 18.2 19.3 20.5 21.5 21.922.122.522.1117.2 
.315.315.215.115.7 16.1 16.5 16.817.1l13,5 

.3 10.4 10.5 10.6 10.8 11.0 11.011.111.2 11.4 11.5 11.6]10.1 

9.0 9.0.9.0 9.0 9.1 9.1 9.2 9.2 9.3 9.4 9.4 9.5 9.5| 8.8 
8.6 8.7 8.7 8.7 8.7. 8.7 8.8 8.8 8.9 8.9 8.9 8.9 8.91 8.6 


Zeichenerklärung: 


Sonnenschein ®), Regen e, Schnee x, Hagel a, Graupeln A, Nebel =, Nebelreißen =', 
Tau a, Reif, Rauhreif \/, Glatteis nu, Sturm 9, Gewitter R, Wetterleuchten <, Schnee- 
gestöber #, Dunst oo, Halo um Sonne ®, Kranz um Sonne ®, Halo um Mond U. Kranz 
um Mond W, Regenbogen N, eTr. — Regentropfen, «Fl. = Schneeflocken, Schneeflimmerchen , 


198 


Beobachtungen an der Zentralanstalt für Meteorologie und Geodynamik, 


Wien, XIX., Hohe Warte (202:5 Meter), 
im Monate Mai 1920. 


N 
100 

627 2 
120, 
4.4 5 


Ergebnisse der 
NNE NE 


44 12 
97 44 
a) 
oe 


ENE” E 
31 56 
166 904 


1.0. .2:.0 


Windrichtung und Stärke |Windgesehwindigkeit | Niederschlag, 2 
nach der 12-stufigen Skala | in Met. in d. Sekunde | in amım gemessen ® 
Tag | I — © 
| = 
7 14h ah Mittel | Maximum! | 7ı 14h 21h B= 
| ” 
| = 2:0 SESE 127 8SEral 129 ESE 9.1 — — 
2 NNE 1 ESE 1 'NNE I 1.4 E 4.4 - — 
3 NE 1 NNW2 W . 19 Se 02.06 — - 2.5e 
4 W838 NNW3 N 1 4.3 | WSW 15.4 - _ 0.5® 
5 NNWA4 NNW5 NNW5 | NW 21.1 4.4e 13.2e 5.6e 
6 NW A NNW4 Ns DIR NW 217.9 O.le — 
7 — et Diesel 1 g6 E 6.9 - = - 
8: IWNWI1 Si! Seel 1.2 NW n.72.8il :0.0e 1278 0.le 
9) —,.' 0 W 4. WSW2 326 WSW 17.5 (O8 ileer — 0.00 
10 NW 3 NV Ar NW 2 Bi) | WSW 11.4 — l.4e l.le 
11 NNE I Ne 2 0) 1.6.1, NNE ..8.4|| ı— e— 
12 PB 1 „8m. a) 32 SE al. = 3 
13 = Bi Ba 1.6 E | - — =: 
14 Ve] W .8-2NW 3 2.6 NW 14.1 — = 1.9® 
15 NW» Ni 22 IN DT WNW 14.7 '1.:5e - 
16 BES SENEAN 2 SE, var BB; 
17 00.88: N. 1,1 EWNWELSLN. te oe ee 
15 W- 3 SE 1: — 01.3.4 | WNW 14,9 25.3e - _ 
19 SE I ESE] — 0 1.4 E se _— —- — 
230 — lÜ ISIR, See 2.4 BSB S.7| = 
| 
21 8 1 : SIE 2,..W 2] 2.8) wswwwils.e . 
22 wWw 4 NW 3 NNW4 6.6 NW 15.71 0.0e :14.1e — 
23 | NW-3 DSNW2, N 4.2.2), NNERIAN 0 — _ 
24 NNW1 NNEI NNEI 1,7% N 822 == — 0.38 
25) = 0 9SEr 2 FISSE A 1.6 ESE 8.0} - — 
26 W414 WW 2 NIS 113 — = 
27 NY si. WI SS rNIN WE2 4.6 SW.:Jl2.7 — — — 
28 WNW2 WNW3. SW 2 2.4 NW 9.7 1.68 -- 0.1le 
29 NV 2 N.2 N 01 2.8 ININy 8.18.20 — - = 
30 — 0 I E 4 3.1 WSW 18.5 — — 
31 WS I SZENEN 328 | SWS. — l.le —_ 
Mitte] 1526 22 1:76 3.0 O3 1872202 7316 12.4 


Windaufzeichnungen (nach dem Schalenkreuz): 


ESEZISEZZSSE 


SIESSW, 


Häufigkeit, Stunden 


45 38 


29 


20 7 


Gesamtweg, Kilometer 
514 449 211 


Mittlere Geschwindigkeit, Meter in der Sekunde 


3.2 


3.9 


2.0 


90.760 


1.3 2.4 


3.4 


SW WSW W 


16 90 ° 84 


193 1665 478 


er) 


Maximum der Geschwindigkeit, Meter in der Sekunde 


Ball, 1556 


(al 


6.965,07 2:8 8.8 


7.5 11.4 8.1 


Anzahl der Windstillen (Stunden) — 44. 


1 Den Angaben des Dines’schen Druckrohr-Anemometers entnommen. 


Österreichische Staalsdruckerei. 511 20 


62 


79 


7 


3 


799 1495 437 


3.6 


Ge 


- 


Ä 


WNW NW NNW 


2.3 93.3 


5 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 a ar 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 8. Juli 1920 


u I 


Erschienen: Sitzungsberichte, Bd. 127 und 128, Heft 7 bis 10. Mit- 
teilungen der Erdbebenkommission, Neue Folge, Nr. 57. 


Dr. Julius Pia übersendet einen Bericht über die im 
Sommer 1919 mit Unterstützung der hohen Akademie 
der Wissenschaften ausgeführten geologischen Auf- 
nahmen. 

I. 7. August bis 15. August 1919.. Abschluß einer im 
Frühjahr 1917 begonnenen geologischen Aufnahme des SW- 
Fußes des Steinernen Meeres bei Saalfelden. Die Untersuchung 
galt vorwiegend den anisischen Diploporengesteinen. Das 
bekannte Triasprofil des Persailhorns schließt im OÖ nicht, wie 
Hahn annahm, durch seitlichen Übergang an die einförmigen 
Dolomite des Brunnkopfkammes an, sondern wird durch einen 
Bruch abgeschnitten, der. aus dem Südhang des Breithorns 
über das Kar südlich der Ramseiderscharte und den oberen ' 
Saugraben herüberzieht und unteranisischen Dolomit gegen 
ladinischen Ramsaudolomit abstoßen. läßt. Im Gebiete des 
Jufersbaches wurden Schuppungserscheinungen zwischen 
Werfenerschiefer und Phyllit festgestellt, die vielleicht darauf 
hindeuten, daß Trauth’s Hochgebirgsüberschiebung bis hie- 
her zu verfolgen sein wird. 

U. 19. August bis ‚2. September 1919. . Beendigung der 
geologischen Aufnahme des Gebietes des Nötschbaches auf 


26 


200 


der Westseite des Dobratsch. Auch hier habe ich verschiedene 
Diploporenfundstellen ausgebeutet. Der Grödener Sandstein 
transgrediert sehr deutlich auf den Gailtaler Phyllit, während 
sein Verhältnis zu den Nötscherschichten viel weniger klar 
ist. In den Phylliten wurden mehrere bisher unbekannte 
Gneisvorkommnisse nachgewiesen, die sich bis östlich Förk 
erstrecken und hier längs einer Verwerfung an fossilreiche 
Werfenerschiefer stoßen. Der Gipfelteil des Dobratsch ist im 
S, W und N. durch Verwerfungen begrenzt. Die strati- 
graphischen Beweise für das ladinische Alter des Dobratsch- 
kalkes verlieren dadurch Sehr an Wert. Es ist auch auffallend, 
daß ihm Diploporen vollständig fehlen, die in dem sicher 
ladinischen erzführenden Kalk sehr näufig sind. Dagegen 
gelang .es durch eigene Aufsammlungen im sogenannten 
Lahner ‘südlich Bleiberg und aus den Beständen des Hof- 
museums eine Fauna von Bivalven und Gastropoden - zu- 
sammenzubringen, deren Auswertung zwar ziemlich schwierig 
scheint, die aber eine (bisher unmögliche) direkte palaeonto- 
logische Bestimmung des Alters der Dobratschkalke gestatten 
wird. 

Im Polizagraben am SO-Ende des Schoßberges wurde 
im Bereich der Mitteltrias ein interessanter Eruptivgang mit 
vulkanischen Breccien aufgefunden. Die‘ Nötscherschichten 
lieferten eine beträchtliche Fossilausbeute, teilweise von neuen 
Fundstellen. Wichtig ist die Feststellung einer Serie offenbar 
altpalaeozoischer, schwarzer Schiefer und basischer Eruptiv- 
gesteine in den Gräben bei Tratten südlich der Windischen 
Höhe. Das nähere Studium dieser Region, in der Frech nur 
Diluvium kartiert hat, könnte wahrscheinlich Aufschlüsse 
über das bisher ganz unklare Verhältnis der Karnischen 
Alpen zu den Gailtaler Alpen erbringen, doch wäre dazu eine 
spezialistische Kenntnis des Palaeozoikums südlich der Gail 
unbedingt erforderlich. 

II. 4. und 5. September 1919. Untersuchung des Ober- 
karbonprofils ‘des Schulterkofels bei Kirchbach im Gailtal. 
Das Profil bietet einen lehrreichen Wechsel von Konglomeraten, 
Sandsteinen, Schiefern mit marinen Fossilien, aber auch Land- 
‘pflanzen ‘und Kalken mit massenhaften Diploporen ' und 


201 


‚Fusulinen, im ganzen eine typische Strandoildung bei wieder- 
:holter leichter - Verschiebung der Strandlinie. 

IV. 9. bis 13. September 1919. Fortsetzung der vor dem 
‚Krieg begonnenen Aufnahme des unteren Lammertales. Diese 
sehr komplizierte Arbeit wird im Sommer 1920 mit Unter- 
‚stützung der hohen ‘Akademie weitergeführt. Deshalb sei 
vorläufig nur ein wichtiges stratigraphisches Ergebnis mit- 
‚geteilt: Der auf der Karte der Reichsanstalt als rhätischer 
Kalk ausgeschiedene helle Kalk bei St. Wilhelm, südlich des 
Trattberges und Hochbühls, bei der Gerralm und noch weiter 
nach O ist in Wirklichkeit Plassenkalk. In seinem Liegenden 
"konnte das Doggerkonglomerat, das bisher nur aus dem 
nördlichen Teil der Osterhorngruppe bekannt war, an vielen 
‚Punkten festgestellt werden. Dasselbe Konglomerat erscheint 
aber auch in den sogenannten Strubbergschiefern am Nordfuß 
.des Tennengebirges, deren jurassisches Alter dadurch ziemlich 
gesichert ist. Bezüglich der Tektonik der Gegend ist Hahn's 
Darstellung in den wesentlichen Punkten richtig. | 


Das k. M. Prof. F. Emich übersendet zwei Arbeiten aus 
-dem Laboratorium für allgemeine Chemie an der Technischen 
Hochschule Graz: 


l. »Über das Mitwägen des Fällungsgefäßes bei 
quantitativen Mikroanalysen. Zwei auf diesem 
Prinzip beruhende Methoden«, von Erich Gartner. 


DD 


. »Notizen über das Erweichen des Kohlenstoffse, 
von Julius Gmachl-Pammer. 


In der Gartner’schen Arbeit werden zwei Methoden 
beschrieben, nach denen Gewichtsbestimmungen von Nieder- 
‚‚schlägen bei einer Einwage 2 bis 15 mg mit hinreichender 
‘Genauigkeit ausgeführt werden können. 

Beide Methoden erfordern außer einer mikrochemischen 
Kuhlmannwage nur ganz einfache Apparate, die man sich 
.. gegebenenfalls selbst herstellen kann. Zum Blasen der Röhren 
eignen sich nur chemisch sehr widerstandsfähige Glassorten, 
"wie Jenaer Geräteglas oder Quarz. 


202 


Für jede der beiden Besfimmungsarten genügen dreii 
Wägungen. Durch die Anwendung von mit Feinschrot 
gefüllten Tarafläschchen gelingt es, bei allen Wägungen mit 
dieser Tara, dem Reiter und einem 1 cg-Gewicht das Aus- 
langen zu finden. 

Bei der ersten Methode verwendet man einen Apparat, 
der aus einem Pregl'schen Filterröhrchen mit daran ange- 
setzter, tubulierter Kugel besteht. In ‘der Kugel wird die 
Substanz gewogen, gelöst und gefällt; hierauf wird durch 
die Asbesteinlage filtriert und der Niederschlag im Hr, 
getrocknet und gewogen. 

Ähnlich auch bei der zweiten Methode. Ihr Wesen liegt 
darin, daß man zur Trennung des Niederschlages von der 
Flüssigkeit diesen mit der Zentrifuge in einem Spritzröhrchen. 
zu Boden schleudert und die darüberstehende Lösung abhebert. 

Auf diese Art ist die Trennung beider Aggregatzustände 
gleichfalls leicht und schnell ausführbar. 

Die Gmachl-Pammer’sche Arbeit geht von dem Plotnikow- 
schen Vorlesungsversuch über das Erweichen des Kohlen- 
stoffs aus, bei welchem Versuch bekanntlich ein Stäbchen 
aus Lichtbogenkohle auf elektrischem Wege erhitzt und unter: 
Anwendung mäßigen Druckes gebogen wird. Der Verfasser 
ermittelt die hiezu notwendige Temperatur auf optischem 
Wege zu etwa 1650° C. Unreine Kohle ist etwas leichter zu 
biegen als reine, aber selbst bei einem Aschengehalt von nur 
0:1 °/, tritt das Phänomen noch anstandslos ein; es muß. 
also wohl der Kohle selbst eigentümlich sein. Graphitstäbchen 
biegen sich erst, wie schon Watts und Mendenhall gezeigt 
haben, bei einer um 800 bis 900° höheren Temperatur und auch 
hier hat der Aschengehalt auf die Erscheinung keinen großen 
Einfluß.. Kohlenstäbchen, die durch längeres Erhitzen mehr 
oder weniger in Graphit verwandelt worden sind, biegen 
sich dementsprechend schwerer. — Ob diese Befunde in 
völlige Übereinstimmung zu bringen sind mit den Arbeiten 
von: Debye und Scherrer, nach welchen »amorphe« Kohle: 
und Graphit denselben Feinbau haben, muß vorläufig dahin- 
gestellt bleiben. Äh 


EUR 


203 


Josef ‚Mattauch -in. Wien übersendet folgende . Arbeit: 
»Neue Versuche zur Photophorese I.« 


Die Photophoresebeobachtungen an Selen werden unter 
Anwendung größerer Lichtstrahlenenergien fortgesetzt. Dies 
wird durch eine kompendiösere Optik an der Ehrenhaft'schen 
Apparatur erreicht. Die photophoretische Geschwindigkeit 
wird in aufeinanderfolgenden Wegstrecken gemessen; die 


-daraus gerechnete photophoretische Kraft P, im Brennpunkt 


des Strahlenkegels konnte somit auf die Messungen der 
photophoretischen Geschwindigkeit im ganzen wirksamen 
Teil des Strahles gestützt werden. Diese Methode ist daher 
der bisher üblichen Berechung aus der an einer einzigen 
Stelle gemessenen photophoretischen Geschwindigkeit vor- 
Zuziehen. | | | 
| Die zur Beobachtung gelangten Probekörper (künftig 
mit, 2% bezeichnet) "lassen "sich „in, die "nachfolgenden 
Kategorien einteilen: 

I: lichtpositive Pk mit roter Eigenfarbe; 

Il. lichtnegative PR mit ausgesprochener Beugungsfarbe; 

III. weiße, lichtnegative Pk. 


Die kleinsten Pk der Kategorie I, die zur. Beobachtung 


gelangten, hatten den Radius a = 18.1076 cm. Unter dieser 


Größe konnten keine beobachtet werden. Die photophoretische 
Kraft ist zeitlich konstant. Es. ergibt sich ein eindeutiger 
Zusammenhang zwischen der photophoretischen. Kraft pro 
Flächeneinheit und dem Radius des Pk mit einem sekundären 
Maximum von Pr/a? bei a =.24'5 und einem Hauptmaximum 
bei ı84:0.10=6 cme:- | 
Von den Pk der Kategorie II konnten nur solche mit 
kleineren Radien als 17.10°% cm beobachtet werden. Sie 
zeigen alle charakteristische Beugungsfarben. Die .'photo> 
phoretischen Kräfte sind ebenfalls zeitlich konstant und 
zeigen ein Maximum bei a= 145.108 cm. Se ist wegen 


seiner roten Eigenfarbe für die Berechnung des Radius aus 


der Farbe besonders geeignet. Denn während für einen 
Körper mit gelber Eigenfarbe der Hauptsache nach nur die 


.Farbintervalle grün und blau für die Größenbestimmung 


304 


herangezogen werden können, kommen hier noch gelb und’ 
orange hinzu. Die nach der Beugungstheorie unter Zugrunde- 
legung der optischen Konstanten des amorphen Se aus der‘ 
Farbe berechneten Radienintervalle decken sich mit den aus 
der Fallgeschwindigkeit nach dem Stokes-Cunningham’schen 
Widerstandsgesetz (f=0), beziehungsweise dem Kanudsen- 
Weber’schen Gesetze berechneten. (Einheitlicher Zusammen- 
hang zwischen Fallgeschwindigkeit und Farbe.) Bemerkt: 
wird, daß sich, auf beide Theorien gestützt, die elektrischen. 
Ladungen ‚der, Pk. zu 224, 3-47, 4:55, 5"64;-5"66, 6.39% 
731,833 ‚und 32=-7.A071° est. E. ergeben. 

Einige der Pk an der unteren Grenze der lichtpositiven. 
zeigen ein Abnehmen der Photophorese mit der Zeit; ebenso. 
konnte abweichendes Verhalten der lichtnegativen Pk, deren; 
Radien in das Grenzgebiet zwischen I und II fallen, beobachtet 
werden. Es wird der Vermutung Raum gegeben, daß unter den 
gegebenen Versuchsumständen oberhalb 18.10=® cm nur 
lichtpositive, unterhalb 17.10” cm nur lichtnegative Se-Pk- 
vorkommen. Die Unregelmäßigkeiten im Grenzgebiete gehen 
möglicherweise auf Instabilitäten zurück. 

Bei starkem Erhitzen bildet sich eine Ill. Kategorie von. 
Pk, welche gleichfalls lichtnegativ sind. Sie sind von den 
lichtnegativen Pk der Kategorie II vor allem durch ihre weiße 
Farbe unterscheidbar. Sie zeigen wahrscheinlich infolge Ver-- 
dampfens eine Abnahme der Fallgeschwindigkeit mit der Zeit: 
und zwar erfolgt diese Abnahme linear bis zu einem Gleich- 
gewichtszustand. Die photophoretische Kraft ist nicht nur“ 
infolge der abnehmenden Größe der Pk mit dem Radius,. 
sondern auch bei konstantem Radius mit der Zeit veränderlich. 
Unter den gegebenen Versuchsumständen, zeigt sich eine: 
maximale photophoretische Kraft beim Radius a = 26.10% cm.. 
Bei sehr großen Radien wird die photophoretische Kraft ver- 
schwindend klein. 


Erich Schmid in Wien übersendet folgende Arbeit: 
»Über Brown’sche Bewegung in Gasen |.« 

Die Größenbestimmung submikroskopischer Teilchen auf 
Grund des Widerstandgesetizes und auf Grund der Theorie-, 


205 


der Brown’schen Bewegung ergibt bekanntlich bei Körpern 
kleiner Dichte (z. B. Öl) einerseits. und bei Gold und Silber 
andererseits Abweichungen im entgegengesetzten Sinne. Bei 
Körpern mittlerer Dichte wäre also bessere Übereinstimmung 
zu erwarten. Es wurden daher vorerst diese beiden Methoden 
an einer Substanz mittlerer Dichte, dem Selen, einer neuerlichen 
Prüfung unterzogen. Die Genauigkeit der Berechnungsweise 
nach der Brown’schen Bewegung wurde durch Erhöhung der 
Statistik vergrößert. Nachdem die Voraussetzung der Un- 
geordnetheit der Bewegung erneuert gut bestätigt gefunden 
wurde, ergab sich ein Kriterium, das eine Beurteilung einer 
vorliegenden Zeitenserie gestattet. Ferner wurde die von der 
Theorie geforderte Unabhängigkeit der Brown’schen Bewegung 
von äußeren Kräften durch Vergleich des in der Vertikalen 
(Schwerefeld oder elektrisches + Schwerefeld) und Horizontalen 
(kein äußeres Kraftfeld) bestimmten Verschiebungsquadrates 
(% und %7) geprüft. Es ergibt sich hiebei im Gase durchaus 
befriedigende Übereinstimmung — ein Resultat, das den bisher 
an Flüssigkeiten gewonnenen Ergebnissen widerspricht, wo 
bekanntlich %, >}; gefunden wurde. Auch der Vergleich 
zwischen den aus dem Knudsen-Weber'schen Fallgesetz er- 
schlossenen Beweglichkeiten und den aus der Brown’schen 
Bewegung folgenden gibt im allgemeinen Übereinstimmung, wie 
auch aus dem aus über 9000 Einzelbeobachtungen erhaltenen 
Mittelwert N=5'94.10% für die Loschmidt’sche Zahl her- 
vorgeht. 


Folgende versiegelte Schreiben zur Wahrung der 
Priorität wurden übersendet: 


1. von Prof. Dr. Hermann Pfeiffer in Innsbruck mit der 
Aufschrift: »Zur Ursache und ursächlichen Bekämpfung 
der Eiweißzerfallstoxikosens; 


2. von Dr. Josef Tagger in Innsbruck mit der Aufschrift: 
»Prometheus Nr. 3. Versuche über Reibungselektri- 


zität.« 


206 


Das w. M. R. Wegscheide’r überreicht folgende Abhand- 
lungen aus dem Physikalisch-Chemischen Laboratorium am 
Chemischen Institut der Universität Graz: 


»Über den Einfluß von S uhertfnioR in den Kom- 
ponenten binärer Lösungsgleichgewichte. XXVI. Mit- 
teilung: Die binären Systeme, von m- und p-Amido- 
phenol mit Phenolen, beziehungsweise Nitrokörpern«, 
von Robert Kremann, Egbert Lupfer und Othmar Za- 
wodsky,; | 

»XXVII. Mitteilung: Das binäre System von m-Phe- 
nylendiamin mit 1,2, 4-Dinitrophenol«, von Robert Kre- 
mann und Othmar Zawodsky., 


Das w.M. Hofrat E. Lecher legt folgende Arbeit vor: 
»Versuche mit einer Flamme besonders hoher Tem- 
peratur«, von Ernst Hauser und Ernst Rie. 

Mit Hilfe eines von Hauser, Kainer und Berthold 
zum Patent angemeldeten Verfahrens wurde eine Flamme 
erzeugt, deren Temperatur nach den bisherigen Versuchen 
voraussichtlich höher ist als alle auf nichtelektrischem Weg 
erzeugten Temperaturen. 

Mit Hilfe dieser Flamme wurden verschiedene Kohle- 
sorten spontan in Graphit verwandelt, Zirkon, Wolfram, 
Molybdän und Chrom geschmolzen, eine besondere Art von 
Graphit auf verschiedenen feuerbeständigen Substanzen dar- 
gestellt. 


| Das w. M. Hofrat Hans Molisch legt eine im Pflanzen- 
physiologischen Institut der. Wiener Universität von Herrn 
pharm. Mg. Josef Jung ausgeführte Arbeit vor: »Über den 
Nachweis und die Verbreitung des Chlors im Pflanzen- 
reiche.« 

1. Die vorliegende Arbeit bezweckt auf Grund bew Are 
mikrochemischer Reaktionen die Verbreitung des Chlors im 
Pflanzenreiche und seine Verteilung in der Pflanze selbst zu 


207 


untersuchen. Die für diesen Nachweis am geeignetsten be- 
fundenen Reagenzien sind sorgfältig ausprobiert worden und 
haben sich am besten in folgender Form bewährt: 

a) Thalloacetat 0°5 8, Glycerin 2 g, destilliertes Wasser 
7:58. 

b) Silbernitrat O1 g, 10°), Ammoniak 9'9 8. 

Bei sehr geringem Chlorgehalt ist das Reagens 5b), um 
möglichst große und charakteristische Krystalle zu bekommen, 
in folgender Weise umzuändern: 

Silbernitrat 0:05 g, 10°/, Ammoniak 9: 95 8. 

2. Thalloacetat ist in obiger Verdünnung ein sehr. brauch- 
bares Reagens. Es bewirkt die Entstehung von sehr charak- 
teristischen Krystallformen, hat aber nur den Nachteil der zu 
geringen Empfindlichkeit. 

3: Weit besser in dieser Hinsicht ist das Silbernitrat- 
reagens. Es zeichnet sich durch außerordentliche Empfind- 
lichkeit aus und bewirkt außerdem die Entstehung von großen 
regelmäßigen Krystallen mit besonderen Eigenschaften. 

4. Ausgestattet mit diesen Reagentien wurden die ver- 
‘schiedensten Pflanzen von den niedrigsten Gewächsen bis zu 
den höchsten, im ganzen 604 Arten, aus 389 Gattungen, 
beziehungsweise 137 Familien untersucht. 

>.. Die Untersuchungen zeigen, wie weit verbreitet die 
Chloride im Pflanzenreiche sind. Gibt es doch nur wenige 
Pflanzen, bei denen man nicht einmal Spuren derselben nach- 
weisen kann. 

6. Der Chloridgehalt bei verschiedenen Familien ist ver- 
schieden. Es gibt chlorliebende und chlorfeindliche Familien. 
Doch können innerhalb einer Familie diesbezüglich auch Ver- 
schiedenheiten obwalten. 

Besonders chlorliebend sind: die Equisetaceen, Canna- 
baceen, Ulmaceen, Urticaceen, Euphorbiaceen, Polygonaceen, 
Chenopodiaceen, Amarantaceen, Aizoaceen, Cruciferen, Tama- 
ricaceen, Malvaceen, Umbelliferen, Primulaceen, Compositen, 
Liliaceen, Iridaceen. 

Chlorfeindlich dagegen: die reehreeen des Süß- 
wassers, die Chlorophyceen des Süßwassers, die Lichenes, 
Bryophyten, Lycopodiales, Filicales, Coniferen, Betulaceen, 


208 


Salicaceen, Crassulariaceen, Rosaceen, Ericaceen und Orchi- 
deen. 

7. Was die Verteilung der Chloride innerhalb der Pflanze: 
betrifft, wäre folgendes zu sagen. In bezug auf die Längs- 
achse der Pflanze läßt sich beinahe immer eine Zunahme des: 
Chlorgehaltes von der Wurzel zur Stammspitze zu feststellen. 
Die Hauptmenge des Chlors befindet sich in den parenchy- 
matischen zellsaftreichen Geweben, und zwar gelöst im Zellsaft.. 


Bezüglich der Verteilung der Chloride in der Querrichtung: 
des Stammes wäre zu erwähnen, daß sie die Epidermis und 
das Stranggewebe meiden, dagegen das Rindenparenchym und 
das Mark, solange es zellsaftreich ist, bevorzugen. Die jungen» 
Internodien in der Nähe der Sproßspitzen, ferner Blattstiele,. 
Adern des Blattes, fleischige Wurzeln und Rhizome zeigen. 
immer einen größeren Chloridgehalt, während das übrige 
Gewebe der Pflanze, sei es das chlorophylihaltige Mesophyll,. 
die Epidermis, Haare und die Blütenteile, gewöhnlich gering‘ 
reagieren. Verholztes Gewebe, die Schließzellen der Spalt- 
öffnungen, Pollen und Samen zeigen nur Spuren oder sind 
frei von Chloriden. Zellsäfte und Milchsäfte geben bei chlorid- 
reichen Pflanzen eine starke Reaktion, bei chloridfreien dagegen: 
keine. 

8. Formationen, die einen mineralstoffreichen oder nahr- 
haften oder feuchten Boden lieben, zeigen sich zum Uhnter- 
schiede von solchen, die auf einem nährstoffarmen, trockenen: 
Boden wachsen, chloridreicher. So erweisen sich folgende 
als halophil: die Meerespflanzen, Uferpflanzen, Salzpflanzen,. 
Ruderalflora, Segetalflora und solche, die feuchten Boden 
lieben, mit Ausnahme der Heidemoorflora, während die 
Flora der Sandfelder, die submerse Flora der Gewässer, die- 
Heideflora das Gegenteil zeigen. Bemerkenswert wäre noch 
das Fehlen oder das Vorkommen der Chloride nur ‘in ge-- 
ringen Spuren bei der Moos- und Farnflora der Wälder, bei 
den Holzpflanzen mit wenigen Ausnahmen, bei den Epiphyten,, 
Parasiten und Saprophyten. 


20% 


Das w.M. Schlenk übermittelt eine Arbeit von Julius; 
Zellner, betitelt: »Zur Chemie der höheren Piize. 14. Mit-- 
teilung: Über Lactarius rufus Scop., Lactarius pallidus Pers.. 
und Polvyporus hispidus Fr.« 

Der Verfasser hat im Anschluß an frühere Studien die 
drei im Titel genannten Pilzarten chemisch untersucht. Außer: 
mehreren bei Pilzen allgemeiner verbreiteten Stoffen wurden 
aus den beiden Lactarius-Arten Lactarinsäure, aus Polyporus 
hispidus ein fast ganz aus freien Harzsäuren oder deren An- 
hydriden bestehendes rotgelbes Harz sowie ein eigentümlicher,.. 
gelber, phlobophenartiger Körper isoliert. Die Untersuchung: 
der Membranstoffe ergab, daß die Produkte des hydrolytischen 
Abbaues nicht immer dieselben sind, aueh wenn sich die 
betreffenden Arten systematisch nahestehen. In den vorliegenden: 
Fällen wurden außer Glukose als Hauptprodukt wenig Glu- 
kosamin und nur ganz geringe Mengen von Pentosen auf- 
gefunden, während die sonst noch vorkommende Mannose- 
fehlte. 


Derselbe legt terner eine Arbeit von Dr. Gustav Knöpfer- 
in Brünn vor, betitelt: »Über die Einwirkung von Hydra- 
zin auf Chloralhydrat.« 


Das k.M. Kustos A. Handlirsch legt eine Arbeit vor: 
»Beiträge zur Kenntnis der paläozoischen Blattarien.« 

Verfasser hat das seit dem Erscheinen seines Handbuches 
»Die fossilen Insekten 1906« bekannt gewordene Blattarien- 
material einer kritischen Revision unterzogen und einige nicht 
unwesentliche Änderungen in der systematischen Einteilung 
dieser für stratigraphische Forschungen wichtigen Insekten- 
ordnung vorgenommen. Es sind nunmehr über 700 paläo- 
zoische Formen bekannt. 

Von allgemein biologischem Interesse ist die Splitterung 
in so viele nur schwach und durchwegs durch für das Leben: 
irrelevante Merkmale getrennte Formen. Man kann bereits 
gewisse Richtungen erkennen, in denen sich die Entwicklung“ 
der einzelnen Organe bewegt. Zahlreiche Beispiele für Par- 


210 


allelismen und orthogenetische Entwicklung ergeben sich aus 
dem : Studium ‘des Materials. Erst gegen . Schluß des 
Paläozoikums sehen wir als Resultat der Selektion ein Aus- 
sterben aller ursprünglichen Typen. 

Die Arbeit enthält die kurze Charakteristik zahlreicher 
neuer Gattungsgruppen, einiger Genera und Spezies. 


Das w. M. Hofrat R. Wettstein überreicht eine Ab- 
handlung von Stephanie Herzfeld: »Ephedra campvlopoda 
Mey. 1.2Morphologies-identöoweiblichena Blüte und 
Befruchtungsvorgang.« 

Die wichtigsten Resultate dieser Untersuchung sind 
folgende: | 

Die dreikantige Hülle um die normale weibliche Blüte 
entsteht als Ringwulst vor Anlage des Integuments, wird aber 
von diesem im Wachstum überholt; in der modifizierten 
weiblichen Blüte, die an der Spitze der androgynen In- 
floreszenz sitzt, wächst das Integument nicht schneller als 
diese Hülle, welche durch eine Hemmungsvorrichtung. das 
Heraustreten der langen Integumentröhre ins Freie hindert. 
Diese Hülle wird als homolog mit der Sr inomegpHen Frucht- 
schuppe der Taxaccen gedeutet. 

In der Regel entsteht nur 1 Prothallium, und zwar aus 
der untersten Tetradenzelle durch freie Zellbildung. Jede der 
obersten Zellen des Prothalliums kann zur Initialzelle eines 
Archegoniums werden. Meistens entstehen 2—S Archegonien, 
in Grenzfällen 1—6. Die Archegonmutterzelle teilt sich durch 
eine Querwand in die Eizelle und eine darüberliegende 
Schwesterzelle, aus welcher die Zellen des Halses ent- 
stehen. Die Eizelle hat’ gleitendes Wachstum; die 2—3 Nach- 
barzellen an jeder Seite werden zur Deckschicht; ihre Kerne 
teilen sich karyokinetisch. Die Pollenkammer entsteht durch 
Auswanderung der Kerne und des Plasmas aus den Zellen 
an der Spitze des Nuzellus. Kernwanderung findet auch aus 
dem Prothallium in die Deckschicht, innerhalb dieser von 
einer Zelle zur andern, schließlich in die Eizelle statt. Dies 
scheint ein ernährungsphysiologischer Vorgang zu sein. Die 


211 


Kerne strömen nach den Stellen größten osmotischen 
Druckes und stärksten Wachstums. In den Deckschichtzellen 
verschmelzen die Kerne miteinander zu Riesenkernen. Das 
erwachsene Archegonium besitzt einen sehr langen Hals mit 
deutlichem Halskanal. Der Zentralkern der Eizelle verharrt 
am oberen Ende derselben. Vor seiner Teilung wächst die 
Eizelle zwischen die untersten Zellen des Halskanals, der 
Zentralkern erhält eine‘ Vakuole, sein Nucleolus deren zwei, 
dichtes Plasma sammelt sich unterhalb des Kerns. Jetzt löst 
sich die Haut des Kerns, der sternförmig- ins Zytoplasma 
ausstrahlt und lange in diesem Stadium verharrt. Nach der 
Teilung des Zentralkerns in zwei gleich große Kerne bleibt 
der obere, der Bauchkanalkern, am apikalen Ende der Ei- 
zelle, der untere, der Eikern, sinkt in das dichte Plasma in 
die Mitte der Zelle und wächst hier sehr rasch. Nach dem 
Zwischenstadium der »negativen Chromosomen“ löst sich 
der Chromatingehalt der beiden weiblichen Kerne in zahllose 
kleine Körnchen. 

Die Mikrospore teilt sich noch in der Anthere; man 
konnte Pollenschlauchkern, 1 Prothallialzelle. 1—2 Wand- 
zellen und die Antheridialzelle beobachten, die sich in zwei 
gleich große männliche Zellen teilt, aus welch letzteren die 
beiden Gameten nach Austreiben des  Pollenschlauches 
schlüpfen. Der Pollenschlauch wächst im Halskanal durch 
Auflösung von dessen Wänden, wobei auch seine eigene 
Wand hinter dem vorstrebenden Ende in Lösung geht. 
Dadurch gelangen mehrere Kerne der Halskanalzellen hinter 
die zwei generativen Kerne und mit diesen in die Eizelle, 
nachdem sich: der Pollenschlauch blasenförmig erweitert, an 
das apikale Ende der Eizelle gelegt und die Berührungs- 
stelle gelöst hatte. Jeder der beiden männlichen Kerne ver- 
schmilzt mit je einem weiblichen Kern, der ihm an Größe 
weit überlegen ist. Der Spermakern dringt allmählich in den 
Eikern und zeigt das Übertreten geformter Chromatinelemente 
zwischen die Körnchensubstanz des weiblichen Kerns. 
Während der Verschmelzung sinkt der Eikern ans untere 
Ende der Eizelle. — In einem unbefruchteten Archegonium 
wurde die Verschmelzung eines Deckschichtkerns mit einem 


Eikern gesehen. — Die Untersuchung der Embryonal- 
“entwicklung ist noch im Zuge. 

Die modifizierte weibliche Blüte unterscheidet sich von 
.der normalen außer in der. vegetativen Region durch 
geringere Tiefe der Pollenkammer, den kürzeren, breiteren 
und weniger differenzierten Hals, runderes Archegonium, 
rundere Deckschichtzellen und sehr kleine Vakuolen in der 
Eizelle. Es kommt auch hier zur doppelten Befruchtung. In 
der Gegend des Bauchkanalkerns wurde Spindelbildung 
beobachtet. Fruchtbildung ;scheint aber nicht vorzu- 
‚kommen. 

Ein Überblick über die Ergebnisse der Gametophyten- 
forschung im Kreise der Gymmospermen führt zur. Auf- 
fassung, daß eine sich stetig steigernde Tendenz zur Herbei- 
‘führung der doppelten Befruchtung vorhanden sei, daß aber 
die Befruchtung des Bauchkanalkerns nicht zur Ausbildung 
eines wirklichen Embryos führt, sondern Ernährungszwecken 
dient. Der Vergleich der Gametophyten der Gmetales ergibt 
die Schlußfolgerung, der Embryosack der Angiospermen sei 
einem wenigkernrigen Prothallium homolog, in dessen oberen 
Hälfte jede Zelle einem Archegonium entspricht. 


Hofrat Wettstein legt ferner eine im Institut für systema- 
tische Botanik der Universität Graz (Vorstand: Professor 
Dr. Karl Fritsch) ausgeführte Abhandlung: von Dr. Felix 
J. Widder vor, betitelt: »Die Arten der Gattung Aanthium. 
3eiträge zu einer Monographie.« 

Die mangelhafte Artabgrenzung und die verworrene Syno- 
nymie in der Gattung Nanthium hatten es in der letzten Zeit 
schon fast unmöglich gemacht, sogar manche europäische, 
geschweige denn außereuropäische Arten mit einem halbwegs 
unanfechtbaren, eindeutigen Namen zu bezeichnen. Der Ver- 
fasser war also vor die,Aufgabe gestellt, festzustellen, welche 
Formenkreise sich als Arten unterscheiden ließen, und in 
deren Nomenklatur und Synonymie Ordnung zu schaffen. 

Bei der Bearbeitung des Materiais ergab es sich, daß die 

"geographisch-morphologische Methode auch in diesem Falle 
‘ein ausgezeichnetes Hilfsmittel. sowohl zur Umgrenzung der 


einzelnen Arten als auch zum Verständnis ihrer vermutlichen 
Entwicklungsgeschichte darstellt — eine Tatsache, die zunächst 
überraschen mußte, da ja der Ruf der Xanthium-Arten als 
_ überallhin verschleppter Allerweltsunkräuter es von vornherein 
‚als wenig wahrscheinlich erscheinen ließ, daß sich geographisch 
bestimmt umschriebene Verbreitungsgebiete feststellen lassen 
würden. 

Der Verfasser legt das Hauptgewicht auf die nomen- 
klatorisch-kritische Behandlung der von ihm unterschiedenen 
25 Arten, deren jede in einem Habitusbild — nach 
Herbarexemplaren, meist Originalen — und in einem ver- 
größerten Lichtbild des die wesentlichsten Erkennungs- 
merkmale aufweisenden Fruchtköpfchens wiedergegeben ist. 

In den vier Karten sind die Verbreitungsgebiete fast aller 
Arten aufgenommen. 

Die aus der vergleichend-morphologischen Betrachtung 
der einzelnen Sippen im Verein mit ihrer geographischen 
Gliederung sich aufdrängenden Vermutungen über entwick- 
lungsgeschichtliche Zusammenhänge innerhalb der Gattung 
werden in einem besonderen Abschnitt behandelt. 

Die Arbeit will durch die Zusammenfassung und kritische 
Durcharbeitung des Materials die Grundlagen für eine weit- 
.ausgreifende Monographie der interessanten Gattung liefern. 


Die Akademie der Wissenschaften hat in ihrer 
Sitzung vom 24. Juni 1.J. folgende Subventionen bewilligt: 
I. Aus der Boue-Stiftung: 


l. Dr. M. Furlani in Wien für stratigraphische Arbeiten 
über die Jura-Neokom-Formation in den Nordiroler Kalk- 


ee RR 2 oe K 2000 — 
2. Dr.J. Pia in Wien für die Fortsetzung seiner tektonischen 
Studien im Gebiete der unteren Lammer.... K 2500 °— 


-3. Dr. A. Winkler in Kapfenstein zu geologischen Studien 
an den Tertiärablagerungen am zentralalpinen Ostsaum 
...K 1000: — 


214 


lI. Aus der Zepharovich-Stiftung: 


1. k.M. Hofrat C. Doelter in Wien für Untersuchungen über 
die Einwirkung von Strahlungen‘ auf Mineralfarben 
...K 1000: — 
Dr. A. Marchet in Wien für eine Studienreise nach 
Stockholm zur Ausführung chemischer Mineralanalysen. 
unter” sSachkumeiser Deltump. 2 Lo nn: K 3000 : — 


D 


Österreichische Staatsdruckerei. 51220 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 Nr. 18 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 7. Oktober 1920 


Erschienen: Sitzungsberichte, Bd. 128, Abt. I, Heft 5 und 6; Heft 9 
und 10; Abt. IIa, Heft 6, Heft 7, Heft 8, Heft 9. Abt. III, Bd. 127/128, 
Heft 7 bis 10. — Bd. 129, Abt. Ila, Heft 1; Abt. IIb, Heft 1, Heft 2. — 
Monatshefte für Chemie, Bd. 41, Heft 2, Heft 3. 


Der Vorsitzende, Vizepräsident R. Wettstein, begrüßt 
die anwesenden Mitglieder anläßlich der Wiederaufnahme der 
Sitzungen nach den akademischen Ferien und heißt das neu- 
eintretende wirkliche Mitglied, Hofrat Hans Horst Meyer, 
aufs herzlichste willkommen. 


Der Vorsitzende macht ferner Mitteilung von dem Verluste, 
welchen die Akademie der Wissenschaften durch das am 
14. Juli 1. J. erfolgte Ableben des wirklichen Mitgliedes der 
philosophisch-historischen Klasse, Dr. Heinrich Friedjung, 
ferner durch das Ableben des ausländischen Ehrenmitgliedes 
der philosophisch-historischen Klasse, Geheimrates Prof. Dr. 
Wilhelm Wundt in Leipzig, erlitten hat. 

Die anwesenden Mitglieder geben ihrem Beileide durch 
Erheben von den Sitzen Ausdruck. 

Der Vorsitzende teilt hiezu mit, daß der Staatssekretär 
Dr. K. Renner und der Bürgermeister J. Reumann aus An- 
laß des Hinscheidens Dr. Friedjungs an die Akademie der 
Wissenschaften Beileidsschreiben gerichtet haben. 


SE N) 
I 


Die Association des Ingenieurs "electriciens a 
Lüttich übersendet die Bedingungen über die Bewerbung um 
den im Jahre 1921 zur Verleihung gelangenden dreijährigen 
Preis aus der Fondation George Montefiore. 


Prof. Dr. Erwin Schrödinger spricht den Dank für’ die 
Verleihung des Haitinger-Preises aus. 


Folgende Dankschreiben sind eingelangt: 


1.- von: Prof; Dr... A. Burgeistein®in Wien=flr dieses 
willigung eines Druckkostenbeitrages zur Herausgabe des 
II. Bandes seiner »Monographie der Transpiration der 
Pflanzen«; 

2. von k. M. Prof. A. Kreidl in Wien für eine Subvention 
zu Untersuchungen über den ultramikroskopischen Nachweis 
von Fetteilchen im Blute maritimer Tiere nach Fütterung mit 
Drüsen innerer Sekretion; 

3. von Hofrat Prof. R. Schumann in Wien für die Ge- 
währung einer Beihilfe zur Ausführung von Messungen mit 
der Eötvös’schen Schwerewage im südlichen Wiener Becken. 


Erschienen ist Heft 3 von Band II, der »Encyklopädie 
der mathematischen Wissenschaften mit Einschluß 
ihrer Anwendungen«. 


Herr H. Zwaardemaker übersendet als Geschenk neun 
Separatabdrücke seiner Arbeiten über die physiologischen 
Wirkungen der Radiumstrahlung. 


Die Universität in Stockholm übersendet die akade- 
mischen Veröffentlichungen für das Jahr 1920. 


Das k. M. i. A. Prof. R. Scholl in Dresden übersendet 
folgende zwei Arbeiten aus dem Chemischen Institut der 
Universität Graz: 

1. »Untersuchungen in der Reihe der Methyl- 
1,2-benzanthrachinone (Ill. Mitteilung)«, von Roland 
Scholl, Christian Seer und Alois Zinke; 

2. Ȇber einige Nitramine der Anthrachinon- 
reihe«, von Ernst Terres. 


Das k.M. Hofrat Ph. Forchheimer in Wien übersendet 
eine Abhandlung von Dr. Armin Schoklitsch mit dem Titel: 
Ȇber die Bewegungsweise des Wassers in offenen 
Gerinnen.« 


Ing. Heinrich Herran in Wien übersendet eine Abhand- 
lung, betitelt: »Das Vakuumflugproblem und der Luft- 
verkehr.« 


Dr. Hans Mohr in Graz übersendet eine Abhandlung 
mit dem Titel: »Das Gebirge um Vöstenhof bei Ternitz 
(NÖ.).« 


Dr. Josef Hertzka in Salzburg übersendet eine Abhand- 
lung, betitelt: »Wachstumskurven von Säuglingen unter 
normalen und pathologischen Verhältnissen.« 


Dr. Hans Taub in Linz übersendet eine Abhandlung 
mit dem Titel: Ȇber Zahlenbeziehungen zwischen 
Atomgewichtszahlen und Schwingungszuständen.« 


Folgende versiegelte Schreiben zur Wahrung der 
Priorität sind eingelangt: 

1. von Prof. Dr. Gustav Günther: »Bericht über eine 
spezifische Behandlungsart der Kaninchencoccidiose 
und eine neue Behandlungsart von Zahnwurzel- 
eiterungene; 

2. von Dr. Alfred Kneucker in Wien: »Anaesthesie«e; 

3. von Baurat Ing. Wilhelm Reitz in Graz: »Elek- 
trische Sonden a) zwecks Bestimmung der jährlichen 
Niederschlagshöhe; 5b) zur Bestimmung der Ver- 
dampfungshöhen über Sees; 

4. von Dr. Ferdinand Röder in Wien: »Kausale 
Therapies<; 

5. von Theodor Weiss in Klosterneuburg: »Ein neues 
Verfahren zur chemischen Analyse, speziell tur au 
organische Substanzen. (Quantitative Analyse)s; 

6. von Heinrich Zlamal in Wien: »Resultate über 
Relativitätstheorie«. 


Das w. M. Hofrat Franz Exner legt eine Arbeit von 
Hedwig Walter vor, betitelt: »Messungen der Zähiskeit 
und Oberflächenspannung eines Emulsionskolloids.« 

An Lösungen von Gummi arabicum -wurden Unter- 
suchungen bezüglich des Dispersitätsgrades, der inneren Rei- 
bung und der Oberflächenspannung vorgenommen. 

Es ergab sich, daß die Teilchen der dispersen Phase 
durchaus als Amikronen im Sol verteilt sind. 

Aus den Viskositätsmessungen wurden an Hand der Ein- 
stein’schen Formel Schlüsse gezogen, die die flüssige Natur 
der dispersen Phase bestätigen. 

Für den Funktionalzusammenhang zwischen Reibungs- 
koeffizienten und Konzentration, beziehungsweise Temperatur 
wurden empirische Formeln ermittelt. 

Die Oberflächenspannung der Lösungen und ihr Tem- 
peraturkoeffizient wurden nach der Jäger'schen Methode 
gemessen und die Konstanten einer von G. Jäger aufgestellten 
Formel empirisch bestimmt. 


219 


Aus dem Verlauf der Kapillaritäts-Konzentrationskurven 
wurde auf eine Abhängigkeit der Oberflächenspannung vom 
Dispersitätsgrad geschlossen. 


Derselbe legt ferner vor: 


»Mitteillungen aus dem Institut für Radium- 
forschung. Nr. 134. Über die relative lonisation von 
9-Strahlen in verschiedenen Gasen«, von Victor F. Hess 
und Maria Hornyak. 

Wie Rutherford, Bragg u.a. gezeigt haben, ist die von 
einen #-Teilchen auf seiner Bahn erzeugte Gesamtionisation 
in verschiedenen Gasen verschieden. In der vorliegenden 
Untersuchung wird die lonisation durch die «-Teilchen von 
Polonium in Kohlendioxyd, Stickstoff, Sauerstoff, Leuchtgas 
und Wasserstoff mit der in Luft verglichen, wobei besondere 
Sorgfalt auf die Ermittlung der Sättigungsstromwerte in jedem 
Falle verwendet wurde. 

Nimmt man die lonisation in Luft gleich 1 an, so sind 
die entsprechenden Relativwerte In CO, 1:23, in N, 0'97, 
in O, 1:12, in Leuchtgas 088. 

Eine Reihe von weiteren Versuchen über die relative 
Ionisation wurde bei Abschirmung eines Teiles der Reichweite 
der «-Strahlen ausgeführt. Es zeigte sich, daß die relativen 
lonisationswerte in den verschiedenen Gasen je nach der 
Geschwindigkeit der verwendeten o-Strahlen (beziehungsweise 
der Restreichweite) sehr verschieden ausfallen. So ergab sich 
bei Abschirmung bis auf die letzten 3 mm der Reichweite die 
relative Ionisation (bezogen auf Luft = I) in CO, zu 0'92, 
in N, zu.0°96, im ©, zu: 1-17, in Leuchtgas zu 1'223, jin.E% 
zu 125. Genaue Aufnahme der Bragg’schen Kurven in diesen 
Gasen scheint wünschenswert. 


Das w. M. Prof. C. Diener legt eine Abhandlung von 
Prof. Dr. Walter Schmidt in Leoben vor, betitelt: »Zur 
Oberflächengestaltung der Umgebung Leobens.« 

Der Verfasser ist bei seinen geologischen Untersuchungen 
in der Umgebung Leobens zu einer Feststellung der Zeitfolge 


220 


in der Geschichte des Murtales und seiner Zuflüsse gelangt. 
Er unterscheidet die folgenden Hauptphasen: 

1. Zeit der Bildung der Augensteine, zusammenfallend 
mit der Braunkohlenbildung. Die Entwässerung erfolgt nach N. 
Durch Brüche wird eine Beckenbildung eingeleitet. 

2. Zeit des Altzyklus. Starke Verstellung an den Brüchen, 
Ausbildung des Murlaufes. Entwicklung eines normalen Zyklus 
bis zu unterjochten Formen. 

3. Zeit des Jungzyklus. Weitere starke Verstellungen mit 
Ausbildung des Kalkalpensüdrandes. Neubelebung der Erosion, 
Fortdauer der Verstellungen bis in die jüngste Zeit. 


Die Akademie der Wissenschaften hat in ihrer 
Sitzung vom 9. Juli 1.J. die Bewilligung folgender Subventionen 
aus der Erbschaft Czermak beschlossen: 


1. Dr) @JPestazäin Wien) zur. Fortsetzung” semer Umter- 
suchungen über das Zooplankton der Gebirgs- 
See ee En ae K 2500, 

2. Prof. Dr. L. Kober in Wien für geologische Unter- 
suchungen in den Zentralgneismassen der Ankogel- 
und | Hochalmimiasse a: ?Pie ee I ate a. K 2500, 

3. Prof. Dr. A: Burgerstein in Wien für ‘die Heraus- 
gabe des 11. Bandes seiner Monographie der Trans- 
Spiration,tder Pllanzennrtte Ir Erin sereie..- K 2000. 


Das Komitee zur Verwaltung der Erbschaft Treitl 
hat in seiner Sitzung vom 9. Juli 1.J. folgende Subventionen 
bewilligt: \ 

1. Dr. R. Klebelsberg in Innsbruck als Druckkosten- 
beitrag für die Herausgabe seiner geomorpho- 
logischen Karte der Lessinischen Alpen samt Text 
gegen seinerzeitige. Ablieferung von zehn Frei- 
EXEMIPIATEN- Free ln. Ser eu east: K 6000, 

2. Hofrat Prof. R. Schumann in Wien als einmalige 
Beihilfe zur Ausführung von Messungen mit der 
Eötvös’schen Schwerewage im südlichen Wiener 
Decken ne en 00 RR N RER K 5000, 


221 


3. k.M. Prof. A. Kreidl in Wien behufs Untersuchungen 
über den ultramikroskopischen Nachweis von Fett- 
teilchen im Blute maritimer Tiere nach Fütterung 
mit Drüsen. innerer Sekretion. a... K 3000. 


Selbständige Werke oder neue, der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Camera Agrumaria in Messina: Bollettino, anno III, Marzo 
1917, num. 4. Groß-4°., 

Hosseus, C. C., Dr. phil.: Veröffentlichungen aus den Jahren 
1903— 1913. Buenos Aires. 8°, 

Mager, Alois: Münchener Studien zur Psychologie und Philo- 
sophie. 5. Heft. Die Enge des Bewußtseins. Stuttgart, 
1920; 8°. 

Mrazek, J. Dr.: Die Windverhältnisse in Prag nach den 
Pilotierungen in der Zeit vom November 1916 bis Novem- 
ber 1917. Prag,-1920; Groß-4°. 

Nela Research Laboratory (National Lamp Works of 
General. Electric Company) in Cleveland (Ohio): 
Abstract-Bulletin No 2. January 1917. 8°. 

Prey, Adalbert, Dr.: Über die Laplace'sche Theorie der 
Planetenbildung. Prag, 1920; Groß-4°. 

Sees 144... Neun Theory, of the, Aethers(Reprinfed from 
Astronomische Nachrichten, Nr. 5044, 5048, May—June 
1920). Kiel, 1920; Groß-4°. 

Universität in Freiburg (Schweiz): Akademische Publika- 
tionen für 1919 und 1920. 


a 
IRIERHN 


ae EL. 5 a0 


1920 | Nr. 6 
Juni 


Monatliche Mitteilungen 
der 
Zentralanstalt für Meteorologie und Geodynamik 


Wien, Hohe Warte 
48° 14:9' N.-Br., 16° 21'7' E. v. Gr., Seehöhe 2025 m. 


Luftdruck in Millimetern | Temperatur in Celsiusgraden 
Tas Abwei- | | Abwei- 
=> Tages- chung v. E ; Tages- (chung v. 
l h Sl © ° j t Al Oo 
> = > | mittel Normal-| bi 7 En ı mittel! | Normal- 
stand |) | stand 
1 747.0 748.0 748.3 | 47.8 + 5.1 14.97 41623721441 19:1 | 2,2 
2 48.6 46.1 +4.0 | 46.2 + 3.4 1528. 12.2.9056 1758 18.4 |+ 1.0 
3 41.9 39.3 39.5 | 40.2 |— 2.6 ea 2 39K ar 7.1 |— 0.4 
Es 37.5 837.1 38.2 | 37.6 |— 5.2 9.7 13,429 1145 11.5 — 6.1 
B) 338.8 38.0 38.2 | 38.3 I— 4.6 2028  #i12.816 10.6 11.412 814 
6 38.4 37.9 38.2 | 38.2 |— +#.7 1088 2 #124:277.710.6 11.2 |— 6.7 
Ü 38.8 39.0 40.2 | 39.3 |— 3.6 OST al a (0 11.3 |— 6.7 
8 42.0 42.3 42.9 | 42.4 |-— 0.6 1173309, 19: 8 127,0 13.0 |— 5.0 
9 43.3 42.5 42.4 | 42.7 |— 0.3 1.9.4: #21 3.908 1258 12.4 |— 5.6 
10 42,2 42.1 42.4 | 42.2 |— 0.8 1.991821 15.4 |—- 2.7 
11 43.9 43.8 43.8 | 43.8 + 0.7 12.0 =719.2 27214,2 13.9 |— 4.2 
12 44.4 43.0 42.8 | 43.4 |+- 0.3 13.0219: 088 1708 16.4 ı— 1.7 
13 42.6 41.7 43.1 | 42.5 |— 0.6 14.6 8120.08 13.3 16.6 — 1.5 
14 43.1 42.9 42.3 | 42.8 |— 0.3 14.9 *217.3°#. 15.9 16.0 |— 2.0 
15 42.3 41.8 41.9 | 42.0 |— 1.2 14.9 MEILE 1688 17.0 |— 0.9 
16 42.9 43.7 43.9 | 43.5 |+ 0.3 12.4 713.87 7 18:7 13.3 \— 4.6 
17 43.3 42.1 40.9 | 42.1 |— 1.1 12.1 18.5 16.4 15.7 |— 2.1 
18 39.0 39.3 40.0 | 39.4 |— 3.8 14.9 16.2 14.7 15.3 |— 2.6 
19 40.1 39.4 40.1 | 39.9 |— 3.3 14:41... 16.6 — 1.5 
20 39.9 40.3 41.7 | 40.6 |— 2.7 15.4 %119.0%0 102 17.0 I— 1.2 
21 43.4 43.9 44.6 | 44.0 + 0.7 Ina 208 lt 18.7 |+ 0.4 
22 46.1 45.7 47.2-| 46.3 + 3.0 18.4 1:04.38, 971625 17.3 |— 1.1 
23 48.2 48.1 47.8 | 48.0 + 4.7 15.216: 7 20..6.%19.2 18.0 — 0.5 
24 46.3 45.5 46.5 | 46.1 |+ 2.8 16.9. 189.4 17.6 17.3 —L.1 
25 47.0 44.9 45.2 | 45.7 |+ 2.4 14.9. 19.9, 17.0 17.2 |— 1.9 
26 45.0 43.9 44.4 | 44.4 + 1.1 IRB IFTTEEN9NG 17.6 |— 1.2 
Ei 27 43.8 43.9 43.4 | 43.7 + 0.4 15.9 20.1 18.8 18.3 |— 0.6 
ei .23 43.9 42.5 42.8 | 43.1 |— 0.2 10.47 29.9 218.8 19.7 |+ 0.7 
29 43.7 44.1 44.2 | 44.0 |+ 0.7 20.9 24.9 20.4 22.1 |+ 3.0 
30 43.2 40.9 41.3 | 41.8 |-- 1.6 19.3 235.6 21.4 22.1 |+ 3.0 
31 
Mittel[743.02 742.46 742.74|742.73|— 0.39 14.4 18.3 15.6 16.1 l— 2.1 


M 
> Temperaturmittel?: 16.0° C. ! 

_ Zeitangaben, wo nicht anders angemerkt, in mittlerer Ortszeit; Stundenzählung bis 24 
: beginnend von Mitternacht — Oh. 


Beobachtungen an der Zentralanstalt für Meteorologie 


48° 14°9' N.-Breite. im Monate 
Temperatur in Celsius Dampfdruck in mm Feuchtigkeit in %, || Ver- 
: = dun- 
Tag SS I ao |stung 
Max. Min 284 S%5| 7m 14m 21m, Tases-| zn 74n aın [SS Iimmem 
238 355 ‚ mittel | C= 
Basbeine | | Er ne 
1 I lem 18. | 10.473920 2320 9.91: 82 65 75 | 7A || 1.6 
2 22.6. ° 0132221504 11 10.0 9.4 11.3. 10.2|| 74 49:74 | 66 || 1.2 
3 22 nem reil ln: 13a] el 26 221517169 
4 14.1 9.3| 41 9 8.3. 10.1 26.8 78. - .91,. 67. Br. | Coslmers 
5 13.5 8.9) 41 7 de ee re 70 || 0.2 
6 15.0 9.8| 43 9 RN Tm2ai 78 7007 700 732 jelgen 
Z 13.5 9.3| 41 8 6.7.9,8 6,7 6.4| 70 51 72 | 64 || 1.6 
8 16.3 8.0) 49 > 6.2 88 1 6.91 62 43 82 | 62 | 1.4 
9 14.5 Se 8 SAb-Bn DI 38 86:1. 91-71-=80=1 8142056 
10 19.1 9.8| 49 8 2.2 0858, 80 8.7. 88: 93 622 76szlelen 
N! 16.1 2.06 32 11 Sal I. 752 7.7: 76 62... 59) 1066 || 1.0 
12 20.07 183, 50 11 7.9 CHAR 6.,9 7.1 71 839: 47: |:52 | 2.9 
13 20.0 14.0| 48 13 9.0 1287412247, 19.2. 922 77.358 952780712025 
14 8 14.2| 41 143 1124 2189212. 214.8]. 3907802332 12862 1, 0m7 
15 Ar ae 12 Br 8.71 65 51 6321 .602ule5 
16 15.1 112246 35 3 EOS ODE 9.8 193. 18857 85 || 0.4 
17 19.2 94.321 45 3 9r. 8: 11886122 370.9 88 71.87 | 82 || 0,6 
18 17.35 13.97 48 14 | 10.8 1081010.1: 10.3], 85 73% SE 8807) 125 
19 20.0 13.8| 48 13 9.8 11023610,03 19.0 80: 61ER 73 el nums 
20 19.97 34.937 89 14 9.82 495421008 9.8|| 75:55 74 1 68017 
21 2 ty ldevelr ol 14 | Kli.6 12#1012.3 3) 12.0, 948 17645, 822 [775 | 188 
22 19.4 15.4| 43 14 123.4 :13%0510.6 | 12.0 7.9... 88 5.79, el I ler 
23 2m: 1A, 8 49 13 9,3, 18800 8.10 8.8 73 47.55 | 88 || 2.8 
24 20.27 15234 50 12 9.2 1420: 9.7. 11.01 66 88: 64,078 | 158 
25 21.8 12.0| 48 9 8.9219.8 34 9.4| 71 56 64 | 64 |. 1.4 
26 23.0: 14.0.| 45 11 9.9 1154712.4 | 11.2) (75 63), 8% 1829. 1088 
27 22.0: 14.0] 50 13 1 12.1 1421013.15| 18.1 | 89 :80»r 80, 1083 || 0.7 
28 23.9: 14.5| 53 13 | 12.7 1451514.01| 18.61.85 1659-89 480 Sl zr 
29 25.3 16.9| 55 15. | 18.2 1279914.6.. 13.6 21 55817 1569217053 
30 25.8: 16.8 51 15..1,13.0 16.0.17:0-| 15.3 77 65 89 I 7a mo 
31 
Mittel| 19.3: 12.7145.8 [41.4 9.7 10.3,.10.2:) 10.11 78 64.751.721 4 
Summe 34° 
| 
; . 
us Dat.lnı1. 2.5: 8.1. 6: 5 OEBERIE ION 2 TR 
- = . > 
= = 5 S|20.7 20.8 21.1 19.4 17.8 17.0 16.4 16.1 16.4 15.9 16.3 16.5 17.8 17.5 17.6 
88 | S17:3°17.1:17.1:17.1 16.9 16.6 16.2 15.8 15.5 15.3: 15.2 15.1 15.2.15.3 15:3 f 
En a a|11.7 11.9 12.0 12.1 12.3 12.3 12.4 12.4 12.5 12.5 12.5 12.5 12,5 12.5 195 4 
as *|»| 96 96 9.7 9.8 9.9 9.9 10.0 10.0 10.1 10.2 10.3 10.3 10.4 10.4 10.4 
ms =|| 2.0 90 91 91 91.91.92 93 93|93.94 94 95 05 958 


Größter Niederschlag binnen 24 Stunden: 24.6 mm am 3. u.4. Niederschlagshöhe: 104.7 mm. 
Zahl der Tage mit e: 23; Zahl der Tage mit =: 0; Zahl der Tage mit R: 8. 


Prozente der monatl. Sonnenscheindauer von der möglichen: 32 0/,, von der mittleren: 66 %,. 


I 


! In luftleerer Glashülle. 
® Blankes Alkoholthermometer mit gegabeltem Gefäß, 0:06 m über einer freien Rasenfläche. 


und Geodynamik, Wien, XIX., Hohe Warte (2025 Meter), 
Juni 1920. 


16° 21:7' E.-Länge v. Gr. 


on 


Zeichenerklärung: 


Bewölkung in Zebnteln des | Dauer 
sichtbaren Himmelsgewölbes |_ des | 
Fe | Bemerkungen 
a e v>| i | 
} 14h ai = | Shen! 
Ba 
1007180 90 3071 | 7.31 5.6 |ıe0 7. 
6071 a1 0) 3.0| 12.4 — 
30 90-1 10180 | 7.3) 6.0 ||e071 3—540, 1235 —13, eI-IRl 16—17, 1733 
10181 10071 9071 | 9.7) 1.3 | e1--1105, e0 1520 —1730 zeitw. 
31 9172 10071 | 7.3] 4.0 || 80935, e172 1235 — 1320, &2 1540755, 80 18— 20 zeitw. 
g1 10180 9172 | 9.3 2.5 ||e! 2—3, e1l72 945755, elgl 1125730, 60 12— 14, 16, 
7071 7 10 5.01 5.5 || el 1420 — 1530, [1830 — 1910, 
0) 51 10 2.01 11.6 == 
101 101 90 972 040 — 
101 6071 8071 | 8.01 7.6 — 
10ie0 101 101 110.0 . 0,0 ||e0 6455— 705, 8—-11 zeitw.; 19—20. 
10071 10 8071 | 6.31 8.0 || el 405735, 
oe, 510172101 9.7) 1.9 | el 1230 —13, elT240R1 1412 — 16%. 
101 101 101 10.01 0.2 ||e0 1215730, e071 1535 — 16. 
79-1 60-1 101 7.71 7.3 I @1728—10. 
10lel 10180 7071 | 9.01 0.0 || el 155— 1449, e0 155 — 16. 
10 101 101 7.01 6.2 || e0 17—19 zeitw.; al mgns. 
80-1 9071 10180 | 9.01 3.9 || 8071 230, 4—5, eTr. 635, 6971 20—23. 
80-1 100-1 90 9.01 4.0 ||el 120-210 80 5—630: &! 10. 1% 
101 10180 9071 | 9.7 0.0 ||e071 14— 1925, 
21 10182 Y1e0 | 7.01 3.9 |e2R! 14—15, ei 1515— 17, 60 20— 2125; MI 17. 
10071 10180 8071 | 9.3 2.2 || e0 1025 — 1410 zeitw., e2Rl 1610745, 
90-1 41 90 7.0 940 — 
100-1 80-1 100-1 | 9.3] 3,8 || 00 620-30, 1-2 1255 — 1310, 0-1 14—16, 
10 70-1 10 3.01 8.9 | al mens. 
10071 10071 60 8.7) 5.4 ||e9 11—12, 1440; a? abds. 
so 3071. 101 7.0] 6.9 || 8071 1010 — 1230, Rin NW 11—13, e0”1 1450 —16, 
100 10071 9172 | 9.7) 8.3 el! 1730—1940; almgns. [Rin WSW 16—17 
0-1 31 0 2.0] 10.4 ||el 230350. 
0 5071 10280 | 5.01 8.7 ||e071, Kin NW, 2030-2130, e0 22 — 24. 
vo 7.8 7.9 7.31 5.2 
155.9 | 
; 
me 171,48. 7200 2171,22. 23.924. 253.10 26,:1727., 285; 529.180 Sr IMESe 
17.8 °16:91/17:34, 17.6 17.7917:917:8 17.7218.1-18.1518.3518/4 18.9 18.9 20.7 18.0 
15.5 15.5 15.5 15.4 15.5 15.5 15.6 15.7 15.7 15.8 15.9 15.9 16.1 16.3 16.4 15.9 
12.5 12.5 12.5 12.6 12:6 12.6 12.6 12.7 12.7,112.7:112.8©12.9 12.9 12.9 12,9 12.5 
10.5 10.6 10.6 10.6 10:6 10.7 10.7-10.8410:8210.8,19,9 10.9 10.9 11.0 11.0 10.4 
25 a rt DTEITE ISA 9.3309. 9.9 799 40109710, 9 9.5 


Sonnenschein (»), Regen e, Schnee x, Hagela, Graupeln A, Nebel=, Nebelreißen =:, 
 Tau.a, Reif, Rauhreif \/, Glatteis N, Sturm 9, Gewitter, Wetterleuchten £, Schnee- 


gestöber +; Dunst 0, Halo um Sonne ®, Kranz um Sonne Q, 


Halo um Mond 'D, Kranz 


um Mond WU), Regenbogen NM. «Tr. = Regentropfen, «Fl. = Schneeflocken. Schneeflimmerchen. 


226 


Beobachtungen an der Zentralanstalt für Meteorologie und Geodynamik, 
Wien, XIX., Hohe Warte (2025 Meter), 
im Monate Juni 1920. 


Windrichtung und Stärke \Windgeschwindigkeit Niederschlag, 
n. d. 12-stufigen Skala |in Met.in der Sekunde in mm gemessen 
Tag — 
zh 14h 21h | Mittel | Maximum! 7h 14h 21h 

1 WA WSW4 W 5| 6.1 | WSW 16.5 0.08 = == 
2 W323 —..0 .WNW1 | 2.4 | WSW 9.9 — — — 
3: |WSW1 WNW4 W 1|| 3.6 IV, 59 0.98 1.50 2.9e 
4 —, 0 .W| 3, — ‚0 3.8 W 13.3 || 17.30  4.4e 0.1e 
5 VE SE VEN SE IV || Ems WEINSWVERT EINER? — 1.50 3.0@ 
6 w 3 .W 4 WSWA4 || 4.9 IV: »..4105.6 0.30 1.30 0.2e 
7 |WSW3 WA W 2| 5.4 | WSW 13.8 = — 1.2e 
8 |WNW1  WNW2 — 0|| 2.8 Ww 9.0 — — — 
9 E21 7ESE 27 NNE 14] 2,9 ESE .9.2 —_ — — 
107 2790 WZL ZDNNIE ZINN 13 NNE 6.8 —= — — 
11 — O0 NNE1i NWIi1 1.2 | NNW 5.3 0.0® 0.2e 0.00 
12 N 1 NNW1i NNE2 | 1.6 NNE 6.0 0.50 _ 
183 | NNE 1 Br 2:  —_ Eon] rs SSW 11.5 0.l1e 13.50 
14 E 1 Be 1 le = 7.0 — 0.0e 0.30 
15 N. 108 We Nee || NE 38.3 — u -- 
16 N 2 22 2uW 42 N Wil E93 Ne 722 3.6® 9.7e 0.6e 
17 —,%6 Br 215 BESEST AN 2:4 SSE 38.4 a — 0.0e 
18 W 3 WSW3 WSW3 | 5.4 w 217.9 0.50 — 0.le 
19 w 3 WSW4 W 3 5.7 | WSW 15.0 1.4e _ —_ 
20 |WSW3 W 3 WNWA | 5.6 NW 15.6 — _ 1.9e 
21 ININVE 3 SW 5 22 NV || 7889 W n.12,5 — —_ 11.4e 
22 INNW2.:'W. 4. NW 3|| 5.6 | :NNW 14.5 0.2® 4.60 6.18 
23 NW 4 NW 4 NW 1| 5.3 NW 15.7 — — 
24 NW 2 NW 2 Ne al ESVVISSVWVZSI el 0.0® 2.20 0.60 
25 — O0 NE 1 Ne 1.3 | WSW 38.3 — — — 
26 NO ERWIN WE 1.9 | WSW : 8.3 —_ 0.20 — 
27 —% 0. 18W 15. 8SWiol 1.6 | WSW 8.4 0.12 2.6e 0.le 
28 N Bi ls Wiss luj2r 15 SWS 21085 — -_ 9.30 
29 NW 2 Ne Bela 226 WeeterT 0.30 = — 
30 Sl SI ee Bl, ESE 11.5 — — 0.0® 
31 

Mittel leez 2.2 1.2 3.2 11.3 | 25.1 28.3 5123 

Summe 


Ergebnisse der Windaufzeichnungen (nach dem Schalenkreuzanemometer): 


N NNE NE ENE E -ESE SE SSE S SSW SW WSW W WNWNW 
Häufigkeit (Stunden) 
43 73. °%38: 0.21 0.24 1028 %.221 16 2 3 7.1787 190 753 52 
Gesamtweg in Kilometern 
198° 546 2685 119 177 "242 °.206°. 99 s 23 21 3187 1462 663 746 
Mittlere Geschwindigkeit, Meter in der Sekunde 
1,302, ENEAZIIN AOITT TEZ FET BEI DZ FEB ar 
Maximum der Geschwindigkeit, Meter in der Sekunde 
4.2.,4.2.4.4.3,6 8.07°3.6,9.0, 4,2 1.8 3.1 1.2.2107 8-12.0 3.2 0 


Anzahl der Windstillen (Stunden) = 15. 


! Den Angaben des Dines’schen Druckrohr-Anemometers entnommen. 


Schneedecke 


NN\W 


46 


359 


1920 
Juli 


Monatliche Mitteilungen 


der 


227 


INF:;#7 


Zentralanstalt für Meteorologie und Geodynamik 


Wien, Hohe Warte 
48° 14°9' N.-Br., 16' 21:7' E.v. Gr., Seehöhe 202°5 m. 


10 


| Luftdruck in Millimeter 


zu 14h 


1 
{ep} 
IVOÄAIDP$r wu oO 


1 
[op) - 
Konaor oOWm-OoWw m OO o©ooo or vPprOoOomO Fuıoorm 
4 > 
[86} [op] 
DAWN CO 


> 
Dr 
Se no 


Temperatur in Celsiusgraden 


Mittel| 744.12 743.43 743.29 


| Abwei- Abwei- 

ofh Tages- chung YV. 7h 14h oyh | Tages- chung v. 

mittel | Normal- | mittel? |Normal-} 
| stand stand 
742.3 | 41.3 |— 2.1 20.6 », 24.6. 18.2 21.1 + 1.9 
42.2 | 41.7 |— 1.7 19027 23.055.208 21.2 |+ 1.9 
40.7 | 41.8 |— 1.6 ec. 29.1°# 22.5 22.2 + 2.8 
40.3 | 41.1 |— 2.3 21.491 25.09 12351 23.2 |+- 3.8 
42.3 142.7 |— 0.7 14.1 TOAGe TR 17.1 |— 2.4 
43.9 | 43.8 + 0.4 12.8.4,22.8, 1828 1928 |-+ 0.2 
43.1 | 44.0 + 0.6 Komo 24,8021.9,9 Zul 0120 
41.4 42.2.— 1.2 19.094 26.40 22:5 22:6 + 2.9 
40.7 | 41.0 |— 2.4 21.207 23.9 18.1 21.1 + 1.4 
45.4 | 44.6 + 1.2 3.5 01 14.6.6 1942 14.4 |— 5.3 
46.3 | 45.9 |+ 2.5 14.2 12.2. 16.6 16.0 |— 3.8 
43.7 | 44.5 | + 1.1 Im = 22,0, Bel Ser | Ol 
43.9 | 42.8 — 0.6 16.844 29.90 15.9 19.5 |— 0.4 
47.7 | 47.4 |+ 4.0 116.07 19.97 179 18.0 |— 2.0 
45.8 | 46.7 |+ 3.3 ta. N 21:30 17:0 18.0 |— 2.1 
46.4 | 46.6 + 3.2 16.809 28.2: 20.41 20.6 + 0.5 
46.1 | 46.5 |+ 3.1 922 20 Zee den 
45.8 | 46.1 |+ 2.7 20.1 28.8 24.3 24.4 |+ 4.2 
49.3 | 46.9 |I+ 3.5 21.208 28.7 18.3 22.7 |+ 2.5 
51.2 | 52.2 + 8.8 16.4 21.4 16.0 17.9 |— 2.3 
46.1 | 48.1 |+ 4.7 19,20: 28.0, 194 19.3 |— 1.0 
42.0 | 42.6 |— 0.8 6.400 3 29.43 2.7 21.2 -,0.9 
40.3 ..| 41:9 |— 1.9 ae 22. zn 21.114 0.9 
37.8.| 38.6 |— 4.8 19a 22 AO 20.4 |+-0.2 
44.2 | 44,8 + 1.4 16%5 20.2 416.9 17.9 \— 2.3 
39.6 | 40.6 |— 2.8 16.4 24.3 22.0 20.9: BEE 
88.7 | 40.7 PAR II A 02 21.6 |+4+ 1.4 
40.8 | 41.2 |— 2.2 la larnn 12.2 13.5 |— 6.7 
41.8 | 41.5 |— 1.9 10 I ar 13.0 |— 7.3 
41.6 | 41.5 |— 2.0 13.3 le 15.5 4.8 
40.7 | 41.0 |— 2.5 14800 loraı Tıa2 16.38 |— 3.5 
743.62|+ 0.21 14.3, 5 22.4. 18.9 19.5 |— 0.4 

Temperaturmittel®: 19.4° C. 


Zeitangaben, wo nicht anders angemerkt, in Mittlerer Ortszeit; Stundenzählung bis 2 
A 


a 
2 


? 


12 2, 9. 
214,2, 9, 9. 


beginnend von Mitternacht = ON. 


Beobachtungen an der Zentralanstalt für Meteorologie 


48° 14:9' N.-Breite. im Monate 
| Temperatur in Celsius | Dampfdruck in mn | Feuchtigkeit in 0], || Ver- 
| | | >] ee dun- 
Tao Re Er | nz |stung, 
oO 5 Sdikuler = 'Tages-| _ o |, 
Max. Min. Fee 728 zu Tabyszo Th mitten 7u 14h /oyh Er inmm 
A | | N 7 zu 
we 

1 26.6. 18.0| 54 17 14.2 14.9 14.4 | 14.5) 78.64.92 | 78 | 127 
2 24.5 18.0| 53 1.7.411m152.014.8,152.0,..15-0.1...91.2268, 53 Ze 
3 25.8 18.3| 54 18.1 15.2 10.8 16.6,| 19,09 ‚92 "66; SI | eueme 
4 26. 18. 1.92 19 #50 18. | 15.7, 142938733 |. 16.01.4832 63 817 7er az 
5 22.2, 112.0: 049 13 9.0 4112010. 10.5|. 78165 1722 2er 
6 2.9. 19.9.1. 52 141 102.1 °10,0, 1128, 1.10.6766 4877327628 18220 
Z 25.3 14.9| 54 14 12.2 18,3 13.2 °| 12.9776 257° 7627700 009 
3 Aa 5) ee 14112-721418: 14265-181174 64 || 1.4 
9 24.1 15.4| 50 16 || 13.83 13.9 14:8 118.8 [0,70 6232 92 [775210220 
10 or or2 er 13 Ss 110) Bo) SA LERNT 7.32 @08 
11 17.8 14.2| 47 13 || 10.4 1028: 10.83] 10.0 | 0865 7732730 ziert 
12 24.1 14.9| 53 13. 11.4 7132°0714.8 3) 12.9.| 028 3622 87 7760401850 
13 26.2 15.2| 53 1411 13.1 13)7011.099%| 12.8) «91 556585 Ezaaımleee 
14 Ze a‘ 15 | 1121 .122040..2.]' 21.2 10878..769% 67 Ir ala zen 
15 22.4 ı12.3| 49 141 1.120 7792 5771091 10.10.7282 750° 762 F oog wie 
16 2.00 21:82.05°59 11) 127210207 12.68) 11.16. 5,86 5462 7i2u9Sn er 
7 27.2 16 53 15 || 13.6 1£.7.14.00| 14.1 381 597 68 11168 171226 
15 29.5 17.1| 55 16 | 19.4 18.5'16.5:| 18.1|| >84 ‚62, 72 117 1.4 
19 291.07 31822 75% 1821 16.8 .1665014.0 1 15.8.1289 2565 393 ze leler 
20 22.20 2 52 17 1.2110 1 N8S510.2 9.5 79 38 75 | 64 || 0.7 
21 2328 1123..16|0790 115 10.512217 12,52] 31.71 781 5965 7a male er 
22 26.0 14.1| 51 130 11.213272 11.92 12.31 780) 256, 62 Zen 
28 22.0, 17.0) 01 16.11 13.2.1220: 14.4°| 183.211 207 0602 752 BZ 
24 23.5 17.5| 55 16° 142171730 1348| 15.0 857 842737273321 21205 
25 21.0 15.4| 52 16 8.4 8.3 10.3 9.0 60 47 71 | 59 | 1.7 
26 25.4 13.6| 52 12 || 11.4 13.2. 13.9.| 12.8|| 82 58 70 [70 4:8 
27 24.8 16.5| 52 16:1 .12.1.12.9: 15.2] 13.41) 072 258} 80 InONnkes 
28 6.0 Fu. 20 15] 10.3 10.5 9.72] 0.01. 182 786; 91 1786715087 
29 15.2 11.4| 24 12 el elazn 0) 9.21 „89.583, 75 | S2p 22 
30 17.9 267 11,48 2 Salh 1 la) MS 9.3176 605 75,1] Omas 
31 18.6 14.0| 40 12111.5.12.2012.0] 11.9 91. )77° Sl rasen 
Mittel || „23:3 15.449.411 214.3| 12.2 12.5.12.74| 42:5) 781 5625 72 za 
Summe } 44.6 
E = DAR Eger Be pe te 8 105 1 Sr 

se Ba 
5 Zen 5 21.522.222.122.322.4 21.9 22.4 23.0 23.8 22.0.20.4 20.1 21.1 20,9 20.2 
ie 2 316:817.317.318.018.2.18.3 18.4 18,5. 18.8 19.1.19.1 18.8 18.0 ea) 
Se ‚Il &al13.013.013.113.248.3 13.4 13.5.1836 13.713.818.9 14.012 11a 
Se #|'3j11.011.011.1:411.241:2 11.2 11.211.8 11.31.2122 1. 51 een 
Ars 10.1 10.1 10.110.110.110.210.210.310.310.3 10.3 10.4 10.4 10.4 10.4 


Größter Niederschlag binnen 24Stunden: 30.9 mm am 28. u.29. Niederschlagshöhe: 130.5 mm. 
Zahl der Tage mit e: 18; Zahl der Tage mit =: 0; Zahl der Tage mit RR: 13. 


Prozente der monatl. Sonnenscheindauer von der möglichen: 57 /,, von der mittleren: 117, 


1) n luftleerer Glashülle. 
2?) Blankes Alkoholthermometer mit gegabeltem Gefäß, 0:06 m über einer freien Rasenfläche. 


229 
und Geodynamik, Wien, XIX., Hohe Warte (202:5 Meter). 


Juli 1920. 16° 21:7" E.-Länge v. Gr. 
Bewölkung in Zehnteln des Dhbes 
sichtbaren Himmelsgewölbes des 
B = =öhelie Bemerkungen 
E > |® u. in 
A ran ein = Stunden 
5 
30-1 21 10261 | 5.0] 10.6 | oe?! 1810 — 2010, el 2010 — 
101 al 9172 | 7.3| 5.8 || 8071— 040, R in SW 1250, Kin NE 19#0, 
101 Bl 10 4.7| 8.5 |.almgns. 
10 21 3071 2.0) 11.5 || al mens.; R in SW 15. 
1012e1 91 90-1 | 9.31 5.9 ||ei 1 635—930, ei 1030 — 11, 1220-30, 
10 11 0 0.7| 14.3 |. al mens.; RinN 1—2. 
0) 4 10 1.7| 13.4 ||.almgns. 
0 10 80-1 | 3.0] 12.5 || al mgns. 
10 al 10l1el | 4.7| 10.7 ||e2R! 195072130, e1 2210 —23. 
101 10160 10180 [10.01 0.0 ||e0 1—5 zeitw., e 745—21 zeitw. 
1018071 90-1 7071 | 8.7| 3.4 || e0 1—730 zeitw. 
10 Sl 10 1.7 12.7 — 
0) 9071 101el | 6.3| 7.2 || el72R1 1635 — 1840, 0-1 19—22. 
sol 81-2 60 7.31 6.9 || e0 6, 1045755, 
0) 20 0) 0.7 13.9 || al mens. 
0 10 9) 0.3 13.7 || al mgns. 
0) 10 10 0.7| 13.9 || a! mgns. 
0) 0) 0 0.01 13.9 || al mens. 
0) 101 10180 | 6.71 8.9 || e?R? 1615 —1730,8071 1810 — 20, 80 20— 23. 
30-1 31 0 2.01 12.7 |e Tr. 5—6 zeitw. 
0) 9) 0 0.0 14.0 || al mgns. 
9) 10 10071 | 3.7| 10.7 | el gl 2220 — 
30 20 0 2.01 9.0 || e® —030, e071 1130-—1220, e 20 R in SW. 
60 10071 10180 | 8.7 4.6 ||e0 10, el! 1135 — 1230, el gl 19% —21. 
9072 1071 10 3 —— 
30 30-1 9172 | 5.01 12.2 || e2 a0R? 2340 — 
80-1 4071 9172 | 7.01 9.9 |el72—33, 
10180 1017260 101el |10.0| 0.0 ||el X0-1 120 —230, 8071 630— 1110, 14—20, el 20— 
10180 101 1001 110.0) 0.0 || el—6, ©) 6— 1245, @2 13 2010, 071 15— 1710, 
101 9071 8071 | 9,01 3.8 ||e0 715, e0 10—16 zeitw. 
10160 10180971 10071 [10.0| 1.4 ||e0714—1720, el 1035 —55, 
4.4 4.6 ORION 9 
274.7 


EL u TE VE EEE EEE EEE ET TE EEE TEE LITT TE EEE EEE ET ErEreanrEEzE 


BEE 2 72,523.2 245 ,25.,.26.,27. 28. ;29. „30: 7,315, | Mei 


121.0 22.8 23.0 24.3 23.6 22.6 22.8 23.0 22.822 722.4 19.2 18.3 18.3]21.9 
418.4 18.4 13.6 19.0 19.4 19.5 19.5 19.6 19.7 19 


22.422 
19.719.7 19.7 19.6 18021825188 
14.3 14.3 14.4 14.4 14.4 14.5 14.6 14.7 14.8 14.9 14.9 14.9 15.0 15.1 15.1 15. 114.2 


E27 8 1185 1m E11 EMI 2.912 012,1 12.2 123.2112%2 12,3. 12, 3:12,54 125511007 
110.5 10.5 10.5 10.6 10.6 10.6 10.6 10.7 10.7 10.8 10.9 10.910.9 10.9 11.0 11.0110.5 


B5) 
„ee 


Zeichenerklärung: 
| Sonnenschein (), Regen e, Schnee x, Hagel a, Graupeln A, Nebel =, Nebelreißen =', 
Tau a, Reif, Rauhreif \/, Glatteis vv, Sturm 9, Gewitter R, Wetterleuchten $, Schnee- 
- gestöber$, Dunstoo, Halo um Sonne ®&, Kranz um Sonne D, Halo um Mond (JJ, Kranz 
um Mond W, Regenbogen N), eTr.— Regentropfen, «Fl. — Schneeflocken, Schneeflimmerchen. 


230 


Beobachtungen an der Zentralanstalt für Meteorologie und Geodynamik, 


Wien, XIX., Hohe Warte (202:5 Meter), 
im Monate Juli 1920. 


Windrichtung und Stärke Windgeschwindigkeit Niederschlag, 2 
nach der 12-stufigen Skala |in Met. in d. Sekunde in mm gemessen b 
Tag | 0 23 
o 
ah 14h 21h | Mittel | Maximumi || 7h 145... Dh 
| | on 
WEN WS ENVoR tz BVZ 3.8 NW 14.4| 0.7e — 13.7e 
2 EVNANDWVE EN VVIERT NT 2 si, Ww 8.7 7.20 —_ — 
3 = 0 SED Zion E 8.6 _ u — 
u E ı ENE2 ESE1I 2.8 wi 21222 _— — — 
5 VE INWI2ULONVERE 4.6 \vs 221,22, 220 5329e _ 
6 |WSW2 Ne — 0 2.3 N rl — — — 
7 Neal 2 Net 1.8 ESE 19.7 — = — 
) 0 SENAN ikgal SSE 5.0 — — — 
9 W287 SIWEESEWEN WS Do W 18.6 — — 6.30 
10 |WNW5E WNW4 WNW4 s.1 W 21.6| 9.6e 0.0e 0.08 
11 |WNW5 WNW4 WNWA 2 SWENWETZONN Dre — _- 
12922 | SVVANIV ES, ENDE 226 NNIWEHONG - _ — 
13 N N 4.4 WW 22020 — — 3:08 
14 VE 5 EVEN NV 4.4 | WNW 13.0|| 0.36 0.2e - 
15 — 7107 BESTIENETR 1.2 ENE 4.2 —_ — -— 
16 — U: „Ele Wet 0.9 E 9.8 — — 2 
17 — 0 ESE2 Sr 2.6 ESE 10.8 — — _- 
18 — 207 SEITZ So 189 ESE 9.1 — _— — 
19 NORD NNE 2.8]. NW 32.8 = — 11.0e 
20 NW 3: NW 377 — 0 323. WINDE RISSE — — 
21 NE 1 Be TeSE 2.2 E 8.9 — — — 
22 — 0 SE 2 WSW3 a) SW 16.3 — — — 
23 |WSW 2 Ti 2.1 SW 7.83|. 2.4e 0.4e 0.08 
24 — 0 ENE1 WSW2 1.97 | WNW 19.11 — 3.20 0.80 
250.) NWe3. IN 451/52. 04104288 Ww 1.9 — — 
26 SE 1 SE 3 Si 3.0 SE 13.3 — = = 
27 WW. UN Swrelege ei Ww 19.4| 18.30 — —_ 
28 EIERN NR 4.7 N sn Seele 4.1e 
23 INNE 37 NINIVIS SEN ES 5.8 | NNW 17.3] 23.1e 3.7e 3.1e 
3 ww. 4 SyNWier awWee2 5.9 | WNW 16.3] 0.1e 0.0e 0.50 
31 VER 27 WI BleWeZ 4.3 W .11.920.48e- ), 0:88 1.58 
3.4 1345| 68.2: 18.3 AU 


Mittel | 1279 20 179 


Ergebnisse der Windaufzeichnungen (nach dem Schalenkreuz): 
N NNE NE ENE _ E ESE SE SSE S SSW SW WSW W WNW NW NNW 


Häufigkeit, Stunden 
48 27 34: H19r 7.43 7 897.467 026 9 br Aid 43. ::189:, 112) 1 6B729 


Gesamtweg, Kilometer 
208 104 74 92 347 440 581 221 54 24 126 607 2724 2146 1062 276 


Mittlere Geschwindigkeit, Meter in der Sekunde 
6-9 7170777712377. 


Maximum der Geschwindigkeit, Meter in der Sekunde 
3.:62,242149 2806.15 6er u re re 
Anzahl der Windstillen (Stunden) = 51. 


1 Den Angaben des Dines’schen Druckrohr-Anemometers entnommen. 


231 


1920 Nr. 8 
August 


Monatliche Mitteilungen 


der 


Zentralanstalt für Meteorologie und Geodynamik 


Wien, Hohe Warte 
48°14:9' N.-Br., 16°21°7' E.v.Gr., Seehöhe 2025 m. 


Luftdruck in Millimetern Temperatur in Celsiusgraden 

: | Abwei- Abwei- 

D2 | Tages- chung v Tages- |chun 
zh (4b ah I eo eo. zh j4h Sınrır Se BY: 
| mittel | Normal- | mittel! | Normal- 
i stand | stand 

| 

1. |740.6 740.8 741.8 | 41.1 |— 2.4 15.8 Flak) 18.4| 18.4 |— 2.0 
2 16451.,0 Ada Ita. ul 49.8: 4 8 16.8 23.6 18.5) 19.6 — 0.7 
3» 046,305 45:1 rA43.8 48. les 1216 17.4 25.5 21.5) 21.5 I+ 1.3 
4 145.70. 46.8 45.5 | 46.0 + 2.5 19.8 24.5 1839| - 21.17 -&1.0 
Sn Ada 42503958 | 42.0 le 155 18.3 24.0 2022| 2028 11.0.7 
6 733.3 ° 40.77 43.81 40.9 | 2.6 20.5 ler 16.11 19.4 |— 0.6 
7 1.45.90 46:7 43.6.7 47.1 | 8.6 15.3 20.6 16.8) 17.6 |— 2.4 
8 150.9 49.6 48.2 | 49.6 + 6.1 14.8 21.4 16.8| 17.7 |— 2.2 
9 | 46.8 45.0. 44.0 | 45.3 |+ 1.8 15.8 23.8 18.9) 19.5 |— 0.3 
10 | 43.7. 43.5 45.0 | 44.1 |+ 0.6 20.5: 23.5 19.4 21.8 |+ 2.0 
11 |45.9 46.2 46.6 | 46 2 |+ 2.7 15.1 16.9 14.2) 15.4 |— 4.3 
t2 7.9 47.6 48.3 | 47.9 + 4.4 hoRl 21.3 16.4 17.9 |— 1.8 
13 148.4 47.3 46.4 | 47.4 |+ 3.9 14.4 20.8 15°4| 16.8 ı— 2.9 
14 | 45.6 43.6 42.9 | 44.0 |+ 0.4 14.5 2226 17.5) 18.2 I— 1.5 
15 | 44.0 43.8 45.0 | 44.3 |+ 0.7 15.8 22.3 17.8! 18.6 |— 1.1 
16 | 47.1° 47.6 47.9 | 47.4 + 3.8 med 21.8 17.4 19.0 |— 0.6 
17 | 46.0. 44.3 43.6 | 44.8 |-+ 1.2 17.9 20.6 18.4| 19.0 |— 0.5 
18 |,42.35. 41.1 40.6 | 41.5 |— 2.1 17.3 23.8 19.2| 20.1 + 0.7 
19 | 40.4 39.1 39.1 | 39.5 |— 4.1 16.8 24.2 20.51 20.5 |+ 1.3 
20 |,40.3. 39.0 44.5 | 41.3 |— 2.4 18.0 23.5 13.4] 18.3 |— 0.8 
21 | 45.3 45.8 46.3 | 45.5 + 2.1 14.0 rar 13.4] 14.9 |— 4.1 
22 | 46.3 44,9 43.5 | 44.9 + 1.2 2m 17.4 14.11 14.5 |— 4.3 
29,42% :95 , 49, 15427 2-11 42,2 I 1.6 13.8 18.2 12.9| 15.0 |— 3.7 
24 | 41.7 40.6 41.0 | 4l.1 — 2.7 12.9 18.3 13.7| 15.0 I— 3.6 
255 | 40.6 39:9 3926 | 39.9 ı— 4.0 12.5 14.5 13.51 13.5 — 5.0 
26 | 38.5 39.6_ 40.7 | 39.6 |— 4. 11.8 16.8 14.51 14.4 |— 4.0 
ara BT AT.3 | 207 ig 19 11.61 11.91 6.4 
23 | 40.6 41:0 41.0 | 40.9 |— 3.2 121 27 11.6 12.1. @ 1 
29 | 41.2 41.5 43,0 | 42.0 |— 2.3 13.0 16.0 14.0) 14.3 |— 3.8 
30. |.42-5. 42.2. 43.1.) 42.6 — 1.8 ale) 12.4 10.9) 11.6 |— 6.4 
81 | 43.5 43.6 43.3 | 43.5 |— 1.0 9.2 1196 12.9| 12.6 |— 5.3 
Mittel|743.87 743.48 743.72|743.69|— 0'02 15.3 20.0 16.1| 17,1 |— 2.2 


Temperaturmittel?: 16.9° C. 
Zeitangaben, wo nicht andeıs angemerkt, in mittlerer Ortszeit; Stundenzählung bis 24 
beginnend von Mitternacht = ON, 


1 1/2. (7, 2,9) 
Bine (7.909.090); 


Beobachtungen an der Zentralanstalt für Meteorologie 


48° 14 9' N-Breite. im Monate 
Temperatur in Celsius ‘ Dampfdruck in mm Feuchtigkeit in ©, | Ver- 

— = ‚ dun- 
Tag | u] ratiges | © ‚stung, 
| Max... Min. |eag|% Zu... 24,21 22 7 Leah 2 eine 

N 4 EESE | mittel sE 

N "|< Kon | zh 

1 21.9 15.0| 49 15 12:4 11,704 411.8, 292 1637 7270876212088 
2 24:0. 1 Far] 10% Een... 
3 25.8 15. 2 JTESE 1002 ee sen 0: Sn Sy I EEE ee eins). 
4 24.7 17.0| 58 17:| 1#.0°13.3:12-0, 1418138 | SE 398.77 | z2r de 
) 24.6 16.2.) 49 LEN az 7 05 87 .66 .84 | 79 || 0.8 
6 23,8 15.3 | 92 16 | 14.4 12: 2-Ald .42|012.7 80 .93 84 |.761 mlaz 
7 20.9 14.4| 50 13 || 10.3 10.0.39.5 929 1.9, 2995 60ME0r 1.6 
8 21.8 12.9 50 10.) 19.177 946410. 9 9.9 80 50 69 | 66 | 1.2 
S BUOT, Ta To EN TORTE IT EN zero ren weonae 
10 25.8 14.1| 54 15,|| 141..9112.6%13.0:|,42,. | #366 522272 u6ou al 
11 18.4 14.0 | 34 15 | 11.4 12,5,10.9,-411.6||°89 87° 90589705 
12 21.5 14.3| 51 11 9.25928,10.-0 9.7 67 52” 70,631. 81.0 
13 | 21.6 12.4 | 53 11 9.7 9.8 10.8-| 410.1 79:94 82 ..72.109.9 
14 22.8 1159| 78 171 °10.4. 11.712.111. 984 257°, 8177421009 
15 22T 15.0| 49 121.12. 3014 5-14. 7. 3:8 |6591 72,98 1486, 12052 
16 21.9 17:.0| 54 1611°13.9 14.2:.4183.5.|183. 91.92.) 72° 90085 | 0.5 
17 21.8 17.2.2 | .49 16 | 14.9 14.0 14.4 | 14.4 || 97 77 91.88 | 0.2 
18 24.8 I 16 | 14.2 12.0 14.0 | 13.4 || :96 54 8417 ‚Del 
19 24.5 15.4| 32° 14 | 13.5 16.% 15.5 | 35.2| 94 74 87)85 |0.8 
20 23.8 13,2) 14. 43.918.210. 12 el 90.7.0, 8% 782 E1E1 
21 asia. Jımio|-43:1 12|°0.5 8.6. -8.9.|49.0"79 Us 77 72 0 
22 18.9 10.3| 39 9|#49.979.8079.7 9.6.93 762 80.778 8007 
23 18.2 > ©1148 | 147 1:0* 19.6: 7.8197.9 8.3|- 81 47 7 66 | 1.9 
24 18.4 11.1| 47 8 1.98: TAGES. 27.9| 71 45 70/6 |1.8S 
25 17.9 11:2 | 45 9 8.17% 0.462,98 Ye 81 78 89 .:80 31.2 
26 16.8 11.5| 43 19.) v9. 3° 70.6479.8 9.7, 90. 74> 75: BO 
27 142 11:3 | 40 1:0 11.17.8478. 79.89 8.6||-73 83° 91-782 0.3 
28 12.2 11:0 | 26 a4 61: O9 9.5 907 91 90, 93° 91512052 
29 16.2 12.2| 45 171 10.4 11.2. °9.9.| 10.992 83, 82.86 |”9,9 
30 13.9 8.9| 41 81, 17:8 DRANITZ.A 8.0 |na71 887.76 5 0.5 
ol 156 7:6| 45 6| 8.4 10.3 10.5 9.2196 sei. 95 902]80723 

Mittel | 20.6 IE co] an 1228,20 Ip IBEE 1 LI I Era Ei aD 3 1 Dar 1 er en || ol 

I 
Summe | | 31.3 
| 


58] Ball 1 2 o Bord ur Zeche 9 12 ae 
8 8|&| 2)18.6.19.320.421.221.321.421.020.821.121.921.520.220.820.520.7 
22 |&|3|18.2 18.0 18.018.2 18.3 18.5.18.7 18.7 18.7 18.8 19.0 19.018.718.618.B 
22), |&15.115.115.4145.115.1 15.1 15.1 15.1 10.1 19.1 10.215. DS. a me 
38|%|2]j12.5 12.5 12.612.612.8 12.812.812.812.812.812.812.912.912.918.0 
a5) 81112041.0.11.1 11.111.001 2 Iı 2 u 2 78 11211 Se 


Größter Niederschlag binnen 24 Stunden: 36.6 sw. Niederschlagshöhe: 129.1 ınım. Zahl 
der Tage mit e: 20; Zahl der Tage mit=: 1; Zahl der Tage mitR: 4. 
Prozente der monatl. Sonnenscheindauer von der möglichen: 44 ®/,, von der mittleren: 79%). 


! In luftleerer Glashülle. 
” Blankes Alkoholthermometer mit gegabeltem Gefäß, 0.06 »» über 'einer freien Rasenfläche. 


} 


und Geodynamik, Wien, XIX., Hohe Warte (202-5 Meter), 
August 1920. . 16° 21°7' E-Länge v. Gr. 


E E 1 2 2 
Bewölkung-in Zehnteln des | Dauer | 
‘I sichtbaren Himmelsgewölbes | , des | 


BE 7 Ne 0 ENSONTEH, B nee 
! | Br - scheins | emerkungen 
-] ] de | 
er 133 ein |@ = Stunden 
16071 go71 80-1 9.01 2.9 I DEI EN 2. 
10 2071 (0) 1.0|13.2 || al abds. 
10 1071 1071. 1.1.0 13.2 ||.al=0o0: mgns, <i. W. 21. 
917260 6071 9071 | 8.0] 4.5 |ed M4>— 529, eTr. zeitw. 619 — 843, 
ee al 0 | 3.7| 6.4 || al mgns, eTr. zeitw. 90 — 1053. 
j 11 90-1 101e0 6.7|| 5.3 ||=17?4—510, el 175% — 1850, ed71 zeitw. 199 — 
g0-1 712 19 5.831 5.7 ||e071 zeitw.— 490. 
) 0 0 | 0.0113.4 ||al mgns. 
90 90 0) 4.7111.3 || al mens. 
3071 3071 10160 | 5.3 6.0 || @96%0, eTr. 320, Ri.SW 1695, eTr.zeitw. 160° —24. 
1018071 10lel 101 10.0 0.0 | e!71 030-740, 925 — 1010, 1135750, 1215 — 1750, 
30 7071 ı 4.7 8.3 ;|0072 1615 — 1730, 
19 4l 9) 1.71 12.8 0? mgns. 
10 71 0 2.7| 11.2 || a? mgns. 
80-1 4071 101 7.31 5.9 ||.al mgns, oo? vorm.,el72R? 1520-1630, 8071 1630-2055. 
80-1. 10071 6071 | 8.01 2.3 \\e Tr. 152% —16. 
FOL Aal 101 Sell 19.7 Ri. NW 18, 971 405 —510, e1l72 R" 907-1100, 
9071 21 101 7.0 10.1 || 00 430 —530, 
20 7071 11 3.31 8.5 ||a!mgns, <?i. W20—21.  [2110, 0071 zeitw. 2110— 
10 3071 10lel | 4.7 8.6 ıll-al mens., Ri. NW 15, el”? 1605745, 1725750, 1905—- 
7071 90-1 10 5.7| 3.4 | oe! 71 zeitw.— 2, e Tr. 4, el 915757, 
9071 10071 60-1 | 8.3 1.0 ||:2? mgns., eTr. 915720, oo? 11—12. 
101e0 4l 30 5.71 5.9 |-al mens., 6071.640-—715, 840 —9,.e Tr. 1710, 
2071 30-1 7971 4.01 10.5 — [1815730, 
40 10071 41 6.01 5.5 ||-a! mgns., 6071 1510735, 2120 — 2240, dann zeitw. — 24. 
10180 101 101-2 110.0| 1.0 | e0”2 zeitw. 2410—1810, e2 12, 1430, 18. 
101-280 10160 1018el 110.0] 1.0 |e Tr. zeitw. mens, el 1140 — 1235, 169 — 
101e1l 10181 101el 110.0) 0.0 el den ganzen Tag— 
917280 80-1 4018071 | 9.0) 2.5 ||el —61, el zeitw. 7— 2159. 
3071 gLel 20 4.7 7.3 |e071 zeitw. 12 — 1540. 
60 9 101 .8.3| 2.6 |? mgns., ed 1100720, 
58 6.4 556 5.91 6.3 
196.0 


16 Az. “18. 10. 20. 21..22. 23. 24. 25. 26. 27. 28. 29. 30. 831.|Mitte 
120.6 20.420.6 21.1 21.320.2 19.1 18.4 18.1 18.117.616.9 16.0 15.6 15.7 15.4|19.5 
118.3 18.6 18.5 18.5 18.7 18.7 18.6 18.4 18.0 17.8 17.917.317.116.6 16.0 16.1|118.2 
115.3 15.3 15.3 15.3 15.3 15.3:15.3 15.3 15.3 15.3 15.315.3 15.3 15.3 15.2 15. 215.2 
) 
5 


213.0 13.0 13.013.013.013.019.113,113,113.113.313.313.213.213.3 13.4118. 
Be. 11.6 Lone 11er 11,2.11.011.811.811.811.8.11,9 11,917 DE 


Zeichenerklärung: 


Sonnenschein ©, Regen e, Schnee x, Hagel s, Graupeln A, Nebel=, Nebelreißen =: 
"Tau a, Reif —, Rauhreif \/, Glatteis ru, Sturm 9, Gewitter KR, Wetterleuchten <, Schnee- 
gestöber #, Dunst co, Halo um Sonne ®, Kranz um ‘Sonne (, Halo um Mond [(J, Kranz 
um Mond W, Regenbogen f)), eTr. =Regentropfen, xFl. = Schneeflocken, Schneeflimmerchen. 


234 


Beobachtungen an der Zentralanstalt für Meteorologie und Geodynamik 
Wien, XIX., Hohe Warte (202°5 Meter), 


im Monate August 1920. 


| Eure rel - 
Windrichtung und Stärke |Windgeschwindigkeit | Niederschlag, | 2 
| .n.d. 12-stufigen Skala in Met. in d. Sekunde, in mm gemessen 3 
Tag a = ee 7 Er 
| & 
Zn 14h 21h Mittel Maximum! ' 7h 14h 218 „as 
| j f RZ 
1 NV PHSyz Ale RW a ANISNNEE 7 0.08 _ —_— 1 
2 ER IZESSIWE Zr ee) are av 910) 0.08 _ — 
3 ES 3.8 SE 14.6 _ _ _ | 
4 NV ZENVENWISFANVSNGZ 2.6 W 9.7 0.le. 0.08 1 
5 — 34.0, u-8E Wal SEEN ol SE (BG —_ 0.00 | 
6 EV DE AV Sr eV 2300) ve 30 = — 0.4e | — 
7 WVISWV. 3 Sun Ave 4.4 \v #13.18 1.58 _ a 
8 N Sl FRSBe2 SE Slz MIR NEN \VELSHE = _ _— |— 
9 Sl SEESSIEME 2.0 | .SSE 13.3 —_ _ _— 1 
10 Wer auaa\V: Aus Wenns 4.3 NN — _ 0.68 | — 
11 NV 222 BaWV SIEWENDWN? 2.3 | WNW 11.6 3.606: 1.70 2r.3em 
12 W 3 WNWA NNW1 SA NVEN YVES. _ _ 4.0e | — 
13 el IN ol Ne Dee | RO NVENNNVEERN TER = _ = 
14 N — 0 ko SE 12.2 — — el 
15 SE 1 BSE 1 Ss dl 13027 SSEE 1129 —.: — Idee = 
16 NN WERE — od 1702 NINE 0.7 — = 0.08 ‘| 
17 INNV El SuSE air 70 1207 7SSWE 7% ISO re _— | 
18 SSW 1 NV CRESENNVTE 129 EV SNV 042 0.2e —_— | 
19 — 0" SE 2 Sl 2.2 SEE SORT - _ —  |—- 
20 — 0 SE 3 WNW5 4.0 WW. %.4 — -- 20.08 | — 
21 NV OERIVENINVAZER SEN 2 DRAU | NVENNV = 987 2.08 _ _— | 
22 REINE EITENININVGEL 0.3| NNE 4.2 0.52 _ _— | 
2 W 3 WNwWw4 W 4 4.9 NV — 0.30 — Wi 
24 er N 2 Er a 4.9 W 14.4 — —_— |—- 
25 SW 1..:W 4 NW4 4.3 W. 14.3 — - 0.le | — 
26 w 2 WNW3 WNW>o'| 6.3 | WNW 18.8 2Te 4A orlenr 
27 Ve OF BRNVEE LO OR BNVE MR Sl NENNE SO O>fe' "1.70 or eer 
28 NV A N MT ENV RER || 17. on || ANANAS. A 10.08 10.50 16.1e | — 
29 WNW3 ww 4 N) | REN SI, 2 5.9e l.2e 2.1e" = 
SO zZ IWENIV.3. AVENSIS #2 3.5 | WNW 14.9 0.90: 73.60) MOmpen 
31 SSW1 SE 3 SE 1 2.0 W 9.8 = 0.2® — |— 
Mittel 159 2.3 >07 ae 12) 31.6. 30-4 Tree 
I l 
Ergebnisse der Windaufzeichnungen (nach dem Schalenkreuz): 
N- NNE NE ENE E ESE SE SSE S.SSW SW WSW W WNW NWNNW 
Häufigkeit, Stunden 
28 lt Del 27208 229) 202 290 13218 i7, .69 210 _ 7139 2 
Gesamtweg, Kilometer 
118 43 15, 257 17077297 7644 2 2.107,65 53 82 800 3742 2056 202 31 
Mittlere Geschwindigkeit, Meter i. d. Sekunde 
1 Br AUMUI BR ID 0) = 0 DW A a = RER: MS SI era VDE Sk BE ma; IR aa Var m Di ne 
Höchste Geschwindigkeit, Mcter i dl. Sekunde 
1.8 2.5 1.9.1.7.8,.6 3.7 us. Bol uhr ste Er a RS 


Anzahl der Windstillen (Stunden) = 57 


! Den Angaben des Dines’schen Druckrohr-Anemometers entnommen. 


Österreichische Staatsdruckerei. 513 20 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 Nr. 19 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 14. Oktober 1920 


Herr Otto Halpern in Wien übersendet eine vorläufige 
Mitteilung mit dem Titel: »Über Radiometerkräfte und 
den 2. Hauptsatz der Thermodynamik.« 


Die Anwendung des 2. Hauptsatzes der Thermodynamik 
auf Radiometererscheinungen gestattet es, obere Werte für die 
Größe der stationären Radiometerkräfte abzuleiten, die ohne 
Verletzung des 2. Hauptsatzes nicht überschritten werden 
dürfen. Die Ausführung von idealen Prozessen liefert für eine 
im widerstehenden Mittel durch Radiometerkräfte bewegte 
Kugel die Formel: 


Hierin bedeuten R Radiometerkraft, O pro Sekunde über- 
strömende Wärme, t Temperaturfall, 7 absolute Temperatur, 
B Beweglichkeit der Kugel. Auch für andere Radiometer, z.B. 
schwingungsfähige Systeme, bei denen im stationären Zustand 
die Radiometerkraft durch eine Gegenkraft kompensiert wird, 
lassen sich durch ähnliche Betrachtungen Bedingungs- 
gleichungen aufstellen. 


Das w. M. Prof. C. Diener überreicht eine Abhandlung, 
betitelt: »Neue Ceratitoidea aus den Hallstätter Kalken 
des Salzkammergutes.« 


Das w. M. Hofrat J. M. Eder übersendet bezüglich seiner 
in der Sitzung vom 10. Juni 1. J. (siehe Anzeiger Nr. 14 vom 
10. Juni 1920, p. 166) vorgelegten Arbeit: »Das Bogenspek- 
trum des Terbiums« folgende Mitteilung über deren Inhalt: 

Über das Terbium, diesem durch lange Zeit angezweifelten 
und sehr schwer zu isolierendem Elemente, legte J. M. Eder 
im Juni 1920 der Akademie der Wissenschaften in Wien seine 
spektralanalytischen Untersuchungsresultate vor; die Spektren 
waren mit einem großen Gitterspektrographen von Rot bis ins 
äußere Ultraviolett photographiert worden. Die Reihe der Ele- 
mente Gadolinium, Terbium, Dysprosium etc. war von €. Auer 
v. Welsbach mittels der Nitrate nach seinem Oxydverfahren, 
dann durch mehrhundertfache traktionierte Krystallisation der 
Ammon-Doppeloxalate im Jahre 1918 aus dem schwedischen 
Mineral Gadolinit hergestellt und gereinigt worden. Die spektral- 
analytische Untersuchung ergab, daß in der Reihe der seltenen 
Erd-Elemente zwischen Gadolinium und Terbium kein anderes 
Element sich vorfindet, dagegen erscheinen in den Fraktionen 
der Präparate zwischen Terbium und Dysprosium deutliche 
Gruppen von Spektrallinien, die einem neuen, bisher un- 
bekannten Elemente zugeschrieben werden müssen; für 
dieses schlägt Eder mit bezug auf den berühmten Erforscher 
der seltenen Erden, C. Auer v. Welsbach, den Namen 
»Welsium« vor. Seine Reindarstellung ist bisher nicht erfolgt; 
es erscheint aber als Element durch mehrere hundert charak- 
teristischer Spektrallinien, deren Wellenlängen Eder genau 
bestimmte, identifiziert. Das Terbium Auer’s ist mit dem von 
dem Franzosen Urbain im Jahre 1905 mittels der Wismuth- 
Doppelsalze hergestellten Terbium der Hauptsache nach iden- 
tisch, jedoch etwas reiner, so daß an seiner Natur als Element 
nicht zu zweifeln ist. 


237 


Plantae novae Sinenses. Autore D'* Henr. Handel- 
Mazzetti (6. Fortsetzung).! 


e 


Arundinaria brevipaniculata Hand.-Mzt. 


Culmi erecti 2m alti flavidi teretes medio + 7 mm 
crassi sparse asperi, nodis 1O—20 cm distantibus vix incras- 
satis (vaginis ignotis).. Rami unilateraliter fasciati floriferi 
15—45 cm lg. sursum ramosissimi leves. Folia pauca appro- 
ximata; vaginae ca. 5 cm Ig., striatae auriculis setosis, juve- 
niles purpurascentes superne subtilissime puberulae laxae, 
vetustae arcte convolutae farctae vel magis remotae et ramulos 
fulerantes; ligula 1 mm 1g. acutiuscula subtilissime ciliata; 
lamina in petiolum brevissimum cuneato contracta lineari- 
lanceolata longissime acuminata 7—9 mm It. et 10P!° Jongior, 
in foliis paniculas fulcrantibus dimidio minor et brevior vel 
in vaginis ramulorum lateralium imis obsoleta, caesia, nervis 
infra tantum paulum conspicuis praeter medianum 6, ultimis 
gris venulis dense tesselatis, margine serrato-aspero. Pani- 
culae terminales basibus inclusae confertae 5—7 cm 1g. pur- 
purascentes ramis singulis levibus imis e basi ramosis ultimis 
1—2 cm 1g. Spiculae 2°5—3 cm lg. laxe 4—-6 florae. Rhachilla 
compressa praecipue ad nodos 3-—4 mm distantes breviter 
sericea. Glumae papyraceae ovato-lanceolatae apicibus subu- 
Jatis ciliatulae ceterum interdum puberulae; sterilis inferior 
variabilis, superior multo longior 7—8 mm lg. obsolete 5nervis; 
floriferae — 1O mm 1g. explicatae 3— 4 mm It. dorso rotun- 
datae tenuiter 7—9nerves nervulis transversis paucis. Palea 
glumae ?/, attingens angusta brevissime 2cuspidata puberula_ 
carinis 2 breviter ciliatis. Antherae 3, 5 mm |Ig. lineares 
obtusae. 

Prov. Setschwan mer.-occid.: Circa rivum ad vicum Lolokou 
in montibus Daliang-schan ad or. urbis Ningyüen (Lingyüen), 
s. aren., ca. 2800 m, legi ipse 21. IV. 1914. 

Species Ar. eleganti culmis applanatis floribus pluribus 
glumis brevioribus carinatis ciliatis sterilibus aequalibus paleis 


I Vgl. Akademischer Anzeiger, 1920, Nr, 15. 


238 


longioribus et Ar. Wilsoni foliis latioribus pilosulis panicula 
effusa glumis florentibus obtusioribus carinatis diversis affinis. 


Eriocaulon Schochianum Hand.-Mzt. 


Caulis O—5 cm I1g. tenuis apice dense rosulato-foliatus. 
Folia ensiformi-linearia e basi pellucida 3—6 mm It. ad apicem 
obtusum angustata 15—80 mm lg. glabra crassa indistincte 
nervata atroviridia. Culmi 1—13, 6—18cm Ig., torti tenues 
stramineo 5angulati. Vaginae 2—5 cm 1g. sursum inflatae et 
membranaceae profunde fissae vix lacerantes. Capitula globosa 
5—6 mm diam. densissime niveo-villosa. Bracteae involu- 
crantes pallidae mox occultae late ovatae glabrae; subflorales 
spathulato-lanceolatae obscure carinatae atro-olivaceae acutae, 
interiores sursum barbatae Sepala subcarinata viridula et 
petala membranacea utrorumque florum 3 brevissime connata 
inter se subaequalia anguste spathulata, illa sursum dorso, 
haec tota longe lanata. Floris / stamina 6 et petala sepalis 
2plo ca. breviora, antherae nigrovirides, glandulae et stylorum 
rudimenta conspicua nigra. Floris ? petala et styli 3 sepalis 
sublongiora, glandulae subapicales. 

Prov. Yünnan: In paludosis fontanis prope templum 
Djindingse legi II. 1914 et in phragmitetis lacus Kunyang- 
hai, leg. ©. Schoch 1916 (Nr. 79) prope urbem Yünnanfu 
copiose, 1890 — 2100 m. 

Species teste cl. Ruhland Er. cristato et Tanakae affinis, 
illi foliis angustis, floris S sepalis connatis etc., huic Scapis 
crassioribus vix tortis, capitulis 3plo maioribus etc. diverso, 


Primula hypoleuca Hand.-Mzt. 


Sect. Monocarpicae Fr. 

Planta biennis monocarpica (?), glaberrima, radice simplici 
foliis emortuis paucis obsita, rosulam multifoliam et caules 
complures strictos 18 — 25 cm lg. denique ad 2 mm crassos 
virides edens. Folia petiolo anguste alato aequilonga subrec- 
tangulari-elliptica, basi et apice truncato-rotundata, 16X 11— 
25%17 mm, lobulis interdum paucierenatis utrinque ca. 


239 


5 11/,—3 mm 1g. instructa, infra dense niveo et serius albo- 
griseo farinosa, moribunda glabrata, venulis inconspicuis. 
Florum verticilli 2—3, 21/,—5t/, cm distantes, 4—10 flori. 
Pedicelli erectopatuli, inaequales, S— 24 mm |g. tenues. Brac- 
teae lanceolatae 3—5 mm Ig. farinosae. Calyx poculiformis 
forifer 3:5—4 fructifer 5 mm lg, ad medium in dentes 
triangulares acutos fissus, extus dense intus sparse farinosus. 
Corolla rosea extus initio farinosa, tubo cylindrico 4—4'5 mm 
lg. fauce nudo, limbo plano fl. brevistyli 12, fl. longistyli 
8:5 mm diam. lobis cordatis sinubus angustis ultra 1/4 longi- 
tudinis penetrantibus. Capsula globosa 45 mm diam. 

Prov. Yünnan: In phragmitetis lacus Kunyang-Hai pr. 
urbem Yünnanfu, 1890 m, leg. OÖ. Schoch, 4. V. 1916 (Nr. 78) 
et ipse pluries. 

Species ab affinibus Pr. Forbesiüi et androsacea glabritie, 
scapis strictis, internodiis quam in hac multo magis elongatis, 
farina compacta diversa. 


Antiotrema Hand.-Mzt., nov. gen. 
Borraginaceae— Borraginoideae—Lithospermeae. 


Calyx ad tertium inferum fissus, fructifer vix auctus. 
Corollae tubus infundibuliformi-eylindricus, latitudine paulo 
longior. Stamina aequalia, inter squamulas oblongas obtusas 
papillosas in medio tubo inserta, filamentis ad dimidium 
corollae adnatis, faucem superantibus, antheris parvis oblongis. 
Limbi lobi rotundi tubum dimidium aequantes, Nuculae 4 
erectae facie basali parva rotundato-triangulari plana disco 
lato plano adnatae, parvae, semiovatae, latere ventrali libero | 
fovea longitudinaliter elongata volvis binis annularibus, 
interiore membranacea, exteriore cornea, circumdata occupato, 
dorsali irregulariter toruloso et papilloso-aspero. Stylus 
nuculas plus duplo superans subinteger. Herba perennis 
rosulifera caulibus infrarosularibus adscendentibus subrobustis 
foliosis paniculatis, floribus conspicuis coeruleis. Fructus 
structura omnino Bothriospermi, cui ob discum planissimum 
in Lithospermeas ponendo affıne sed ob corollae differentias 
et habitum haud subsumendum videtur, 


240 


Species unica A. Dunnianum (Diels) H.-M. (Cynoglossum? 
Dunnianum Diels in Not. Bot. Gard. Edinburgh, V., p. 168, 
1912) in steppis et pratis siccis necnon pinetis prov. Yünnan 
et Setschwan austro-occid. inter 1600 et 2700 m s. m. com- 
munis. 


Bothriospermum hispidissimum Hand.-Mzt. 


Radix annua fusiformis foliorum rosulam et caulem cen- 
tralem singulum vel multos ad 50 cm 1g. longe laxe ramo- 
sos edens. Indumentum totius plantae densissimum e setis 
albis patulis longis et pilis brevibus tenuissimis compositum- 
Folia basalia ligulato-lanceolata indistincte - petiolata 5x1 — 
SX1!/, cm acutiuscula, crenulata; caulina inferiora aequalia, 
cetera sensim minora basi cuneata sessilia, in bracteas 
ovales cincinnorum evolutorum dimidios caules occupantium 
omnilateralium partim ramosorum summas 7 mm |g. transe- 
untia. Flores vix 2 mm Ige. pedicellati. Calyx 1!/,, demum 
3 mm |eg., lobis ovato-lanceolatis. Corolla coerulea; tubus 
11/, mm \g. basi annulatus, antheris in tertio infero filamentis 
brevissimis insertis, squamis faucis e basi dilatata quadratis 
emarginatis, sinus inter lobos patulos late rotundatos paulum 
ultra 1 mm ]g. et sesquilatiores attingentibus. Discus planus, 
stylus brevis. Nuculae minute tuberculatae, latere ventrali 
fovea longitudinali volvis binis interiore membranacea exte- 
riore depressa rugulosa cornea circumdata occupato. 


Prov. Yünnan: Ad vias pr. urbem Yünnanfu 1900 m lg. 
Ö..Schoch, 29. ‚IV: 1916, (Nr. 40); Tal, ie G’For 
Nr. 4473, s. n. B. Chinensis teste Diels; Setschwan: Prope 
urbem Ningyüen (Lingyüen) in valle Tjiendschang („Kien- 
tschang“), in agris et ad fossas, 1600 sn, Ig. ipse 11. IV. 1914. 


Species B. Chinensi affınis quod differt fovea trans- 
versali vel orbiculari et calycibus maioribus; D. Kusnezowiüi 
differt habitu multo graciliore, foliis, bracteis, sepalis acu- 
tissimis, foveae volva exteriore quam nucula latiore pectinato- 
lacerata, 


bau 2 0 ST a 


Cardiochlamys Sinensis Hand.-Mzt. 


Caulibus lignescentibus tenuibus levibus denique brunneis 
nitidis laxe foliatis volubilis, ceterum pilis e basi bifurcis 
brunnescenti-tomentosa. Rami floriferi bis et basi ter divaricate 
paniculati 39 —50 cm Ig., foliati, ramuli imi bracteis lanceolatis 
suffulti, ceteri nudi. Folia late ovata tenuiter acuminata aperte 
nec profunde cordata nervis e basi 5—7 rectiusculis parum 
ramosis cum venis transversalibus laxis infra prominulis, 
maxima 10 cm lg., 6 cm It. petiolis 3 cm Ig. Pedicelli singuli, 
3—4 mm lg. Bracteolae 3 subulatae 1/, mm lg. Sepala sub 
flore lanceolata, interiora 2 immutabilia, exteriora 3 illis paulo 
maiora 2 mm |1g., circa fructum e basi cordata orbicularia 
12—15 mm diam, ad !/, connata, membranacea calvescentia 
violascentia dense reticulata. (Corolla, si planta florens mihi 
in memoria recte eadem, magna coerulea). Ovarium sessile 
ovatum apiculatum superne tantum puberulum 1 loculare, 
ovula 4; stylus brevissimus basi incrassatus, stigmata 2 globosa 
sessilia. Capsula obovata 5 mm |g. membranacea longitu- 
dinaliter venosa indehiscens. Semen 1 magnum globosum 
opacum. 

Prov. Yünnan: In faucibus fluminis Djinscha-djiang 
(»Yangtse«) ad septentr. urbis Yünnanfu, in silvulis supra 
deversorium Lakatschang, ca. 1000 m, legi ipse 19. III. 1914. 

C. Madagascariensis, species adhuc unica nota, differt 
glabrescentia foliis anguste cordatis racemis simplicibus 
(corollis?) calycibus fructiferis duplo maioribus ovario bi- 
ovulato stipitato stylo longissimo etc. 


Alstonia paupera Hand.-Mzt. 


Sect. Dissuraspermum B. et H. 


Arbuscula laxa ca. 1!/, m, glaberrima, ramulis . griseis 
argute annulatis, annotinis olivaceo-brunneis, hornotinis cum 
petiolis cerino-nitidis. Folia 4° verticillata apicibus ramulorum 


fasciculata, lanceolata 4—6 cm Ig. 59 —65 mm It. in petiolos 


indistinctos 2—3 mm |g. et apices obtusos longe angustata, 
rigide herbacea, supra nitide atro- infra opace pallide viridia, 


242 


margine indurata, nervis lateralibus 16—22 paribus distantibus 
tenuissimis sub angulis45— 55° porrectis. Glandulae intrapetiolares 
i mm lg. diu persistentes. Inflorescentiae saepe geminatae, 
annotinae racemosae brevipedunculatae 2—3 cm Ig. inclinatae, 
bracteis minutis. Pedicelli fructiferi 8-10 mm Ig. Calyx 1 mm 
lg. lobis lanceolatis. Folliculi penduli pallide punctulati 
45 
rostrum indistinetum ad 1 cm 1g. contracti. Semina ellipsoidea 


7 cm lg. 2—25 mm crassi basi cito apice sensim in 


6 mm lg. toto margine longe albo barbata. 

Prov. Yünnan: Eiusdem ditionis in rupestribus aridis infra 
vıcum Tschenminte ca. 1300 u, legi 18. III. 1914. 

Species foliis, inflorescentiis (floriferis iisdem?), folliculis 
insignis, A. lanceolatae neıvis horizontalibus praeditae similis, 
A. Yünmanensi haud affnis. 


Senecio filiferus Franch. var nova dilatatus Hand.-Mzt. 


A S. filifero typico (ex descriptione) differt. foliis stolonum 
etiam ex axilla cuiusque folii inferioris oriundorum obovatis 
toto margine dentatis, caulinorum lobis terminalibus latioribus 
cordato-ovatis, capitulis ad 9 mm lg, 4 mm, cum radiis 
expansis 11 mm It., floribus disci 15— 18, notis forte stationis 
charactere effectis. 

Prov. Yünnan: Locis humidis in silva mixta ad templum 
Haiyensse‘,pr. „urb. -Yünnanfu, 2200 m, \leg.:28."V.r 1916=0: 
Schoch (Nr. 190). 


Elatostema longistipnlum Hand.-Mzt. 


Caules e rhizomate repente cauloidi fasciculati oblique 
ascendentes 10—30 cm Ig. subsimplices sicci obtuse angulati 
cum stipulis prorsus hirtelli, internodis 5—25 mm lg. Folia 
alterna usque ad 4 mm 1g. petiolata oblique lanceolata 
45—13 cm Ig. et 4—6!/,P!° angustiora utrinque sensim 
angustata basi saepe minute auriculata, apice longe et 
tenuiter caudata, rigidula, supra obscure viridia infra papillis 
pallida, excepta basi remotiuscule acute porrecte brevidentata 
sinubus anguste rotundatis, cystolithis fusiformibus in facie 
superiore glabra densissimis in inferiore secus nervos et venas 


243 


densissime strigosas sitis, nervis subbasalibus 5 marginalibus 
brevibus sequentibus haud procul a margine cum lateralibus 
obliquis 5--8 paribus anostomosantibus usque ad caudam 
currentibus vel inferiore infra medium folium evanescente et 
inde laterali primo arcuato substituto, omnibus- infra prominuis. 
Stipulae lanceolatae 13—15.mm Ig. 2—3 It. tenues binerves. 
Flores monoici et dioici. Receptacula ad nodos 2-3, 


rarissime 1, saepe Jet ? mixta brevissime pedunculata plano- 


scutellata JS 6—13 2 ca. 4 mm diam., bracteis exterioribus 
rotundis 'puberulis, floralibus viridibus d cymbiformi-spathu- 
latis puberulis 2 lanceolatis albo-hirsutis. Perigonium J 
4merum pedicello aequilongum apice pubescens, ? 3merum 
paucipilosum subsessile staminodiis orbicularibus. 

Prov. Tonkin Indochinae Gallicae, prope fines prov. 
Yünnan Sinensis: Inter lapides in rivulo valleculae Ngoikoden 
ad vicum Phomoi prope Laokay copiose, 180 sn, legi 2. II. 1914. 

Species similis et affinis E. longifolio, Philippinensi, quod 
differt receptaculis solitariis, stipulis multo minoribus apice 
subulatis, petiolis longioribus etc. 


Pilea Dielsiana Hand.-Mzt. 


Perennis, glaberrima, succulenta. Rhizoma repens caules 
sparsos erectos basi geniculata indurascentes 10—44 cm al- 
tos albo-cerinosos inferne nudos edens. Folia aequalia, stipulis 
15 mm I1gis. triangularibus membranaceis in petiolis erectis 
9 — 12 mm 1gis. occultis, basi aequilateraliter interdum subcordato 
rotundata, ovalia caudato-acuminata, 8X 20 et 12x23 — 
17x 35 et 15x 45 mm, atroviridia, margine paulum incrassato 
integerrima vel leviter undulata, cystolithis fusiformibus supra® 
densissimis, nervis 2 lateralibus a basi in tertio extero ad 
apicem currentibus, secundaris irregularibus fere rectangule 
patentibus cum tertiaris utringque laxe tenuiter reticulatis. 
Flores monoici, 3— 5% brevipedicellati ad ramos tenues 
cymarum longipedunculatarum dJ folia sua superantium, 
? brevium in glomerulos compositi. Perigonium 2 lobis 3 
subliberis, 2 angustis acutis, 1 cucullato, germine anguste 
ovato !/, mm lg: brevius, staminodis 0; J globoso-piriforme 


Anzeige: Nr. 19. 30 


244 


ad 1!/, mm lg. fusco-rubescens,. vix ad !/, in lobos 4 late 
cucullatos saepe apiculatos fissum; antherae magnae albae. 

Prov. Yünnan: In rupestribus calceis mt“ Hsi-schan pr. 
urb. Yünnanfu, 2300 mm, lg. ©. Schoch, 4. V. 1916 (Nr. 86). 
Setschwan: Omi-schan pr. Tschengtu, lg. Scallan (in Giraldi 
Nr. 5322). Hupe: Pr. Itschang, lg. Henry (Nr. 2046, 4352 et 
A, B, C). Plantae utriusque collectoris, hae a Wright (Journ. 
Linn. Soc, Bot. XXVI p. 479) sub Nr. 19 indeterminata 
memorata monente cl. Diels cum mea indenticae. 

Species proxima videtur P. glabrae Wats.: Mexicanae 
habitu robustiore, stipulis minutissimis, foliis in petiolis patulis 
longioribus angustioribus et aliquantum nervatione diversae. 


Österreichische -Staatsdruckerei. 546 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 Nr. 20 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 21. Oktober 1920 


Erschienen: Sitzungsberichte, Bd. 129, Abt. IIb, Heft 3. 


' Das w..M:"Hoöfrat Prof. Viktor Ebner legt: den zweiten 
Teil der Abhandlung! '»Über den’ feineren Bau der-Herz- 
muskelfasern mit besonderer Rücksicht auf die Glanz- 
streifen« vor, welcher zugleich den Schluß der Arbeit bildet. 
Er umfaßt die Abschnitte: V. Gefärbte Längsschnitte. VI. Gold- 
Säurebilder. Sogenannte negative Goldbilder und Hämatoxylin- 
färbungen. VII. Die Zwischenscheibe Z und die sogenannten 
Grundmembranen. VIII. Die Glanzstreifen. Doppelbrechung der 
Muskelfasern. 

Verfasser versucht nachzuweisen, daß die Glanzstreifen 
als ungewöhnlich ausgebildete Zwischenscheiben, beziehungs- 
weise Kontraktionsscheiben aufzufassen seien und, wie diese 
letzteren, durch eine während der Kontraktion zustande kom- 
mende feste Querverbindung spezifischer Sarkosomen unter 
sich und mit den, an sich homogenen, Myofibrillen bedingt 
seien und durch diese besonders starke, quere Zusammen- 
schließung von Myofibrillen und Sarkosomen geordnete Kon- 
traktionen sicherstellen. 


Das w. M. Prof. W. Wirtinger legt eine Abhandlung von 
Roland: Weitzenböck in Graz mit dem Titel: »Über die 
Wirkungsfunktion in der Weyl’schen Physik.« 


DE Be ae en En re ne 
» IR. a ehe AN Rz 


31 


246 


Oberst d. R. Franz Wallner übersendet ein versiegeltes 
Schreiben zur Wahrung der Priorität mit der Aufschrift: 
»Rutenproblem und Erdmagnetismus.« 


Die Akademie der Wissenschaften hat in ihrer 
Gesamtsitzung am 8. Oktober 1. J. beschlossen, Dr. Otto Leh- 
mann in Wien zur Untersuchung des Bergsturz:s am Sandling 
im Salzkammergut eine Subvention von K 2000 aus der Erb- 
schaft Czermak zu bewilligen. 


Selbständige Werke oder neue, der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Larsen, Absalon: La decouverte de l’Electromagnetisme faite 
en 1820 par J. C. Oersted. Kopenhagen, 1920, 4°. 


Österreichisehe Staatsdruckerei. 515 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 Nr. 21 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 28. Oktober 1920 


Der Vorsitzende macht Mitteilung von dem Verluste, 
welchen die Akademie der Wissenschaften und speziell diese 
Klasse durch das am 22. Oktober 1. J. erfolgte Ableben des 
wirklichen Mitgliedes der mathematisch-naturwissenschaftlichen 
Klasse, Hofrates Dr. Anton Weichselbaum, erlitten hat. 

Die anwesenden Mitglieder geben ihrem Beileide durch 
Erheben von den Sitzen Ausdruck. 


Das w. M. Prof. W. Wirtinger legt eine Abhandlung von 
Dr. R. Weitzenböck in Graz vor mit dem Titel: »Über die 
Wirkungsfunktion in der Weyl’schen Physik. Il.« 


Selbständige Werke oder neue, der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Meyer, St.: Das erste Jahrzent des Wiener Institutes für 
Radiumforschung. Zum 28. Oktober 1920. (Sonderabdruck 
aus »Jahrbuch der Radioaktivität und Elektronik«, 
XVII. Band, Heft 1.) Leipzig; 8°. 


Österreichische Staatsdruckerei. 516 20 


marntaraeraaarngr rt I air 
Reh HAINIDIILSCHI EST SRH BAII FR n sr 9b anusıe 


Vasy nr 


Isar Bord 35. ee 


£ en ci yagıs 


A h 
dene 
N Al 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 Nr. 22 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 4. November 1920 


Erschienen: Denkschriften. Bd. 96, 1919. — Monatshefte für Chemie, 
Bd. 41, Heft 4. 


Das w. M. Hofrat H. Molisch überreicht folgende Arbeit: 


»Mitteilungen aus dem staatlichen serotherapeu- 
tischen Institut und aus der Biologischen Versuchs- 
anstalt der Akademie der Wissenschaften in Wien 
(botanische Abteilung, Vorstand: L. Portheim). Nr. 54. 
Über die Biologie des Bacillus carolovorus (Jones). Vor- 
läufige Mitteilung«, von M. Eisler und L. Portheim. 


{. Mit einem uns zur Verfügung stehenden Stamme von 
Bacillus carotovorus Jones, welcher jahrelang auf Agar ge- 
züchtet worden war, waren wir nicht imstande, rohe Wurzeln 
von Daucus Carota, respektive Scheiben und Keile aus den- 
selben, zu infizieren, während Jones mit seinem Stamme 
Erkrankungen der Möhren erzielte. 

2. Unser Agarstamm entwickelte sich auf gekochten 
Scheiben oder Keilen von gelben Rüben, aber einige derselben 
blieben von der Infektion verschont. Diese Widerstandsfähig- 
keit mancher gekochter Wurzeln beruht auf ihrer höheren 
Azidität. 

3. Werden die Bakterien von befallenen gekochten Daucus- 
Wurzeln auf Wurzeln übertragen, welche vorher bei 56° C. 


33 


250 


erhitzt worden waren, so wuchsen sie auf diesen. Nun auf 
rohe gelbe Rüben gebracht, infizierten sie dieselben, aber nicht 
regelmäßig. Erst durch weitere Übertragung auf rohe Wurzeln 
wurde ein ausnahmsloser Befall der geimpften Scheiben und 
Keile erreicht. Der Bacillus war durch die beschriebene Kultur- 
methode virulent geworden. 

4. In den Säften aus gekochten gelben Rüben vermag 
sich der Agarstamm je nach der Konzentration und Azidität 
verschieden zu entwickeln, während der virulente Stamm, 
auch in solchen Saftkonzentrationen, in denen der Agarstamm 
nicht oder nur kümmerlich gedeiht, gut wächst. 

Aber auch in neutralisierten Säften, in denen der Agar- 
stamm gar keines oder meist nur ein sehr schlechtes Wachs- 
tum zeigte, vermochte sich der virulente Stamm gut zu ent- 
wickeln. 

5. Gegen den noch nicht vollvirulenten Stamm des 
B. carotovorus besitzen die gelben Rüben in der Azidität des 
Zellsaftes einen gewissen Schutz, der aber bei dem voll- 
virulenten versagt; diesem Stamme gegenüber kommen nur 
mechanische Abwehrmittel (Peridermbildung, Wundgewebe) 
in Betracht. 

6. Wird diese Widerstandsfähigkeit durch irgendwelche 
Einflüsse (Erhitzen, Überschichtung mit Wasser) herabgesetzt, 
so hat dies einen Befall der Wurzeln durch die ‚Bakterien 
zur Folge und führt zur Steigerung der Virulenz des Para- 
siten, so daß dann eine größere Resistenzkraft erforderlich 
ist, um die Wurzeln von dem Befallenwerden zu bewahren. 
Die Virulenz der Bakterien kann sich so weit steigern, daß 
verletzte, aber sonst gesunde Wurzeln gegen deren Angriff 
nicht mehr immun sind. | 

7. Das Virulentwerden des Agarstammes äußerte sich, wie 
schon erwähnt, in der Fähigkeit, bei Säurekonzentrationen zu 
gedeihen, bei denen sich der ursprüngliche Agarstamm nicht 
mehr entwickeln konnte, und in fermentativen Leistungen, die 
sich von denen unseres Agarstammes unterschieden. 

8. Auch äußerlich tritt das Virulentwerden des sapro- 
phytischen Stammes in Erscheinung, indem die Bakterien des 
ursprünglichen und des virulenten Stammes, insbesondere 


251 


aber ihre Kolonien, ein verschiedenes Aussehen zeigten. 
Besonders. letztere ließen deutliche Unterschiede mit  zu- 
nehmender Virulenz erkennen. 

9. Die Weichfäulnis der Wurzeln von Daucus Carota, 
wie sie Jones mit seinem virulenten Stamme von DB. caroto- 
vorus erzeugte, konnte auch durch unseren in Reinkultur auf 
Agar gezogenen Stamm hervorgerufen werden, aber erst, 
nachdem der Bacillus sich durch Züchtung auf gelben Rüben, 
deren Widerstandsfähigkeit künstlich herabgesetzt war, sukzes- 
sive dem Substrate angepaßt hatte. 


Hofrat Molisch legt ferner eine im Pflanzenphysio- 
logischen Institut der Wiener Universität von Fräulein Paula 
Fürth durchgeführte Arbeit vor mit dem Titel: »Zur 
Biologie und Mikrochemie einiger Pirola-Arten.« : 

I. Die untersuchten Pirola-Arten pflanzen sich in der 
Regel nur auf vegetativem Wege fort; Keimlinge sind sehr 
selten. Gefunden wurde ein solcher von P. chlorantha, der mit 
den aus der Literatur bekannten genau übereinstimmt, und 
einer von P. uniflora, der ein unterirdisches, walzenförmiges 
Gebilde vom anatomischen Bau einer Wurzel darstellt, das 
sich wahrscheinlich durch Pilzsymbiose ernährt und dessen 
weitere Entwicklung unklar ist. Keimungsversuche verliefen 
resultatlos. 

I. Die genaue anatomische Untersuchung des Samens 
zeigte den ungegliederten Embryo, umhüllt von einer ein- 
fachen Lage derber Zellen, dem Endosperm, und die Testa. 

III. Die Mykorrhiza ist endotroph und obligatorisch. Die 
Verpilzung erstreckt sich über die ganze Länge der Wurzel, 
ist aber auf die Epidermiszellen beschränkt. Die Infektion hat 
eine Hypertrophie derselben zur Folge. Die hypertrophierten 
Zellen werden allmählich ganz vom Pilz erfüllt, der den 
lebenden Zellinhalt zum Absterben bringt und dann selbst 
unter Klumpenbildung zugrunde geht. Wurzelhaare treten nur 
an nicht infizierten Wurzeln von P. unifl. auf. 

IV. Bei den Kulturversuchen des Mykorrhizapilzes trat 
schon nach ein bis zwei Tagen an den Schnittflächen der 
Wurzeln ein Pilz in Büschelform auf. Wegen der Menge der 


[6] 
gi 
DD 


den Wurzeln anhaftenden Bakterien konnte nicht zur absoluten 
Reinkultur und. zur: Identifizierung des -Pilzes geschritten 
werden. 

V. Die Epidermiszellen des Blattes von P. chlor. ent- 
halten in halber Höhe eine chlorophylihaltige Plasmaplatte, 
die parallel zur Fläche des Blattes liegt. Plasmolyse konnte 
an diesen Zellen nicht hervorgerufen werden, sondern nur 
Bildung von Vakuolen. Ein plasmatischer Wandbelag war 
nicht nachweisbar. | 

Phloroglucotannoide sind bei den ?.-Arten reichlich vor- 
handen. Die oberirdischen Organe von P. umifl. enthalten eine 
organische Verbindung, die beim Absterben in Wasser oder 
Ätherdampf massenhaft abgeschieden. wird und die durch 
Sublimation leicht gewonnen werden kann. Ihre chemische 
Natur ist noch nicht bekannt. 


Erschienen ist Heft 7 von Band VI, der »Encyklopädie 
der mathematischen Wissenschaften mit Einschiuß 
ihrer Anwendungen«. 


253 


1920 laedp: Nr. 9 
September 


Monatliche Mitteilungen 
ö '0 7 oa der 
Zentralanstalt für Meteorologie und Geodynamik 


Wien, Hohe Warte 
I 48° 14:9' N.-Br., 16° 21'7' E. v. Gr., Seehöhe 2025 m. 


| Luftdruck in Millimetern | Temperatur in Celsiusgraden 
Tag | Abwei- | | | Abwei- 
3. 7h 14h oh Tages- |chung v.| 7h 14h oh | Tages- chung v. 
| - mittel | Normal- | mittel1 | Normal- 
| | stand | stand 
1 | 743.5 743.8 743.7 | 43.7 |— 0.9 240 2,1349 ,51254 13.0 |— 4.8 
2 43.8 43.8 44.4 | 44.0 |— 0.7 Isle Nee 13.8 \— 3.8 
3 AREA 3 947.0 04.9, | 09 la.) nz El) 15.1 |— 2.3 
4 43.3 42.5 42.3 | 42.7 |— 2.2 kr 2 17724. 1426 14.9 \— 2.3 
5 39.7 38.9 41.6 | 40.1 |— 4.8 13 1730 TAT t228 | 2.2 
6 37.8 837.3 39.3 | 38.1 — 6.9 14.1 643.2. 18.6 14.7 \— 2.1 
7 33.8 39.8 42.0 | 40.2 |— 4.8 1488291656177 11325 15.0 |— 1.7 
8 45.7 46.2 47.1 | 46.3 + 1.2 A 5 10.6 12.4 \— 4.1 
) 48.3 47.9 47.8 | 48.0 + 2.9 1:0..68. 7152021070 11.9 |— 4.5 
10 46.6 45.4 45.9 | 46.0 |+ 0.8 I as 7 170 14.6 — 1.6 
11 50.1 50.2 49.9 | 50.1 + 4.9 15.2002: 16, 9201388 14.9 1— 1.1 
12 48.4 47.6 46.9 | 47.6 |+ 2.4 2a al 13.9 13.8 |— 2.0 
13 45.6 45.6 46.2 | 45.8 |+ 0.6 DON ONE EV SSE BENNO 12.1 |— 3.5 
14 46.7 45.2 44.9 | 45.6 + 0.4 Dee 12.0 11.7 |— 3.7 
15 49 24 an u 20.42 145.8) 11.0.0 ee Di ge 14.0 1— 1.1 
16 46.6 45.3 43.0 | 45.0 |— 0.3 9.2 16.6 14.4 13.4 |— 1.6 
17 44.0 44.8 45.3 | 44.7 — 0.6 ll 18.4 14.6 14.7 \— 0.2 
18 45.1 43.3 41.1 | 43.2 |- 2.1 12420 WISROE 52 15.1 + 0.3 
19 38.0 837.3 42.2 | 39.2 |— 6.0 13220 16.1 16.811 2.2 
20 43.9 42.3 41.3 | 42.5 |— 2.7 14.1 182 16.38 + 2.8 
21 41.5 43.3. 44.5 | 43.1 |— 2.1 15221, 2.1922 Del982 16.5 |+ 2.2 
22 44.2 45.3 47.3 | 45.6 |+ 0.4 19.1) 722370 es 18.5 |+ 4.3 
23 48.4 47.7 47.5 | 47.9 + 2.7 13,09% 28. 120118,89 13.6 + 4.6 
24 48.2 46.8 46.1 | 47.0 + 1.9 15:4 22828 VER 15.6 + 4,8 
25 45.0 43.8 44.1 | 44.3. |— 0.8 12.49 234001270 17.6 |+ 3.9 
26 45.4 45.3 45.5 | 454 + 0.4 oO ee ort 17.9 |+ 4.3 
27. 46.2 46.9 47.8 | 47.0 |+ 2.0 15,07 2.12 38222001479 16.1. |+-: 2.6 
28 49.0 49.9 50.3 | 49.7 |+ 4.7 1349,19. 0, 14.1 14.3 |+ 0.9 
29 | 49.9 49.9 49.4 | 49.7 |+ 4.8 1254 1712.37 1355 12.8 |— 0.6 
30 47.6 46:8 45.9 | 46.5 |+ 2.0 1222021195 90 9328 14.0 + 0.7 
31 j 
- [Mittel]745.03 744.73 745.12/744.95|— 0.11 Dame LA 14.9 |— 0.4 


Temperaturmittel?: 14.8° C. 
eitangaben, wo nicht anders angemerkt, in mittlerer Ortszeit; Stundenzählung bis 24 
beginnend von Mitternacht — 0, 


1 Us(7, 2, 9). 
2.1,.(2,2, 9,9). 


Beobachtungen an der Zentralanstalt für Meteorologie 


48° 14:9' N.-Breite. im Monate 
| Temperatur in Celsius Dampfdruck in mm Feuchtigkeit in %/, || Ver- 
| ya per) | dun- 
Tag IE IS, a a © |stung 
Max. Min. |EB8 S%El 7m 14m pm \T2SeH | zu 14m 2ın [= linaem 
Nelstenlzeerei) | mittel || SE 

Kae a--| m zh 

1 a, N 10° 10.3 17.3 107. 10.71 9589917 97 DE 
2 18:34 a 278250 9 I. 2 90 92 Sal SL R77 ehr re) |. oe: 
3 137021952245 9 02722525 8.2 | 8.71. 76. 5771| Beamer 
4 ER nel! 10 ODALENENSERIMD 9.2.1883. 09 77 Zen lien 
b) 17.0 29V 11 104811253 7°7.6. 19102219 9422:852 1632 |ES12 E08 
6 18.1 12.2 | 44 11 1:08: 10.72.1055 |, 10.7.,904 7.727922 |7862 Elan 
7, 17109. 1281| 748 LO EIORIE OR OR70 9.31 80: 70. 68 | 73 | 1.7 
8 15.8 9.5| 46 7 en 7.3|| 78 88 81 | 6970102 
9 Ye 7.4\ 46 Te OO et, 2.2|.2,00,259..2832 2095 EEG 
10 18,3 7.3| 44 b) 7.7. 11.3 11,9) 10.31 89 "74 852 Kessel 
11 17.4. 12.0| 44 10 8.5 8.7.6.6 7.9), 71 805,561 .62260%7 
12 16.6 10.1| 46 8 WON ee) 64 56 65 | 62 | 1.1 
13 16.8 8.2| 49 10 9227 alas 8.0 96 53 85 | 78 || 0.4 
14 16.4 6.1| 44 > ae! 8s.4| 96 64 87 | 82 || 0.6 
15 1770010539: MA 9 9.9 9.8 10.3 | 10.0). 95...66 . 951.85 | 022 
16 17.3 8.4| 43 7 Scan ao 2 1. 97. : 31.917) 02 N0S2 
17 182.67, 104331749 8 9.6 12.0 11.7.1. 11.1, .96: 766 ,9421789510082 
18 18.3, 11.83) 44 9 |.10:.3 13.0 12.2 |, 11.81. 97. 847 9421592311082 
19 224, ,.12.11.50 9 111%.0 1358 ,10.6 5 21.61, 97 712,77 ee 
20 198077 18.240041 122.1 11.8 12,3. 12.50, 12.0185 78.800 5 EuRS 
21 19.5 14.4| 38 11 12:83 14.8 12.3 18.0.5 95 88,952 1022 E0e 
22 23.4 14.5| 49 12 1-12:5 14.2.12.0 1, 12.9). 97 692,822 82210089 
23 23.4 13.2| 48 10 |.11.1 16.4 14.6 | 14.0 95 77 91.| 88 || 0.5 
24 23.9: 14,11,50 8 11.12.:3- 11.0 10.4 5, 14.2). 96 5057742 7a le 
25 2 all 9,1 10.1 11.9 12.3 17.4793 500 8527755 7029 
26 22.0 14.1| 48 11 12:3 11.2 10.5 - 11.315 96. 5827780 002 lege 
27 18.0 14.0| 46 127. 1,1188 10.7 - 9.2. 10.6], 85 72071767 aa nosr 
28 15.1 13.3 | 21 11 11.0 11.4 11.6 |. 11.31. 98 89-,96,) 93 1,08 
29 132.05; 1221722 11 10.1 10.4 11.0 110.5. 93. 975,952 2521,08 
30 628, lkleaae| 22 19) 10.4 10.2) 11.01 10.391,98 2327952 Sole Em 

31 
Mittel | 18.3, 11.5,43.7.| ».9.41x 9:9 10.8 10.2 11 10.8311,.89 717,337 5812120 
Summe | | 24' 


Dat.| 1. | 2. 302 ds 5 16 ehr 19. TR er 


5 S18|2|15.4 15.4 15.7 15.8 15,8 15.5 15.4 15.0 14.8 14.4 14.7 14.7 14.814.4 14,3 
e2|2|53)15.9 15.8 15.7 15.6 15.5 15.5 15.5 15.3 15.2 15.1 14.914.9 14.8 14.7 14.7 
SE| |&|15.1 15.0 15.0 14.9 14.8 14.8 12.7 14.7 14.6 14.6 14.5 14.5 14.4 14.4 144 
3,3|*|&)|18.3 13.3. 13.3 13.3 13.3.18.3 13.3,13.3.13.3 13,3.13.3 13,2 13.2 19182 
Rs) 811.9 11.9 119 11.9 11.9 12.0 92.0.12,0 12.1 12.1. 12.1 10.1 100000024 


Größter Niederschlag binnen 24 Stunden: 13.1 mm am 28. u. 29. Niederschlagshöhe: 49.3 mn. 
Zahl der Tage mit e: 23; Zahl der Tage mit =: 3, Zahl der Tage mit R: 2. 
Prozente der monatl. Sonnenscheindauer von der möglichen: 42 0/,, von der mittleren: 90 0:,- 


1 In luftleerer Glashülle. 
® Blankes Alkoholthermom eter mit gegabeltem Gefäß, 0:06 m über einer freien Rasenfläche, 


und Geodynamik, Wien, XIX., Hohe Warte (202:5 Meter), 


September 1920. 16° 21-7' E.-Länge v. Gr. 
Bewölkung in Zebnteln des | Dauer 
sichtbaren Himmelsgewölbes ee 
| en Bemerkungen 
7h 14h 2ıh = Stunden 
Seel | 
101el 10180 50-1 a 0.7. | 8071 240 — 725, S—14; =0 vorm. 
al 81 10 4.01 9.5 ||el 1345755, &0 1610— 1715 zeitw.; MI! 15—16. 
71 30-1 61 9.9) 7.6 ||e0 1715 — 1830 zeitw. 
90 30-1 61 6.01 8.7 n— 
10le! 10180 101860 10.01 0.3 || e071 450—1035, e1=2 1125 — 1450, e071 2055 — 
[2010, 2135 — 
10lel 102 51 8.31 0.5 |ed—2, e0716—545, e0 15—17 zeitw., e0-1 1940 — 
91 7071 30 6.31 5.4 || e0 —715 zeitw., e2 755—810, 80719 —-985, el40R 
ae 0 3.0) 9.1 ||.at abds. [1535 — 1815, 
71 10 0) Bean 942 
100 40 10180 8.01 6.4 || 60 20355 —2110;R in WSW 21, a2 mgns. 
90 31 101 7.3 8.5 == 
sl 101 91 9.01 5.9 || al mens; D17. 
Mo 0 5.31 8.4 ||e0-1 230435, 
30 50 60 4.7| 6.9||.22 mens. 
iglet 72 70-1°1.90 6.31 4.3 ||e0 1102, e0-1 530-820; 01 abds. 
101=1 10 0 3.7 7.9 ||=1,.02 mgns. 
80-1 0 20 3.7| 8.1 || al mgns. 
801. 101 60 8.01 2.4 ||eTr. 1515; al72 mgns. 
30 30 g1 5.01 8.8 ||e0 2115750, e1 22 — 
101 91 80-180 | 9.01 1.2 ||e1— 245, 9551010, 601730-45, 21 — 
50-1 100 90 8.01 1.3 || e0—120, 83040, 10—12 zeitw., el 1235755; (M1 16. 
90 70 10 5.7 4.5 ||e0 230755, 625755; =071, a? mgns. 
20 70 70 8.3]. 5.7 —_ 
79 10 0 2.7 10.1 || al mens. 
0 10 10 0.7 10.3 || al mens. 
7071 6071 20 5.01 6.4 |. almgns.;<in W 21—23. 
100-1 91 90-1 9.31 2.5 ||el 915730; al mgsn. 
10160 101 101e1 10.0 0.0 ||e9 150--240, 5845, 1530,01 18— 
101el 101860 101 10.01 0.0 ||e071—020, 615 — 8, el 835 — 1430, 23 — 
100 80-1 10 6.31 0.7 ||e071— 110, &0 1310, 


TER alt ml E20. 21,9 22.,,23 24.,..25., ..26,..2700:,285 229. 30,331, Mattel 


14.3 14.3 14.6 14.8 15.2 15.5 15.8 16.1 16.3 16.0 16.0 15.9 15.6 15.1 14.7 15.2 


14.6 14.5 14.4 14.5 14.5 14.6 14.7 14.6 14.9 15.0 15.0 15.1 15.1 15.0 15.0 15.0 
14.3 14.2 14.2 14.1 14.1 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.4 
13.2 13.2 13.2 13.2 13.2 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.0 13.0 13.2 
mer 1210102212322 2.2 12.2722 12.2 122 121 12.1 


Zeichenerklärung: 
Sonnenschein @), Regene, Schnee x, Hagel a, Graupeln A, Nebel=, Nebelreißen =;- 
Tau .a, Reif, Rauhreif \, GlatteisrV, Sturm 9, Gewitter, Wetterleuchten $, Schnee 


gestöber $, Dunst oo, Halo um Sonne &, Kranz um Sonne (D, Halo um Mond (J), Kranz 
jum Mond W, Regenbogen f}, eTr. — Regentropfen, »Fl. = Schneeflocken, Schneeflimmerchen. 


296 


Beobachtungen an der Zentralanstalt für Meteorologie und Geodynamik, 
Wien, XIX., Hohe Warte (202°5 Meter), 


im Monate September 1920. 


| Windrichtung und Stärke |Windgeschwindigkeit Niederschlag, N 
' .n. .d. 12-stufigen Skala |in Met.in der Sekunde in mm gemessen 3 
Tag een BI 
zb 14h 21h | Mittel | Maximum! 7b 14h 21h |$ 
x | 07) 
1 — 0 °—- 09 —.0|.0.7 N 28 6.580 4.68 0.3e | — 
2. WSW 2 "NNW 2° .w 232 4.0 NV aL8r 1 — 0.30 0.9e | — 
® N N NEN GER ||1 606) NV LOETS = —- 0.0e | — 
4 VIEL EWINSNG2U SEVEN ESG VE OR -- — _- -- 
5 u OaE Syil 2a: aNVaRR 1 103158 AWENDNVZRLONZ 0.1e 6.1e 1.le | — 
6 w 2 =W. 4 WNW1| 3.7 | WNW 12.8 0.0e 0.4® 0.20 | — 
7 IWSW2 WSW4 W 4| 6.0 | WNW 15.6 0.2® 1.70 3.20 | — 
3 NV A WE 32 WET 793.8: WENNVVERLLES 0.08 — —_ 
9 NW ıi N 2’ NNEA |. 1.6 N 6.7 — E> — — 
10 EINES ERSER TE EWR Vo 21320 — — 0.4e | — 
11 NM 2. NW 3, NR] E3 2 VEN SLB,0 O0.1e® — — -— 
12 |WNWi NW 2 WNWi1 || 2.4 | WNW 11.0 =. 0 = = 
13 |WSW1 IN A NE EORS NW 6.1 I9e — — — 
14 = 0) SE RD Si 1.5 ESE 38.6.| 0.1la — = = 
15 = 0N0N S 2.101038 1 \WINDW = 0.9 0.9e 0.30 = u 
16 — 0 SE2 SE 1 1.6 SE 8.6 — E= — _ 
17 — 2.0, 202010 22072058 ESE 5.0 — — — -_ 
18 > OR ESErF 130.18 | „Pai0) ESE 5.8 0.la —_ 0.0e | — 
19 N& 1 IUNE Her Ile w. 17.8 (DS ler — — — 
20: | NNW I BEE Sr | SSE 10.3 2.70 0.0® 0.08 | — 
ai — (0 eu 0%, — 00.9 SSW 9.7 0.30 0.28 2 _ 
22 SMS Ne W 9.2 | '0.2® -- _ —_ 
23 = INNNVIATFZSEEN Sl 1.0 E 7.8 (WEakren —— -- _ 
24 SSW1 SE 3 Sir. 222.4 SE, 711.9 0.20 — —_ _ 
25 SEN ITEISENT2 Segen! Kl SSE 8.9 0.la — —_ — 
26 Niwv. 1 SWwiNiWw2 W202 32 W 8.8 0.1la — — —_ 
27 NW ı wWNWwi1 — 0[|[ 1.9 NW 077.8 Oak, SORT — — 
28 NE 1 B'!-2 ENBN27]2,.710-| WNWUS,.4 0.38 0.2e 3.08 | — 
29 E 1 ESE1 SE'2'| 2.8 Bir 2.829 1.40 3.7e 0.88 | — 
30 SE 1 SE 3 SSE | 2.8 SE 110.7 1.2e 0.0e == _ 
31 
Mittel | 1.0 189 1.6 2.3 10.0 || 16.7 22.7 9.9 
Summe 


Ergebnisse der Windaufzeichnungen (nach dem Schalenkreuzanemometer): 
N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNWNW NNW 
Häufigkeit (Stunden) 
36.0.2461 247 7124 18,5 114 9: 49. 1385 62 44 7 22 
Gesamtweg in Kilometern .\ 
125 88 +76 1113 7264 ©4888" 428-201. 128 193-0 88-1587.,2021- 722 42-178 
Mittlere Geschwindigkeit, Meter in der Sekunde 
0.9 41.0. 1,19.2.4.2.0. 2,922:5122 2.0 41.8 BlL2 BD ErrTE PH 
Maximum der Geschwindigkeit, Meter in der Sekunde 
9 90,5 9.5 a2 a 455,6 Er rare 73.0 TFT ER LOB RES 
Anzahl der Windstillen (Stunden) = 119. 


ı Den Angaben des Dines’schen Druckrohr-Anemometers entnömmen. 


[8e) 
an 
DD 
oO 
_ 
o 


37 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 | Nr. 23 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 18. November 1920 


Der Vorsitzende, Vizepräsident Hofrat R. Wettstein, 
macht Mitteilung von dem Verluste, welchen die Akademie 
der Wissenschaften durch das am 13. November I. J. erfolgte 
Ableben des wirklichen Mitgliedes dieser Klasse, Hofrates 
Prof. Dr. Karl Toldt in Wien, sowie durch das am 11. No- 
vember I. J. erfolgte Hinscheiden des korrespondierenden Mit- 
gliedes, Hofrates Prof. Dr. Franz Höhnel in Wien, erlitten hat, 

Die anwesenden Mitglieder geben ihrem Beileide durch 
Erheben von den Sitzen Ausdruck. 


Prof. Dr. Alfred Burgerstein in Wien übersendet die 
Pflichtexemplare seines mit Subvention der Akademie der 
Wissenschaften aus der Erbschaft Czermak gedruckten 
Werkes: »Die Transpiration der Pflanzen.« Il. Teil (Er: 
gänzungsband). Jena, 1920; 8°, : 


Prof. Dr. R. Sterneck in Graz spricht den Dank für die 
Bewilligung ‘einer Subvention als Ersatz von Reise- und 
Bearbeitungskosten des Beobachtungsmateriales der italieni- 
schen Flutstationen aus. | EB 


258 


Dr. L. Klug in Budapest übersendet eine Abhandlung 
mit dem Titel: Ȇber die einem Kegelschnitte ein- 
beschriebenen und umschriebenen Dreiecke, die 
einen gegebenen Höhenpunkt haben.« 


Das w. M. R. Wegscheider überreicht eine Abhandlung 
aus dem medizinisch-chemischen Institut der Universität Graz: 
Ȇber Kondensationen von aromatischen Diaminen 
mit Phtalsäureanhydrid. II. Mitteilung«, von Hans Lieb 
und Gustav Schwarzer. 

Als Fortsetzung einer früheren Arbeit (Monatshefte für 
Chemie, 39, 873 [1918]) wird gezeigt, daß beim Erhitzen 
von 1,2-Naphtylendiamin mit Phtalsäureanhydrid im ge- 
schlossenen Rohre o-Phenylen-di-1,2-naphtimidazol ent- 
steht. Von dieser Verbindung wird ein Acetyl- und Benzoyl- 
produkt beschrieben. Weiters wird gezeigt, daß sich 1, 2-Di- 
aminoanthrachinon mit Phtalsäureanhydrid unter den ver- 
schiedensten Versuchsbedingungen immer nur zum Ben- 
zoylen-anthrachinonimidazol kondensiert. welches beim 
Erwärmen mit Lauge in das Salz der Phenylanthrachinon- 
imidazol-o-carbonsäure übergeht. 

1,5-Diaminoanthrachinon und Phtalsäureanhydrid geben 
je nach dem Mengenverhältnisse Diphtaloyl-1, 5-Diaminoanthra- 
chinon (Anthrachinon-1, 5-diphtalimid) oder Monophtaloyl-1, 5- 
Diaminoanthrachinon. p- und m-Phenylendiamin kondensieren 
sich, wie schon lange bekannt, zu p-Phenylendiphtalimid, 
beziehungsweise m-Phenyiendiphtalimid, jedoch erfolgt diese 
Kondensation quantitativ durch bloßes Zusammenschmelzen 
beider Substanzen (1 Mol Phenylendiamin : 2 Mol Phtalsäure- 
anhydrid). 

Äquimolekulare Mengen liefern p-, beziehungsweise 
m-Amidophtalanil. << 

p-Phenylendiphtalimid mit Zinkstaub in Eisessigsuspen- 
sion reduziert, lieferte mehrere Reduktionsprodukte, von denen 
nur das Dihydroprodukt isoliert werden konnte. 


959 


Das w. M. Hofrat F. Mertens überreicht eine Abhandlung 
mit dem Titel: »Die Gestalt der Wurzeln einer irredu- 
ziblen Galois’schen Gleichung 8. Grades eines ge- 
gebenen Rationalitätsbereiches, deren Affectgruppe 
nur Permutationen mit ein- und zweigliederigen 
Zykeln enthalten.« 

Es wird eine Notiz über die Gestalt der Wurzeln einer 
irreduktiblen Galois’schen Gleichung eines gegebenen Ratio- 
nalitätsbereiches 9 vorgelegt, deren Gruppe außer der Einheit 
nur Permutationen zweiten Grades enthält. Die Wurzeln sind 
die Werte, welche ein ganzer bereichsmäßiger Ausdruck von 
drei Quadratwurzeln vVp; v9; Vr annimmt, wenn man letztere 
mit ihren verschiedenen Vorzeichen nimmt. Die Größen p, 9, 7 
liegen in ® und müssen der Bedingung genügen, daß sie in 
bezug auf die Primzahl 2 frei sind. 


Dr. Otto Lehmann erstattet einen Bericht über seine im 
Auftrage der Akademie der Wissenschaften angestellten Unter- 
suchungen über die Rutschung und den Bergsturz am 
Sandling im Salzkammergute. 

Die Kleine Sandlinggruppe, östlich vom Trauntal bei 
Goisern bis zur niedrigeren Weitung von Aussee reichend, hat 
seit 12. September dieses Jahres eine Veränderung von fast 
3/, Quadratkilometern der Erdoberfläche erlitten. | BR 

Aus sanften Waldgehängen mit mergeligem Untergrund 
ragen im höchsten Teile der Gruppe der Raschberg (1485 m) 
im W und der Sandling (1716 m) im E hervor. Jener besteht . 
aus Hallstätter Triaskalken, dieser aus Jurakalken, die in den 
tieferen Lagen ziemlich tonhaltig sind. Zwischen diesen Bergen 
liegt in 1300 bis 1330 m Höhne, 600 m breit, eine Paßland- 
schaft mit Alpweiden und -hütten. Nur ihr südöstlicher Teil 
ist mit Fichten und Legföhren bedeckt. Dort liegen vom Hall- 
stätter Kalk des Raschberges getrennte Stücke als verhältnis- 
mäßig dünne Platten mit randlichem Zerfall «den weichen 
Schichten auf, blaugrauen Tonen und Mergeln, die nicht nur 
den Untergrund der Paßlandschaft, sondern östlich einfallend 


260 


auch. den der Sandlingmasse .bilden.: Nördlich. vom Paß sam- 
meln zunächst unbedeutende Rinnsale das Regenwasser; :nach 
Süden aber steigt, näher dem Raschberg und zwischen ‘den 
Almhütten schon als :seichtes Wiesentälchen ausgebildet, die 
größere (westliche) Ursprungsrinne des Sandlingbaches- herab, 
Seine östliche Ursprungsmulde liegt in der erwähnten Nadel- 
holzfläche des Hallstätter Kalkes. 

Der Sandlingbach ergoß sich, in Mergeln südwärts fließend, 
nach etwa 3 km Lauflänge in den Zlambach (Leislingbach), 
der zur Traun fließt (vgl. die Spezialkarte 1:75.000, Z. 15, 
Kol. IX: Ischl und Hallstatt). 

Am 12. September 1920, gegen 5 Uhr nachmittags, stürzten 
aus dem höchsten Teil der Westwand des Sandlings, südlich 
vom Gipfel gewaltige Trümmermassen herab, nachdem schon 
seit der Frühe vermehrter Steinschlag aufgefallen war. Der 
dort nach Osten zurückspringenden Wand waren einzelne 
Felstürme vorgelagert, deren größter, das »Pulverhörndl«, 200 m 
Höhe erreichte oder überschritt. Außerdem sahen spätestens 
um 1/,6 Uhr alie Almbewohner einen langsam zunehmenden, 
etwa: 80° steilen Verwerfer südlich der Absturzstelle im 
niedrizeren Teile der Wand, an dem der davorliegende Fichten- 
und Legföhrenbestand absank. Zugleich barst der Erdboden 
westlich davon, wo der Kalk zwischen den Ursprungsadern 
des Sandlingbaches, einen länglichen Rücken bildet.‘ Es war 
eine Senkung der vordersten Wandteile am Gipfel und des 
Fußes der Westwand von da südwärs eingetreten, welche ‚das 
»Pulverhörndl« und seine Nachbarschaft vom Berge abrückte, 
so daß die dazwischen .eingekeilten und eingeklemmten Kalk- 
massen und, Blöcke auf Umwegen zuerst herausfielen. Der 
Senkung entsprach eine Auftreibung des Bodens in einiger 
Entfernung vom Wandfuß. Am Abend beruhigte sich der Berg 
etwas, um in der Nacht gegen 11 Uhr neuerlich unter ge- 
waltiger. Staubentwicklung und großem Getöse Felsmassen 
zu Tal zu senden. Daher zogen gegen Mitternacht: Mensch 
und Vieh ab, und zwar auf Umwegen. Denn: der ‚gewöhnliche 

I Die wertvollsten Auskünfte .an . Ort.-und: Stelle- verdanke ich der: 
Freundlichkeit. des Herrn..Joh. Reisenauer, Landmann in Pichlern, als Augen- 
zeugen. des. Vorganges. Int 


Ars 


261 


Almweg führte am Bache nach Süden, wo die Waldbäume 
in verdächtiger, von keinem Wind erzeugter Bewegung’ ge- 
funden wurden, 

Nach Mitternacht geschah das Weitere und der Morgen 
fand ein stark verändertes Landschaft bild vor. Das Pulver- 
hörndl, das am Abend noch vereinzelt aufgeragt hatte, war 
eingestürzt und die Trümmer hatten den Almboden förmlich 
aufgepflügt. Der Verwerfer ‚hatte 30 und 40 m Sprunghöhe 
erreicht und parallel dazu war das Aufbersten des Almbodens 
zu einer Überschiebung von 2 bis 3m Höhe geworden. Süd- 
lich aber von der Paßlandschaft glitt eine gewaltige Rutschung 
zu Tal, die noch am Abend des 13. September fast 1 km 
lang wurde. Die blaugrauen Tone waren ausgeglitten und 
so glitt und stürzte alles hangende Mergel- und Mergelkalk- 
gestein nach, wobei sich der zerstörte Wald mit vorwärts 
wälzte. Der Ausriß der Rutschung fraß sich nach‘ N in die 
Paßlandschaft vor, nach S floß der blaue Ton ab.»wie ein 
Fluß im Flusse« nach freundlicher Mitteilung des Herrn Forst- 
ingenieurs Elsenwenger in Goisern, der sich in jene gefähr- 
liche Gegend begeben hatte. Am 10. Oktober hat die Rutschung 
ihre Länge von 45 km erreicht. Ihr Zungenende liest 10 m 
dick im Zlambachtal, 4 km vom Trauntal entfernt und bildet 
eine Gefahr für St. Agatha nach schneereichem Winter und 
rascher Schmelze. Die noch zu nennenden Veränderungen auf 
der Paßlandschaft führten bei näherer Prüfung alle zu dem 
Schluß, daß die starken Regen des verflossenen Spätsommers 
die Ursache des Plastischwerdens der liegenden Tone und 
Mergel waren, so daß diese unter der Last der Kalke des 
Sandlings hervorquollen. Dies geschah wenige Tage nach . 
dem großen Hochwasser im Enns-, Traun- und Salzach- 
gebiet. Dabei wölbten sich diese Schichten auf, wo es ging; 
unter der Kalkdecke im südöstlichen Teil der Paßgegend, wo 
das Aufquellen Widerstand fand, wichen sie seitlich aus. So 
begann die Rutschung. 

Diese Kalkdecke zeigt sich übrigens an einer dünneren 
Strecke, parallel zum Verwerfer von unten her aufgeborsten, 
aber später mit dem Ausfließen der Tone und Mergel gesellten 
sich Zerrungsrisse zu den Erscheinungen der Pressung. 


Nördlich hiervon scherte die in der Nacht gewaltig ver- 
größerte Bergsturzhalde den aufgetriebenen Almboden samt 
den Hütten östlich des Bachgrabens vom Untergrunde ab und 
schob die Erd- und Schuttmassen bis 200 m weit nach W. 
Dabei wurde das 8 bis 10 m tiefe Tälchen auf 150 m Länge 
ausgefüllt. Unter dieser Masse quoll grauer Ton hervor und 
bewegte sich im Graben etwa 30: m nach S. Er liegt wenig 
westlich der Verlängerung jener Tone, die als Träger der 
Rutschung erkannt wurden. Eine der Hütten ging ganz in 
Trümmer, weil sie von der aufgewulsteten Stirne des ver- 
schobenen Almbodens betroffen und überkippt wurde. Der 
Sachschade durch das Unglück besteht außerdem in der Ver- 
nichtung von 45 ha Waldes, wie mir Herr Förster Edelsbacher 
in Alt-Aussee freundlich mitteilte. Die bewegte Gesteinsmasse 
kann man vorsichtig mit 5- bis 6,000.000 m” veranschlagen, 
wovon nur 200.000 m? auf den Felssturz entfallen, die Hälfte 
auf die Rutschung, der Rest auf das Absinken am Verwerfer. 

Ich verdanke die Möglichkeit, dieses bedeutsame Natur- 
ereignis zu untersuchen, der mathematisch-naturwissenschaft- 
lichen Klasse der Akademie der Wissenschaften in Wien, 
welche mir eine namhafte Unterstützung gewährte Es ist. 
mir eine angenehme Pflicht, hierfür den Herren meine größte 
Dankbarkeit auszudrücken. | 


Österreichische Staatsdruckerei. 518 20 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 Nr. 24 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 25. November 1920 


Erschienen: Sitzungsberichte, Bd. 128, Abt. I, Heft 7 und 8; Abt. Ila, 
Heft:10. — Bd. 129. Abt. I, Heft 1 und 2; Heft 3 und 4. Abt. Ila, 
Heft 2, Heft 3. — Monatshefte für Chemie, Bd. 41, Heft 5. 


Der Vizekanzler Herr Walter Breisky teilt die Über- 
nahme der Leitung des Unterrichtsamtes und des Kultusamtes 
im Bundesministerium für Inneres und Unterricht mit. 


Der Vorsitzende, Vizepräsident R. Wettstein, teilt mit, 
daß Frau Hofrat Weichselbaum und die beiden Herren 
Söhne des Hofrates K. Toldt der Akademie den Dank für 
die Beileidskundgebungen derselben anläßlich des Hinscheidens 
der w.M. Weichselbaum und Toldt ausgesprochen haben. 


Die Akademie der Wissenschaften hat in ihrer 
Gesamtsitzung vom 11. November 1. J. beschlossen, Prof. 
R. Sterneck in Graz als teilweisen Ersatz seiner Auslagen 
für die Beschaffung von Beobachtungsmaterial der italienischen 
Flußstationen und deren Reproduktion durch das Militär-geo- 
graphische Institut eine Subvention von 6871 K aus dem 
Gezeitenfonds; 


35 


264 


ferner w. M. C. Diener zur Ausführung von vier Tafeln 
zu seinen beiden Arbeiten über Ceratitoidea aus den Hall- 
stätter Kalken des Salzkammergutes 4200 K aus der Erbschaft 
Czermak zu bewilligen, 


Selbständige Werke oder neue, der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Zentralinstitut für Hirnforschung, österr. interaka- 
demisches: Arbeiten aus dem Neurologischen Institute 
an der Wiener Universität. Begründet von Hofrat Prof. 
Dr. Heinrich Obersteiner, herausgegeben von Prof. 
Dr. Otto Marburg. XXI. Band, 1. Heft. Leipzig und 
Wien, 1920; 8°. 


Br demie der Wissenschaften in Wien 


Jahrg. 1920 Nr. 25 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 2. Dezember 1920 


Erschienen: Sitzungsberichte, Bd. 129, Abt. lla, Heft 4. 


Der Vorsitzende, Vizepräsident Hofrat R. Wettstein, 
macht Mitteilung von dem Verluste, welchen die Akademie 
der Wissenschaften durch das am 27. November |. J. erfolgte 
Ableben des wirklichen Mitgliedes der philosophisch-histori- 
schen Klasse, Hofrates Prof. Dr. A. Meinong in Graz, er- 
litten hat. 

Die anwesenden Mitglieder geben ihrem Beileide durch 
Erheben von den Sitzen Ausdruck. 


Prof. Dr. Stefan Meyer spricht den Dank für seine Er- 
nennung zum wissenschaftlichen Leiter des Radiuminstituts aus. 


Plantae novae Sinenses, diagnosibus brevibus descriptae 
a Dre Henr. Handel-Mazzetti! (7. Fortsetzung ?). 


Paeonia oxypeltala Hand.-Mzt. 


Sect. Palaearcticae subs. Herbaceae. 

Herba 40-60 cm alta glaberrima praeter nervos interdum 
supra papilloso-hirtellos et ovaria juvenilia aureo-hirta. Caulis 

1 Additis deseriptionibus Dris: R. Schlechter Berolinensis. 

2 Vel. Akademischer Anzeiger Nr. 19. 


36 


266 


simplex foliis 4—5 a 1!/, infero ad apicem dispersis imis 
1+4—17 summis 2 cm Ige. petiolatis et basi vaginis 5 ligulatis 
instructus. Folia (summo excepto) biternata foliolis petiolatis 
lateralibus magis compositis foliolulis lateralibus saepe bifidis 
vel binatis, terminalibus omnium saepe bifidis; omnibus herba- 
ceis viridibus lanceolatis maioribus 10X3—16X6 cm sensim 
acuminatis obtusis marginibus callosulis subtilissime crenu- 
latis, nervis paucis cum venulis laxis infra conspicuis. Flos 1, 
bracteis simplicibus magnis in sepala pauca membranacea 
oblonga 2—3 cm Ig. rotundata transeuntibus, 10 — 12 cm diam., 
laete ruber. Petala 6—8 obovata 2:5 —3°8cm It. acuta. Fila- 
menta tenuia 10 mm, antherae 4—6 mm lg. Ovaria 3—4 erecta 
in stylos crassos sublongiores sensim attenuata stigmatibus 
crassis patulis. 

Prov. Setschwan austro-oceid.: In montıum Daliang-schan 
(territ. Lolo) ad orient. urbis Ningyüen (Lingyüen) regione 
temperata, in rupibus umbratissimis saltus tergi Soso-liangdse, 
substr. arenaceo, ca 2700 m, legi 25. IV. 1914 (Iter Sinense 
1914 — 1918, Nr. 1739). 

Species foliolulis etsi interdum strigillosis ‘tamen raro- 
incisis et latioribus inter formas P. corallinae (Indiae: Chitral, 
Duthie Nr. 15814 et 17017 s.n. P. Emodi etiam incolae!) et 
anomalae ambigua, sed petalis acutis in toto genere unica. 


Cedrela mollis Hand.-Mzt. 


Arbor ramulis tenuibus brunneo-corticatis etiam triennibus 
pubescentibus, gemmis parvis brunneo-velutinis. Folia ramu- 
lorum apicibus hornotinis conferta 3—5, annua, 40 — 70 cm 1g., 
6—10pari pinnata; petiolus 5—10 cm Ig. albido-velutinus; 
foliola 3— 12 mm ge. petiolata ovato-lanceolata caudato-acu- 
minata basi oblique (supra latius) cuneata, media 8X3 —12x4 
et 17xX6cm, membranacea infra pallidiora et ad nervos den- 
sissime ceterum densiuscule breviter pubescentia supra glabres- 
centia margine integro densissime ciliata, nervis tenuibus rufo- 
brunneis S—14paribus patulis et venularum reti denso utrin- 
que conspicuis. Panicula terminalis longe pauciramosa sub- 
tiliter puberula cymis crebris laxis 2—13floris pedunculatis 


267 


pedicellis 2—4 mm Igis. bracteis plerumque obsoletis. Calyx 
patulus lobis 1 mm lg. ad !/, connatis ovatis obtusis praeter 
margines late dealbatos dense ciliatos glabrescens. Corolla late 
campanulata 5 mm 1g. et It. flavida; petala ovata — 2°5 It. 
ceucullata margine longius ciliata; discus latus vix 1 mm altus 
olobus infra 5foveatus aurantiacus dense albopilosus fila- 
menta 3 mm |g. alba glabra gerens; antherae breves rectangu- 
lares brunnescentes; staminodia O0. Ovarıum conicum glabrum 
disco multo longius, stylo petalis paulo breviore. 

Prov. Yünnan: In faucium fluminis Djinscha-djiang (»Yang- 
tsekiang«) ad sept. urbis Yünnanfu regione subtropica, in valle- 
cula supra deversorium Lagatschang, substr. crystallino, ca. 
1100 m, legi 19. III. 1914 (Nr. 740). 

Species (. Kingii tantum similis foliorum textura (diffe- 
rentiis inter illam aliasque species ab autore nullis indicatis), 
indumento hirsuto et hirtello pedicellis brevioribus floribus 
minoribus antheris cordatis apiculatis filamentis pilosis ovario 
hirsuto diversae. 


Rubus trichopetalus Hand.-Mzt. 


Subgen. Jdaeobatus, Sect. Leucanthi. 

Caules elongati ramosi cinnamomei sparse puberuli, aculeis 
e basi lata rectiusculis 3— 7 mm lg. sparsis, annotini tenuiter 
angulati. Ramuli floriferi 1—8 cm Ig. cum petiolis crassis sul- 
catis costisque subtus aculeis valde hamatis brevioribus obsiti 
et substrigoso-pilosi. Stipulae persistentes supra basin petioli 
adnatae lanceolato-lineares 5— 7 mm. |g. apicibus subulatae. 
Folia 3nata pergamena atroviridia; caulina foliolis ovatis 
acuminatis basi subtruncatis hibernantibus glaberrimis argute 
nervatis margine -repando-crenatis et irregulariter serratis, ter- 
minalibus quam petioli 2—3plo, quam rhachides 3—4plo 
longioribus, quam lateralia brevissime petiolata 2plo maioribus 
6—9cm Ig. dimidio ca. brevioribus, nervis 12—16 paribus 
sub 45° patentibus; ramealia ca. 4 multo minora, summa raro 
simplicia, foliolis utringue rotundatis 5—8pari nervatis laterali- 
bus oblique orbiculatis, ceterum illis similia. Flores terminales 
3 et saepe axillares 1, 5—7 mm 1g. pedicellati. Calyeis extus 


268 


sparse puberuli discus cupularis 5 mm It, lobi triangulari- 
lanceolati 5-—-7 mm lg. basi 2:5—93 mm It. intus tomentosi, 
in subulas glabras minutas — 2 mm gas. attenuati. Petala 
alba 5—7 mm Ig. unguiculata cordata medio utrinque pilosula, 
anthesi patula. Filamenta breviora, 2seriata margine disci lati 
inserta ligulata conniventia, stylos pallidos inferne hirtos 
aequantia; antherae minutae. Ovaria apice pilosa. 

Prov. Setschwan: In fruticetis reg. calide temperatae prope 
vicum Wudadjing ad austro-occ. urbis Ningyüen, substr. 
arenaceo, 2450 m, legi 15. IV. 1914 (Nr. 1390). 

Species soli R. /encantho foliolorum forma et nervis et 
serratura, sepalis maioribus intus glabris, petalis magnis, car- 
pellis glabris sat ‚dissimili affinis petalis pilosis quoque ex- 
cellens. 


Rubus subtibetanus Hand.-Mzt. 


Subgen. Idaeobatus, sect. Idaeanthi, ser. Pinnatifidi. 

Caules annotini teretes cinnamomei epruinosi dense hir- 
suti et setis et aciculis valde inaequalibus fuscis densissime 
erinacei. Ramuli floriferi perulis late linearibus caudiculatis 
intus glabris cinnamomeis extus sericeis fultii, Scm non ex- 
cedentes, sicut petioli brevius et crispule hirsuti et sparsius 
aciculati, cum tota planta eglandulosi. Folia fasciculata 3—5 
et ramealia remota 1—2 vel 0, 1- et (saepe imperfecte) 2-jugo 
pinnata, petiolis 11/,—2plo longiora, 2:5—6 cm lg. Stipulae 
imo petiolo adnatae filiformes. Foliola remota, lateralia sessilia 
ovata vel late elliptica obtusa basi subinaequaliter cuneata, 
terminale 5—10 mm 1g. petiolatum iis 3plo maius rhombicum 
acuminatum, omnia supra laxe sericea, infra praeter nervos 
badios sericeos niveotomentosa, circumeirca ad !/, — ultra !/, 
incisa crenis obtusis acute paucidentatis. Cymae 3—6 florae 
planiusculae interdum flore 1 vel cymula axillari auctae, 
bracteis subulatis. Calyx florifer patulus sepalis ovato-lanceo- 
latis minutissime apiculatis 4 mm 1g. utrinque cum pedicellis 
ca. Bmm 1g. velutinis et sparse aciculatis. Petala erecta alba 
late et longe unguiculata orbicularia undulata et stamina 
glabra illi aequilonga. Nuculae sericeae; styli 2 mm Ig. glabri. 


269 


Prov. Setschwan: Ad rivulum in jugo inter Tjiaodjio et 
Lemoka in territorii Lolo regione calide temperata, 2250 m, 
legi 23. IV. 1014 (Nr. 1615). 

Proximus R. Thibetano Fr. ramis minus aculeatis foliis 
brevipetiolatis foliolis plurijugis angustioribus magis incisis_etc. 
diverso. 


Acer Schoenermarkiae Pax var. oxycolpum Hand.-Mzt. 


Foliorum usque 14% 14cm metientium sinus acuti, lobi 
laterales quam medius 2—4plo minores, basis saepe anguste 
nec profunde cordata, margo saepe integerrimus. Flores J’ 
speciei etsi racemi fere a basi floriferi fl. infimis 1 cm Ige. 
pedicellatis et perulae interiores I cm tantum Ig. Fructus 
Ac. Francheti foliis magis diversi. Speciem propriam hisce 
affinem esse ob variationes speciminum praesentium non pro- 
babile videtur. 

Prov. Setschwan: in silva mixta tergi Soso-liangdse, substr. 
arenaceo, ca. 2600—2800 m, legi. 25. IV. 1914 (Nr. 1685). 


Lonicera Guebriantiana Hand.-Mzt.! 


Sect. Isika, ser. Purpurascentes. 


Frutex ramis strictis glabris juvenilibus brunneis nitidis 
vetustis crassis 'griseis. Folia anguste obovata, 6xX11 et 
38x20 15x25, 12X42, 14X34 mm, in petiolos tenues 
53mm |g. sensim attenuata, apice obtusa vel late rotundata, 
herbacea, infra subglaucescentia, margine angustissime revoluto 
integerrima, supra glabra vel sparse, subtus largius pilis albis 
prorsus curvulis induta, nervis 5—7 paribus subtus cum 
venulis magis conspicuis. Pedicelli tenues deflexi 10—20 mm Ig. 
glabri. Bractae ovariis ad apicem connatis coeruleo-pruinosis 
2 plo longiores lineari-ligulatae apice saepe glanduloso-ciliatae. 


1 Species dom. de Guebriant episcopo Ningyüenensi de itineribus 
nostris in sua ditione meriti dedicata. 


270 


Bracteolae ©. Calyx 1/,;,mm brevior subinteger. Corolla sub- 
carnea extus glabra intus longipilosa 10—13 mm I1g., tubo 
21/,—3 mm lt. basi saccato unifoveato, limbo regulari por- 
rectopatulo lobis 3—4 mm It. ca. 3 Igis. rotundatis undulatis. 
Stamina in tertio supero corollae inserta, glabra, antheris 
magnis exsertis. Stylus eas aequans glaber. 

Prov. Setschwan austro-oce.: Ad rivulum reg. temperatae 
prope vicum Laotschang in latere montis Lose-schan ad 
merid. urbis Ningyüen, substr. arenaceo, ca. 2700 m, legi 
16. IV. 1914 (Nr. 1460). 

Species inter affines, quae sunt L. Tangutica, flavipes, 
saccata, chlamydata, praeter notas minores imprimis ovariis 
coeruleis insignis. Nescio quid nova species haec cum plantis 
Delavayi Nr. 2068 et 3404 et Giraldii Nr. 1771 et 1776 a cl. 
Rehder cum Z/. frichopoda comparatis habeat. 


Primula cylindriflora Hand.-Mzt. 
Sect. Callianthae. 


Efarinosa, rhizomate brevissimo simplici crasse fibroso 
rosulam multifoliam foliis minoribus lineari-ligulatis . riges- 
centibus circumdatam et scapum 1 edente. Folia lanceolata- 
subrhombico-obovata, 12X9 et 253X12—832X1l et 45xX9 mm, 
acuta vix petiolata subcoriacea glabra margine incrassato 
undulata vel patule repando-dentata nervis lateralibus paueis 
tenuibus erectis flexuosis ramosis. Scapus tenuis 4—13 cm 1g. 
apice nutante densissime et tenuissime et saepe totus sparse 
ferrugineo-glandulosus. Inflorescentia 2—4 flora glaberrima 
vel tota subtilissime glandulosa. Bracteae magnae exteriores 
ca. 4 rhombico-ovatae 6— 12 mm Ig. subdimidio angustiores 
obtusae concavae integrae vel lobulatae plurinervosae. Calyx 
vix Imm lg. pedicellatus campanulatus 6—7 mm Ig. !/, in 
lobos ovatos minutissime apiculatos Inerves venosos fissus. 
Corolla 1:5—1'7 cm Ig. violascens cylindrica vix dilatata 
intus nuda lobis porrectis tubi ore 4 mm It. 1/, aequantibus 
obovato-rectangularibus vix apiculatis. Filamenta brevissima 
Noris brevistyli paulo supra !/, inferum inserta; stylus brevis 
ovarium 15mm Ig. aequans, longus 3plo superans. 


{6} 
=Sı 
an 


Prov. Setschwan; Territorium Lolo, in pratis humidis 
reg. temperatae ad vicum Lanba, substr. arenaceo, 2700 m, 
fee 28 IV. 914 Nt.:1767). 

Bracteis magnis obtusis et floribus subsessilibus praeter 
alias notas ab affinibus Pr. argutidente, amethystina, petrophye, 
Jeimonophila diversa. 


Ceropegia Yünmanensis Schltr. et Hand.-Mzt. 


Caulis longe volubilis simplex vel pauciramosus usque 
ad 2 mm crassus laxe foliatus teres sparsim pilosulus. Folia 
petiolata patentia patulave; lamina ovata ootusiuscula vel 
acuminata basi rotundata vel subcordata 45—7 cm 18. 
3:2—4'8 It. supra sparse puberula subtus costis pilosula 
margine tenuiter ciliata; petiolus pilosulus 1—1'5 cm lg. Cymae 
extraaxillares sessiles usque 15 mm Ige. pedunculatae sub- 
umbellato-abbreviatae 5—12 florae; pedicelli 1—1'5 cm |1g, 
glabrati. Sepala lineari-subulata glabra 3—5 mm 1g. Corolla 
violaceo reticulata vel tota atroviolacea, 3:5—4 cm 1g., e basi 
globoso-inflata 6 mm 1g. constricta et in tubum obliquum 
apicem versus sensim dilatatum ca. 1—1'5 cm lg. basi 3 mm 
ostio 8— 10 mm It. producta; lobi retrorsum conduplicati ob- 
longi obtusi apice cohaerentes ca. 13 cm Igi. intus tenuiter 
pilosi vel crebre villosi; corona annularis parvula lobis ex- 
terioribus late quadratis apicibus 2 liberis leviter divergentibus 
inearibus ciliatis, interioribus (antheriferis) erectis anguste 
linearibus obtusis glabris exteriora multo excedentibus. Pollinia 
oblique ovoidea leviter compressa; translatores perbreves reti- 
naculo obovato-rhomboideo quam pollinia fere duplo minore. 

Prov. Yünnan bor.-occid.: In fruticetis regionis subtropicae 
vallis fluvii Djinscha-djiang (»Yangtse«) prope vicum Ladsaku 
inter oppida Lidjiang (»Likiang«) et Dschungdien, 1950 m, 
leg. 17. VII. 1914 Handel-Mazzetti. 

Die Art ist mit keiner der bisher aus China bekannten 
näher varwandt, erinnert vielmehr an (. Cummingiana Dene. 
von den Philippinen und einige indische Formen. 


Rohdea urotepala Hand.-Mzt. 


Folia apice rhizomatis obliqui crassi distiche fasciculata 
carnoso-subcoriacea, minimum biennia, e basi costa crassa 
laminae aequilata obtuse carinata sensim longe lineari-lanceo- 
lata acuta ad 35 cm \g, & 3°5 cm It, marginibus undulata, 
— 2Önervia; cataphylla submembranacea 7 cm le. acuta. 
Scapus ad 10 cm Ig., ca. 8 mm crassus spadice aequicrasso 
ca. 3 cm |g. subspiraliter pentagono densifloro. Bracteae 
membranaceae breves lanceolatae saepe lobatae. Corolla viridis 
Sangulo-disciformis 2 mm alta 8— 10 mm .diam. Tubus crasse 
carnosus intus in annulum 1—1'5 mm It. antheras in fila- 
mentis iis aequilongis medio tubo insertas obtegentem super- 
ficie aequa squamoso-rugosum dilatatus; lobi liberi membranacei 
retusi 115 mm lg. in caudiculam I mm lg. producti. Ovarium 
crassum depressum stigmatibus parvis sessilibus ostium corollae 
2:5—3'5 mm diam. vix superantibus. 

Prov. Setschwan: in saltu profundo tergi Soso-liangdse, 
ca. 2700:m, 23. IV. 1914 (Nr. 1733). 

Rohdea Japonica differt foliis multo latioribus, perigonii 
multo altioris tubo tenui annulo staminifero aucto, margine extra 
et intra in lobulos carnosos obtusos dilatato, stigmatibus maxi- 
mis. R. Esgquirolii et R. Sinensis Levl. »floribus generis«, haec 
albis, illa foliis latis describuntur. Species nova quasi Rohdeam 
cum Tupistra! conjungens illius non perigonii lobos (Franchet) 
sed annulum lobatum supra antheras connivere lobosque extus 
reductos esse demonstrat. 


Anthaenantia Asiatica Hand.-Mzt. 


Cespites densissimos culmis et fasciculis sterilibus vaginis 
mortuis in fibras griseas solutis 5 cm Igis. bulboso-cinctis 
formans. Folia dura vix 3 mm lt. convolutiva longe acuminata 
argute multinervosa marginibus et supra aspera basi longe 
pilosa; ligula brevissima ciliolata; caulis glabri 15—22 cm Igi. 
infima et fasciculorum usque ad 13 cm lg. vaginis brevibus. 


! cfr. Tup. chloranlham perigonio intra stamina annulis pluribus aucto 
deseriptam. 


a u a De 


273 


pilosis; ad nodos haud 10 cm supra basin orta usque ad 1 ’5 cm 
abbreviata vaginis laxis usque ad I1 cm Igis. 4 mm It. glabris. 
Panicula 5°5—9 cm lg. ramis erectis fere aequilongis lateralibus- 
singulis 2— 3 approximatis terminali basi breviramoso. Spiculae 
secus ramos totos singulae vel geminatae altera subsessili altera 
2—3 mm ge. pedicellata, a pedicellis solubiles, 3 mm 1g. late 
ellipticae 1florae (flore interdum altero JS’ abnormi). Glumae et 
palea aequilongae, illae steriles 1 mm It. planae acutiusculae 
Stramenticiae argute /nerviae brunneovillosae vel glabratae. 
Rhachilla brevissime producta. Gluma fertilis et palea obtusae 
coriaceae badiae nitidae marginibus albis introflexis rotundatae 
enerves, haec angustior vix biangulata. Ante paleae margines 
squamulae 2 rectangulares minutae collaterales adsunt. Lodi- 
culae VÖ. Antherae longae brunneae. Styli longi; stigmata longa 
violaceo barbata. 

Prov. Setschwan austro-occ.: In declivibus stepposis 
montis Lu-schan prope urbem Ningyüen, reg. calide temperata, 
— 2000 m, substr. arenaceo, legi 2. V. 1914 (Nr. 1830). 

Generis adhuc Americani et Africani species distinctissima. 


Hierochlo& pallida Hand.-Mzt. 


Culmi e stolonibus brevibus sgeniculato-ascendentes 
7—16 cm ig. cum vaginis et spiculis nitidi leves. Folia sur- 
culorum, annotina basi caulis sieca, ad 5 cm Ig., 2 mm It. 
acutissima convoluta; caulina ima brevivaginata, 1—2 ad 
nodos retrorsum barbatos superiorem sub medio caule situm 
orta 9—10 mm lg. angusta vaginis laxis ad 6 cm |Ie. 
ligulis 1 et 2:5 mm |g., cetera 12 —35 mm \g. 3—4# It. lie 
gulis brevissimis biauriculatis, omnia e basi rubello-auricu- 
lata lanceolata obtuse breviacuminata plana argute 15—17- 
nervata hirta. Panieula conferta 2:5—4 cm x 4—-5 mm. 
Rami strieti 5—10 mm lg. singuli vel gemini 1—2- et 2—9- 
spieulati: cum pedicellis brevissimis setuloso-pilosi, sicut 
rhachis teretes leves. Spiculae obovatae 3 mm lg. Glumae 
steriles exteriores ovatae acutae pallidae carina viridi margine 
late membranaceae, 3nerviae sparse setosae subaequilongae: 
interiores.: neutrae .;epaleatae illas aequantes : late lineares- 


274 


rotundatae complicatae brunneo-membranaceae bifidae asperae 
et dense adpresso-pilosae, inferior e medio superior multo 
infra e sinubus aristis rectis illa aequilonga hac 1 mm lon- 
giore instructae. Flos 1, ®. Gluma fertilis et palea duriusculae 
nitidissimae enerves brunneae maginibus albis, glumis sterili- 
‚bus dimidio breviores, illa orbicularis infra ventricosa, haec 
lanceolata. Lodiculae OÖ. Antherae 3 mm Ig. brunneae. Stigmata 
longa albobarbata. 

Prov. Setschwan: Territ. Lolo, in pratis humidis reg. 
temperatae ad vicum Lanba, 2700 m, legi 26. IV. 1914 
«Nr. 1766). 

Habitu FH. pauciflorae similis, proxima A: Khasianae 
mihi non visae sec. descr. culmis et foliis longioribus spiculis 
brunnescentibus gluma fertili, si differentiis nullis indicatis 
cum Hookeri congruit, angustiore diversae. 


Epipactis Handelii R. Schltr. 


Perennis 25—35 cm alta rhizomate valde abbreviato, 
radicibus flexuosis elongatis glabris. Caulis erectus strictus 
-vel substrictus basi vaginatus ceterum 5 —6 foliatus teres 
superne sparse et minute pilosulus. Folia erectopatentia lan- 
ceolata vel oblongo-lanceolata subacuta vel acuminata, inter- 
nodia bene excedentia usque ad 10 cm lg. infra‘ medium 
usque ad 2'3 cm It. Racemus erectus laxe 3—6 florus secun- 
dus usque ad 13 cm |g.; bracteae erectopatentes herbaceae 
foliis similes sed minores, inferiores flores vulgo excedentes, 
superiores sensim minores. Flores E. veratrifoliae floribus 
-similes et fere aequimagni, virides dilute rubrostriati et macu- 
lati. Sepala extus minute puberula ca. .1°3 cm Ig., intermedium 
-oblongum obtuse apiculatum, lateralia valde obliqua ovato- 
lanceolata obtusiuscula margine anteriore infra medium 
paulum ampliato. Petala e basi oblique ovata dimidio supe- 
riore angustata obtusiuscula glabra, sepalis subaequilonga. 
Labelli hypochilium oblongum cymbiformi-concavum ca. 
5 mm lg. margine basi utrinque obtusangulo, intus medio 
sparse verruculosum; epichilium e basi ovata marginibus in 
medium incurrentibus angustatum, obtusum cum apiculo 


BE 


ID 
=] 
Qi 


obtuso, 7 mm |g., supra basin hypochilio manifeste latius. 
Columna brevis ca. 5 mm alta, stigmate satis magno. Ovarium 
pedicellatum, clavatum, brevissime subtomentello-puberulum. 

Prov. Yünnan: Ad marginem rivuli prope vicum Lodsai 
ad septentr. urbis Yünnanfu, reg. calide temperata, 1700 m, 
leg. 9. MI. 1914 Handel-Mazzetti (Nr. 479). 

Hier liegt wohl die Art vor, welche Rolfe in seiner 
Aufzählung der China-Orchideen als Ep. consimilis Wall. 
bezeichnet hat. Von dieser Pflanze ist sie durch niedrigeren 
Wuchs und die Form der Lippe, besonders des Hypochils, 
unterschieden. Ein genauer Vergleich der vorliegenden Art 
mit veratrifolia zeigt, daß sie auch von dieser artlich zu 
trennen ist. Da Ep. consimilis Wall. mit dieser auch nicht 
identisch ist, muß für sie, die nur fälschlich für die früher 
aufgestellte Ep. consimilis Don. gehalten wurde, ein neuer 
Name geschaffen werden: Epipactis Wallichii Schltr. 


Selbständige Werke oder neue, der Akademie bisher nicht 
zugekommene Periodica sind eingelangt: 


Viciu, Joan, Ing.: Das Problem der Gravitation. Cluj (Sieben- 
bürgen), 1920; 8°. 


1920 
Oktober 


377 
Nr. 10 


Monatliche Mitteilungen 


der 


Zentralanstalt für Meteorologie und Geodynamik 


Wien, Hohe Warte 
48° 14°9' N.-Br., 16' 21°7' E.v. Gr., Seehöhe 2025 m. 


Luftdruck in Millimeter 


Temperatur in Celsiusgraden 


RN | Abwei- | | Abwei- 
Tag h 14h 91h Tages-chungv.| 14h on | Tages- |chung v. 
n ı mittel ‚Normal- 7 mittel! !Normal- 
| | stand |) | | stand 

| 
1 743.7 741.6 740.2 | 41.8 |— 2.9 12.1 16.6 14.4 14.4 + 1.3 
2 38.9 38.7 38.6 | 88.6 ı— 6.1 13.5 16.0 13.6 14.4 |+ 1.5 
B) 37.8 872.7 38.8.| 38.1 |— 6.5 DB. 19.470.308 16.9 + 4.3 
4 41.9 44.8 47.2 | 44.6 0.0 13.3 13.4 HOSE 12.9: 2 0,85 
6) 47.7 48.4 48.5.| 48.2 |+ 3.7 10.2 1029 8.5 9.9 |— 2,2 
6 47.8 47.4 47.6 |.47.6 |+ 3.1 8.5 12.3 8.8 9.9 |— 2.0 
2 46.9 46.5 46.9 | 46.5 + 2.3 6.0 13.2 9.0 9.4 |— 2.3 
Br} 47.8 48.0 48.2 | 48.0 |+ 3.6 6.1 13.4 8.4 9-3 |— 2.2 
9 48.0 46.9 46.1 | 46.9 |— 2.5 3.6 14.1 8.8 8.8 |— 2.5 
10 46.3 46.6 47.3 | 46.7 + 2.3 5.4 13.4 70 8.6 |— 2.5 
I! 48.7 48.2 49.5 | 48.5 + 4.5 3.9 12,7. 8.8 8.95 I— 2,3 
12 50.8 50.0 0.2 | 50.3 |+ 6.0 3.4 12.4 X 7.8 |— 2.8 
15 49.3 47.8 47.2 | 48.1 |+ 3.8 Zt 13.7 07 7.7 |— 2.7 
14 46.2 44.5 44.0 | 44.9 + 0.6 2.6 119393 6.6 7.0) | — 851 
15 43.7 42.6 42.0 | 42.8 I— 1.5 3.5 14.0 12.0 9.8 |— 0.1 
16 41.1 40.2 39.8 | 40.4 |+ 3.8 6.6 14.4 g.0 10.0 |+ 0.3 
WG 40.0 40.4 43.1 | 41.2 |+ 3.0 7.9 14.9 9.8 10.6 | 1.1 
18 7.2 48.1 49.9 | 48.4 |+ 4.2 | 8.3 4.1 9.8 |— 3.4 
19 51.3 51.6 51.3 | 51.4 |4+ 7.2 3.9 9.8 4.5 4.7 |— 4.3 
20 50.4 49.2 48.6 | 49.4 + 5.1 0.8 8.3 4.9 4.5 |— 4.3 
21 46.2 44.9 44.4 | 45.2 + 0,9 3.2 6.83 5.9 5.1 I— 3.5 
22 44.6 45.6 47.3 | 45.8 + 1.5 3.9 2 %.,@ 6.2 |— 2.2 
23 49.3 49.4 49.9 | 49.5 |+ 5.2 3.9 8.8 4.9 8.9 |— 2.3 
24 48.6 47.0 47.6 | 47.7 + 3.4 9.1 12.0 9.4 7.5 |— 0.5 
25 50.37 91.3 542.027531.9 22 7.6 4.0 8.4 9.0 6.0 Iı— 1.8 
26 54.4 52.9 51.9 | 53.1 |+ 8.8 0.9 8.0 18 3.6 |— 4.0 
27 49.4 48.4. 48.2 | 48.7 |+ 4.4 4.2 7.8 9.9 6.0 I— 1.4 
28 48.3 47.7 49.4 | 48.5 |+ 4.2 3.1 5.0 an 4.11— 3.1 
29 52.4 52.9 54.3 | 53.2 + 8.8 || —5.2 —0.1 —4.0 | —3.1 |—10.1 
30 54.85 53.5 52.8 | 53.7 + 9.3 —6.6 —1.9 —5.2 | —4.6 |-11.4 
31 50.6 47.9 46.9 | 48.5 |+ 4.1 —S6 —i.2 —3.6 | —4.5 |—11.1 
Mittel| 747.23 746.78 747.15 |747.06|+ 2.96 4.5 10.4 DRZ 7.2 |— 2.5 


Temperaturmittel?: 7.1°C. 


Zeitangaben, wo nicht anders angemerkt, in mittlerer Ortszeit; Stundenzählung bis 24, 
beginnend von Mitternacht = Oh. 


1) 1; (7, 2, 9). 
i Us (7, 2, 9, 9. 


278 


Beobachtungen an der Zentralanstalt für Meteorologie 


48° 14°9' N.-Breite. 


im Monate 


Größter Niederschlag binnen 24Stunden: 0.4 nm am 2. Niederschlagshöhe: 1 
Tage mit e(#): 5; Zahl der Tage mit =: 4; Zahl der Tage mit R: 0. 


| Temperatur in Celsius | Dampfdruck in mm | Feuchtigkeit in ®/, | Ver- 
BErTRERe en Toe |  dun- 
Tag © ee | 7 |stung 
|-Max., Min.) SS8E®$|l zu? 140 . 9unNÄaBese) zn ? 14h, ‚Dub &3inmm 
| BEE | mittel | 8 8 N 
I 
1 16.8 „.10.3.|- 38 8 |.10.3 12.8 1L.5.| 11.4||- 98 »87..94 | 93 | 2.0 
2 16.2 18.2] 27 | 10 | 11.2 i1.9.10.9 | 11.31 97 "87 oa | osuwe 
3207073797 44 | TI 11.2 18.8 198.2 | 10.6] 97 70 see 
4 1870" 17.2 || 20-18 10,1 9.6 9.999 | "gairiggtrga | sea 
5 ee 99.0 745,07:0) 77.8] 96 77782 sone 
6 12.8" 7.4£|. 40 6 || 7:5 7.4%720707.3 90 69 : 83 |u81 NDR 
7 ala |5°9| Ao 3| 5.5 5.2 5.5| 5.4] 78 46 64 | 68 |10.4 
8 13.4 5.4| 41 | 5.3. 50W5.9 | 5.4|| 76 45 7 | sauna 
9 14.22 13.040 0.|- 5.6 2.8-7.4| 6.9| 94 65 87 | sono 
10 13:6 49 | 40 3| 6.1 6.8 6.5| 16.5|.92 59 87 17910. 
11 la, kara 40 ıl 5.8 6.4. 6.3) 6.2| 95 58 74 | 76 || 0.06% 
12 1226:0 12,90 88 1 | 5.4 6.76.41 6.2 02 62 si | Te ar 
13 13.7 '2,4| 39 | 1 || 05.8 16:0. 6.2 125.81 05 51. sa m 
14 12.1 2.5) 38 7 1 | 5.3 7.6) 6.210.505 7a too 
15 Aa7ı Karl ae 1 | 5.6 8:6: 8.5] 77.6|| 95 1721 817° |v83ı Oro 
8, lass De 2 Ba 3 | °.B.9 18.7. 7.8 |,z.8\ 95 71 00 as: 
17 15.1 6.4| 46 3| 7.5 8.2. 7.1).7.6°@6 85 si ı Sıcıname 
18 8.4... 18.2 35 4 | 4,7 13.9. 3.8.1. 4.172 a8 eo 
19 58 + 93.0116 il 2.4 4.1 4.2| 22 73 50 er ce 
20 873. 0.0) 35. | 8 .18.5° 8776 3.7 1.#8.B ma ae Sr see 
21 6.8.2.8 14.1 11 4.1 15.0. 8.2.| 4.8 | 71.70, za 
22 Eu are 2| 42.5 2.1 5.1..4.6| 75 52 66165 8 
23 94.138,30 t 4.6 15.1. 5.3 |°,5.01 76. ‚60. ein oe 
24 120. 1| 5.7.6.7 6.06.11. 87 -62 solo nee 
25 35 0| 4.2 4.1 4.4| 4.2|.69:49 66 | 61 | 1.7 
26 8.5.-10.8| 81. | 3.4.5 As) 441725191 57 “Bo ee 
27 2.9.10.5|.17,|2 2 | A.z 5.2. 5.3 |° bull 7b 60% zo 
28 8.3 —2.1 86.1.1 | az ars) 3.8 Au sı Sa eo 
29 0.25.68] 20 | 912.1 Mo’ 1.8 1.0) 67 240 Go 
30 (11.49 —eiz) Banizı1l).a.7 NON.TU. 81.7. Bee 
31 12192 —8.z] 25% 219 || 1.5 129: 1593 00.8], 6 see 
Mittel || 10.7 :3.6|31.8|.,1.21 5.8 6.3. 6.1.) .s.dll ‘sa GL ven 
Summe | 23.0 
ZIETIESBIEIFTEBEIENETERNENER EI Eo 
28|3|14. 14.5| 14.7) 15.0 14.3| 13.2] 14.3 115 10.9  10.9| 10.7110.2) 9.7| 9.3] 9.1 
=! | > a 
23 &|=]14.7] 14.6] 14.6| 14.5) 14.5] 14.4] 14.1| 13.8] 13.4) 13.1) 12.8 12.6,12.3 12.0111,7 
== ||| 14.0] 14.0| 14.0| 13.9] 13.9| 13.9) 13.9) 13.8] 13.8) 13.7) 13.7113.6113.5113.4113.3 
33|*| 813.0] 18.0 13.0| 13.0 13.0] 13.0] 18.0) 13.0| 13.0 13.0| 13.0|13.0|13.0]12.9112.9 
as 2 ea 12 Pie 12.112. 12.1) 12.1]12.1/12.2]122022 


‚Smm. Zahl der 


Prozente der monatl. Sonnenscheindauer von der möglichen: 500/,, von der mittleren: 1580,,. 


!) In luftleerer Glashülle. 


?) Blankes Alkoholthermometer mit gegabeltem Gefäß, 0:06 m über einer freien Rasenfläche. 


IS) 
=] 
cc 


und Geodynamik, Wien, XIX., Hohe Warte (202:5 Meter). 


Oktober 1920. 16° 21°7' E.-Länge v. Gr. 
: : | | 
Bewölkung in Zehnteln des | Dauer | 
sichtbaren Himmelsgewölbes | des | 
en Bemerkungen 
Per scheins | D 
ae ra 75 | = IStunden!! 
a | ai 
| 
101=1 fe ı 8.01 1.6 |=15—10, a?’ mens. 
0i=180-1 100-1 70 980, 0.1 = 4—8, 00 6455820, a2 mens. 
{0121 40 g0 7.3| 3.4 |=11—11,.2? mgns. 
101 101 10180 110.01 0,0 || al mgns.; e0 1945 —2 110, 220715, 
101 101 (3 8.7! 0.0 \.almens. 
sı 21 0) Ball, 045 | — 
10 10 0 0.7 10.0 | 
10 19 9) Vol Se _- 
19 0 0 0.3] 9.2 || mgns. 
61 a1 ) 3.01 2.1 | — 
0) 11 Ö 0.81 9.2 || mens. 
0 0 30 1.01 8.9 | a? mens. 
0 0 9) 0.01 9.4 ||! mens. 
0 [B) 0) 0.01 S.O ||0 a” mgns. 
10 7ı sı 5.31 1.7 |=1.2?mgns., ed 1850 — 1910, 
50 Ba zı 5.01 9.0 | al mens. 
101 al 10180 | 9.01 2.8 ||e0 639-—35, 1545 — 1615, 20— 2220 zeitw. 
101 31 101 Ta M0n2 = 
101 gı g1 9.31 0.0 | u 
79 10 70 5.0| 9.4 | 
10160 10! 101 10.01 0.0 ||e9 605, x0 &0 710 — 850, 
101 101 101 10.01 0.0 |) — 
71 91 g0 8.01 2.0 — 
61 19 0) 2.3| 9.6 || al mens. 
sl 20 0) 3.3 9.0 — 
10 20 40 23, Il — 
101 91 21 7.00 20,0 —_ 
40 21 30 3.0) 6.5 - 
10 0) 0 0.31 9.5 ||! mens. 
0) 0 ) 0.01 9.4 | = 
0 10 20 1.01 10.2 — 
5.4 4.0 4:2. 1 4.5154 || 
168.5 | 


EEE EEE SCHERE EEE" NP SOELINNZ SENSE VEREINE BE TE SER BET ERBE TE 4 CR BEE EEE FESTER FERIEN ER BESTE BIC ET SEE TE NONE TEN NEE NEN Ge Leere 


16.| 17.| ı18.| ı9.| 20.| 21.| 22.| 23.| 24.| 25.| 26. | 27.] 28. | 29. | 30. | 1. [Mitterf 
9.6] 9.9110.0| 9.2] 8.5) 8.0) 8.0| 8.2 s.3|8.0|75| 0| 7. 6.1147 3.6 9.9| 
11.5 111.5 111.4 [11.3 |11.1 |10.9 [10.6 |10.4 |10.4 [10.3 110.1) 9.9| 9.7 | 9.5| 9.2 8.7 |11.9 
13.3 113.2 |13.1 113.0 |12.9 112.8 |12.7 |12.6 112.6 |12.5 j12.4 [12.3 112.2 [12.1 112.0 [11.9 13.2 
12.9 112.9 112.8 |12.8 12.8 |12.7 |12.7 |12.7 |12.7 |12.6 112.6 12.6 |12.5 |12.5 112.4 112.4 |12.9 
12.1 12.2 112.2 [12.2 |12.2 |12.2 112.2 |12.2 J12.2 J12.1 J12.1 J12.1 |12.1 112.0 |12.0 112.0 |t2.1 


Zeichenerklärung: 

Sonnenschein @), Regen e, Schnee x, Hagel a, Graupeln A, Nebel ==, Nebelreißen =‘, 
Tau a, Reif“, Rauhreif \/, Glatteis ru, Sturm 9, Gewitter R, Wetterleuchten £, Schnee- 
gestöber #, Dunstoo, Halo um Sonne ®, Kranz um Sonne (PD, Halo um Mond [J), Kranz 
um Mond W, Regenbogen N), eTr.— Regentropfen, «Fl. = Schneeflocken, Schneeflirnmerchen. 


280 


Beobachtungen an der Zentralanstalt für Meteorologie und Geodynamik, 


Wien, XIX., Hohe Warte (202:5 Meter), 
im Monate Oktober 1920. 


I} | P 

| Windrichtung und Stärke |Windgeschwindigkeit | Niederschlag, 2 
nach der 12-stufigen Skala | in Met. in d. Sekunde | in mım gemessen B 
Tag | 3 
az 14h 21h | Mittel | Maximum 1 zh 14h 21h |3 
| || nn 

RE EB Do a a EN ee ge 
9 Be) Fr) ET; BSE_ 3.5 4.2e 0.2e = ee 
3 B..4r2 SER Sp Da Aa SED ee ae Be 
A | NNEI ONE 20 uSE 2 00.54 WESmANg oe R 0.08 | 
5 | sSE=2 7 SE.3, BSkl3ı 7566 SE 012.10500: ba ar eu 
6, | SE BHEISE Ar ESEL 3 1 8a re u — Sur ri 
7 | SE 2.SE 4 SSE3| 6.9 .SsE 20-0 =. — ee E 
SE Sn a el SSE MI7..00 0 = = 2 
9°.) SE USERS DENE N SE San > = 2 E 
10 | Im 1 5.88 7 Ewer| 4 1 A ER a = — — | 
Li .6) Wo. Seen Be, 5.20 a — — I 
12.| N ı Bm 1wewi| 101 IE 90 — Se 
13 10 SISE a SE 9.8 — — = ei 
14 250 EBENEN Zee end ee Bl 
15 | — 0 WNW2 WNW2 | 2.201 7WNW 9.9 | 0.10 — >= # 
16.4.1 FE OSNNETTENW I N 0.7 UWAT. 2a _ = # 
17 ON en N 6.00 20.20 20 0.0 
18 1 NEST N 22 INS N NEIGEN EZ = . 5: 
19 | SE 2 SESE 2 BSE I 2 7 ee =S Ir 
20 N 19.B. IE NAH AIEREE ZUR = — "F 
21.)- = .OUNNE 1WNWA.l’ 0.6 VENE 3.801 0.06 20a 4: 
22 | O0, NW 1SWNWi |. 1.20, Swen = zn 
23): IN 1 ae 1 ET EN Zu — FE 
24 SE ISBN SE 21045 — - _ e 
25 —.:0% IN 3 NNW 1 13.84 VNNEUO.51. 2 = er 

| | 

26 —.DISNE NEN 93060) NEW — -- — ur 
27” |WNW1i NW3 NW 3| 4.0 | wnwii.s| — — — Zr 

28 NW 2, N 72 20232 .WNSW.IO, 7 — = — 
293] NEW. SEN 00 N a Ne N ea — — 1 
30 SU u 3 DE SE U Soap ER) | ge en. IT 
31| SE3 SE4 SEA| 7:6| SSE 17.2| — = — I. 
Mittel | 1°0 2-1 15 2.8 9.4 170 0.5 0. Omas 


Ergebnisse der Windaufzeichnungen (nach dem Schalenkreuz): 
N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW 
Häufigkeit, Stunden . 
122 1027 729.+| 25.) 286 7 „108, 1208 27 2 S 1 1:0 73:37 40 
Gesamtweg, Kilometer =: 
GB0,..727, 122,187.) 2751 4574 22782 3590.27 © 40H 1 7,0 ..1628. 222. 308 
Mittlere Geschwindigkeit, Meter in der Sekunde j 
1.67210772 1.1 2.1 48 5.8. 5.0.1%0, 12221018 10 Dr 
Maximum der Geschwindigkeit, Meter in der Sekunde 
4.7.,,8.6:.48.9 .8.604.7.08.8009i7.4121541 .0 1I9-0,8 1710272 IB 9.3 
Anzahl der Windstillen (Stunden) — 8. u 


! Den Angaben des Dieners’schen Druckrohr-Anemometers entnommen. g si hr 


Öster;. Staatsdruckerei. 520 20 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 bo « "Nr. 26. .: 


nee en 
ID EIIII 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 9. Dezember 1920 


Prof. F. Werner übersendet folgende Teile der wissen- 
schaftlichen Ergebnisse seiner mit Unterstützung 
der Akademie der Wissenschaften in Wien unter- 
nommenen zoologischen Expedition nach dem anglo- 
ägyptischen Sudan (Kordofan) 1914: 


V. »Cestoden aus Säugetieren und aus Agama colo- 
norums, von Lene Kofend. 
VI. »Diptera«, bearbeitet von Th. Becker in Liegnitz. 


VII. »Hymenoptera. I. Formicidae«, von H. Viehmeyer 
in Dresden, mit einer Einleitung von R. Ebner in 
Wien. 


VII »Hymenoptera. Il. Vespidae«, von Dr. A. v. Schult- 
hess in Zürich. 


Dr. Rudolf Wagner in Wien übersendet folgende Mit- 
teilung: »Über ebene Gabelsysteme von ®.,„-Charakter 
bei einigen Calyptranthes-Arten.« 


282 


Prof. Franz Ternetz in Aussig a.d. Elbe übersendet ein 
versiegeltes Schreiben zur Wahrung der Priorität mit der Auf- 
schrift: »Über den großen Fermat'schen Satz (II. Teil).« 


Selbständige Werke oder neue, der Akademie bisher nicht 
T zugekommene Periodica sind eingelangt: 


Universität in Basel: Akademische Publikationen für 1920. 


Österreichische Staatsdruckerei. 13936 20 


u Ja 


Akademie der Wissenschaften in Wien 


Jahrg. 1920 Nr. 27 


Sitzung der mathematisch-naturwissenschaftlichen 
Klasse vom 16. Dezember 1920 


Dr. Artur Winkler in Wien übersendet einen vorläufigen 
Bericht über seine geologischen Untersuchungen im Tertiär- 
gebiete von Südweststeiermark. 


Regierungsrat Josef Szombathy übersendet einen Bericht 
über die Ausgrabungen am prähistorischen Flachgräberfelde 
bei Gemeinlebarn in Niederösterreich im Jahre 1920. 


Prof. Dr. Felix M. Exner übersendet eine Abhandlung 
mit dem Titel: »Zur Physik der Dünen.« 

Die Arbeit zerfällt in zwei Teile. Im ersten Teil wird 
gezeigt, wie aus einer rein horizontalen Luftströmung allmählıch 
eine in vertikaler Richtung oszillierende wird, die ihre Wellen- 
berge und Wellentäler in den Sand oder das Wasser darunter 
einprägt. Es ergibt sich eine eigentümliche Strömungsfunktion 


bei welcher die Wellenlängen längs der horizontalen x-Rich- 
tung in arithmetischer Progression wachsen. 

Diese neue Wellenart wird durch Laboratoriumsversuche 
über die Bildung von Sandwellen im Winde bestätigt. Es ist 
danach anzunehmen, daß die großen Dünen von den kleinen 


38 


284 


Rippelmarken nicht wesentlich verschieden sind, sondern daß 
die Größe von Sand- oder auch Wasserwellen nur von der 
Höhe abhängt, bis in welche die Oszillationen der Luft von 
der Unterlage emporreichen. Sind die Oszillationen nach oben 
begrenzt, so werden die Wellenlängen konstant. 

Im zweiten Teil wird der Transport des Sandes und 
die Fortbewegung der Dünen unter dem Einfluß des Windes 
untersucht. Die Zunahme der Windstärke in vertikaler Rich- 
tung und die Konkavität oder Konvexität des Sandprofils 
bedingen zeitliche Änderungen der Höhenordinate 7 dieses 
Profils. Eine stark schematisierte Differentialgleichung hiefür 
lautet: 

“ . 2. 
Ben 

Ihre Integration gibt für verschiedene Anfangsbedingungen 
des Dünenprofils recht mannigfache Ergebnisse, die zum Teil 
gut mit den Erfahrungen der Dünenforscher übereinstimmen. 
Die Sandwellen können danach sowohl gegen den Wind 
(durch Anstauung von Sand) als mit dem Wind fortschreiten, 
sie können ihre Kammhöhe dabei vergrößern oder verkleinern, 
die Fortpflanzungsgeschwindigkeit kann von der Wellenlänge 
beeinflußt werden, usw. Für eine quantitative. Prüfung der 
Theorie reicht aber das vorhandene Beobachtungsmaterial nicht 
aus, so daß spezielle Untersuchungen an natürlichen Dünen 
erwünscht bleiben. 


Das w. M. R. Wegscheider überreicht zwei Abhand- 
lungen aus dem Physikalisch-Chemischen Laboratorium am 
Chemischen Institut der Universität Graz: 


»Über den Einfluß von Substitution in den Kom- 
ponenten binärer Lösungsgleichgewichte. XXIX. Mit- 
teilung: Die binären Systeme von m-Aminophenol mit 
Aminen«, von Robert Kremann und Heinz Hohl. 

»XXX. Mitteilung: Die binären Systeme von Di- 
phenylmethan mit Phenolen und Aminen«, von Robert 
Kremann und Julius Fritsch. 


j 


Das w. M. Hofrat F. Exner legt folgende Arbeit vor: 
»Beiträge zur Kenntnis der atmosphärischen Elek- 
trizität Nr%62, Zusammenfassender' Berichtrüber?’die 
Beobachtungen an der luftelektrischen Station See- 
ham "int dene:Sammern 1916, bis»,1920«,' von “Egen 
Schweidler. 

Zur Ergänzung der in der Periode 1908 bis 1915 vor- 
genommenen Beobachtungen wurden die des Zeitraumes 1916 
bis 1920 bearbeitet. Sie umfassen Leitfähigkeit, Feldstärke 
und vertikalen Leitungsstrom sowie lonisierung in geschlos- 
senen Gefäßen. Im allgemeinen stimmen die Ergebnisse mit 
denen der ersten Periode durchaus überein. 


Bezüglich der in der Sitzung vom 9. Dezember I. ]. 
(siehe Anzeiger Nr. 26, p. 281) vorgelegten Arbeit von 
Bra, vaSschülchess: »Ersebnissesder zoologischen 
Expedition Prof. F. Werner’s nach dem angloägypti- 
schen Sudan (Kordofan) 1904, VII. Hymenoptera, 


I. Vespidae« gibt der Verfasser folgenden Auszug: 


Bei der Bearbeitung der während einer zoologischen 
Forschungsreise von Universitätsprofessor Dr. F. Werner in 
dem angloägyptischen Sudan von Prof. R. Ebner gesammelten 
Vespiden wurden die beiden nachstehend beschriebenen Arten 
als neu festgestellt. 


Nortonia sudanensis nov. Spec. 


9. Nigra; eburnei sunt: Mandibularum macula basalis,. 
clypeus (macula centrali fusca excepta), antennarum scapus 
subtus, glabella, macula parva in sinu oculari, macula elon- 
gata temporum, fascia lateribus abbreviata pronoti, tegulae, 
posttegulae, maculae transversae, saepe confluentes postscutelli, 
tergiti 1. fascia terminalis angusta, 2-di fascia terminalis sat 
lata, antice bisinuata, medio et lateribus aucta, tergiti 6. macula 
centralis, fascia angusta terminalis sterniti 2., coxae anteriores 
antice, genua antica, latera anteriora tibiarum anticarum, genua, 
tibiae et tarsi basales pedum posteriorum. Rufi sunt: mandi- 


bulae, antennarum flagellum subtus, coxae et femora omnia, 
tibiae anticae, tibiarum posticarum latus anticum, tarsi api- 
cales et sternitum 1. Distributio coloris rubri et albi pedum 
sat variabilis. Alae hyalinae, in parte distali cellulae radialis 
leviter infumatae. Long. corp. (a vertice usque ad marg. post. 
tergiti 2.) 7 mm. 

d Clypeus totus albidus; sinus ocularis macula major, 
usque ad clypeum perducta; tergitum ultimum immaculatum. 
6:5 mm. 

Ägyptischer Sudan. 2 d‘, 3 5. Ebner leg. 

Steht. der N. Moricei Kohl ungemein nahe, unterscheidet 
sich von ihr durch etwas geringere Größe, längeren Kopf- 
schild, gerandetes, mit rechtwinkligen Seitenecken versehenes 
Pronotum und nicht saumartig verdicktes, bis zum äußersten 
Hinterrande dicht und grob punktiertes 1. Tergit. 


Odynerus (Lionotus) Ebneri nov. spec. 


o0. Ad stirpem O. Dantici pertinens. Niger, clypeus (C)), 
antennarum scapus subtus, macula maxima triangularis gla- 
bellae, orbitae internae et maculae in margine anteriore pro- 
noti flavae. Rufi sunt: Antennarum articuli 2—3, mandibulae, 
maculae elongatae temporum, pronotum, tegulae, scutella, 
macula magna mesopleuralis, canthi et latera segmenti media- 
lis, abdominis segmentum 1. et 2-di macula in angulo laterali- 
antico atque coxae et pedes; ceterum nigrum. Alae basi et 
apice fere hyalinae, medio sat infumatae. 

Long. corp. (a:vertice usque ad marg. post tere, = 
SF 9 mm. 

Patria: Kairo, Ägypten; Tuti-Insel bei Khartum, ägypti- 
scher Sudan (15. Il. 1914, Ebner). Manora, Charachi (IV. 1899, 
Townsend) (c. m.; Mus. Wien). 4 d.. 

In bezug auf Größe, Struktur und Skulptur dem O. Dan- 
fici ungemein ähnlich; von ihm verschieden durch die ganz 
andere Färbung, starke Seitendornen des Mittelsegments, einen 
starken aufrechtstehenden Dorn oben an der oberen Kante 
des Mittelsegments neben dem Hinterschildchen, dem .auf- 
geworfenen Rande des 2. Tergits und durch gröbere Punk- 
tierung des Abdomens. 


Plantae novae Sinenses, diagnosibus brevibus descriptae 
a D’®* Henr. Handel-Mazzetti (8. Fortsetzung).! 


Rhododendron hirsuticostatum Hand.-Mzt. 


Subgen. Lepidorrhodium, sect. Rhodorastrum. 


Frutex 11/, m ramis annotinis crassis glabris rufis nitidis, 
hornotinis sparse lepidotis vetustis fuscis levibus. Gemmae 
15cm lg. 3mm crassae acutae; perulae deciduae extus 
lepidotae et argenteo-sericeae, exteriores coriaceae brevissimae 
acutae, interiores 3 mm It. obtusiusculae. Folia biennia, coria- 
cea, oblonga 33x12 —-55X20 mm acuta basi cuneata vel 
anguste rotundata, utrinque subtiliter rugulosa et opaca, supra 
setulis albis tenuissimis saepe fasciculatis crebris et interdum 
iepidibus sparsissimis induta, subtus pallidiora brunnescentia 
lepidibus aequalibus 2—4 pro mm? subsessilibus planis fusco- 
brunneis resinosis subopacis anguste marginatis punctata; 
costa supra paulum impressa puberula calvescens, subtus 
ultra medium usque valde elevata et albo-hirsuta; nervi sub- 
obsoleti; petioli 4—6 mm lg. crassiusculi subtus lepidoti supra 
subtilissime puberuli. Umbellae 2—4-florae, 2—6 apicibus 
ramorum conglomeratae, rhachidibus brevissimis glabris; 
bracteae deciduae margine sericeae late ovatae, sicut bracteolae 
filiformes ciliatae 6 mm lg. Flores praecoces albo-rosei. Pedi- 
celli crassi 4— 12 mm 1g. sparse lepidoti. Calyx subobsoletus 
pallide lepidotus. Corolla 2:5 cm lg. 4—4'5 cm It. e tubo 
brevi infundibuliformi intus puberulo late aperta zygomorpha, 
lobis 5, inferioribus ultra ?/, superioribus ad !/, incisis ovato- 
oblongis obtusis 9—10 mm It. basi undulata dilatatis, extus, 


glandulis hyalinis subtilissimis crebris adspersa et parce lepi- 


dota. Filamenta 10 inaequalia supra basin villosa, longiora 
corollam excedentia; antherae ellipticae 2 mm ig. Ovarium 
2 mm lg. lepidibus confertis griseum; stylus roseus basi 
puberulus 35 mm 1g., stigmate lato obsolete lobato. 

Prov. Setschwan austro-occid.: In fruticetis reg. calide 
temperatae declivitatis jugi Schao-schan ad austro-or. urbis 


1 Vgl. Akademischer Anzeiger Nr. 25. 


288 


Ningyüen (Lingyüen), substr. arenaceo, ca 22—2500 m, legi 
15. IV. 1914 (Iter Sinense Nr. 1353). | 

Species indumento distinctissima forsitan Rh. stereophyllo 
Balf. f. set W.. Wis Smraffinis: 


Rhododendron Ningyüenense Hand.-Mzt. 


Sect. Eurhododendron. 


Frutex ramis annotinis crassis puberulis glabrescentibus 
spadiceis. Gemmae 5 mm lg. perulis cucullatis atrobrunneis 
glabris extimis brevibus obtusis intimis apiculatis. Folia 
triennia, crasse coriacea oblongo-lanceolata 50x12 — 99% 27 
et 90X30 mm, utrinque (apice saepe brevius) attenuata acuta 
margine revoluta olivacea opaca supra partim  subtilissime 
glandulifera subtus pallidiora setis tenuissimis hyalinis sub- 
fasciculatis lente simplici invisibilibus crebris induta, costa 
supra anguste sulcata infra valde elevata flavida, nervis 10 
— 15-paribus cum venularum reti infra atriore supra impressis 
rugulosa, illis infra paulum elevatis; petiolus crassus 8-- 12 mm 
ig. interdum flocculosus. Umbella 3--6-flora, bracteis et 
bracteolis caducis, illis 4 mm It. crispule ciliatis exterioribus 
brevissimis saepe longe mucronatis ceteris ad 15 mm Ig., his 
ligulato-subulatis ad 10 mm Ig. ciliatis. Flores praecoces. Pedi- 
cellii -1l15 mm lg. et calyces subobsoleti et ovaria 4 mm 1g, 
petasiformia tenuiter rufo-glandulosa et parce albo-pilosa. 
Corolla + 4 cm ig. ad 5 cm It. alborosea, tubo lato infundi- 
buliformi, ad t/, in lobos 5 orbiculares undulatos fissa, glaber- 
rima. Stamina 10, 2—2'5cm Ig. !/, infero parce puberula 
antheris 2—-3 mm 1g. rubescentibus. Stylus ad 30 mm |1g, 
purpureo-glandulosus sensim incrassatus stigmate subintegro. 

Prov. Setschwan: In fruticetis reg. temperatae montis 
Loseschan supra vicum Luschui ad austro-or. urbis Ningyüen, 
substr.. „. arenaceo; Ca... 2700.xX 3200 an, ...legi,. 16.,.IV..o Sie 
(Nr. 1445). 

Species indumento et floribus immaculatis praeter alias 
notas a Rh. irrorato et Anmae diversa. 


289 


Petasites versipilus Hand.-Mzit. 


Radix perpendicularis. Folia floribus subposteriora, coria- 
cea parva cum petiolo longo floccosa calvescentia sed pra- 
sertim supra dense glanduloso-furfuracea, late reniformia remote 
calloso-denticulata. Scapus tenuis 5— 15cm le. glabriusculus. 
Squamae ad 20 mm lg. supra et marginibus floccosae, basi- 
lares farctae latissime ovatae, ceterae sparsae anguste lanceo- 
latae longe acuminatae. Racemus brevis ovatus 4—6 cm Ig,, 
4cm ]t. laxiusculus, pedicellis tenuibus — 15 mm 1g. simplici- 
bus pilosulis, Calathia sub 9 campanulata + I! cm Ig. et fere 
lt. multiflora.. Phylla 11—15 linearia 1—1'5 mm It. obtusi- 
uscula glabra nervis 3 in medio, margine late brunneo-mem- 
branacea. Flores 9 filiformes 4:5—7 mm 1g. paulum ultra 
2 mm fissi laciniis 5 subulatis 1/,—?/, mm 1gis.,; stylus brevis- 
sime bifidus longe exsertus; ovarium glabrum; pappus corolla 
brevior basi brevissime connatus. Flos 1 centralis interdum 8 
tubo filifformi 2—4 limbo campanulato 2— 2:5 mm lg. fere ad 
1/, in lobos ovatos fisso; filamenta brevissima, antherae limbi 
sinus attingentes; stylus inclusus stigmate clavato; ovarium 
pilosum, pappus brevior. 

Prov. Setschwan austro-occ.: Prope vicum Laodschang in 
declivi montis Lose-schan ad merid. urbis Ningyüen (Lingyüen), 
reg. calide temperata, substr. arenaceo, ca. 2600 mn, legi 16. IV. 
1914 (Iter Sinense 1914—1918 Nr. 1472). 

Species, e serie Nardosmiarum, in genere ovario 9 piloso 
unica videtur, Petasiti Japonico proxima squamis caulinis latis 
obtusis et floris "9 laciniis lanceolatis diverso; P. fricholobus 
et saratilis foliis simillimus longius distant. 


Cobresia Lolonum Hand.-Mzt. 


Sect. Hemicarex. 


Glaberrima rhizomate oblique repente vaginis ovatis gri- 
'seis opacis subintegris et culmis irregulariter seriatis dense 
‚obsito. Culmus S—-17 cm demum ad 40 cm lg. tenuis teres 
levis. Vaginae 3—4 accumbentes apiculatae brunnescentes 
opacae, extima brevis aperta, intima sola laminifera 3-6 cm 


Dia’ a 


290 


lg. clausa ligula rufa brevissima: lamina 1—4cm lg. con- 
voluta acuta !/, mm diam. Spicula 1, oblonga brunnea nitidula 
levis S- Il mm lg. - 3 mm |\t. densissima monoica. Spiculae 
partiales 1-florae; inferiores 9 ca. d, Ssquamae ovatae rotun- 
datae vel brevissime emarginatae margine albo membranaceae 
costa saepe viridi 3-nervia in aristam aequilongam vel brevio- 
rem scabram erectam spiculam saepe paulo superantem ex- 
currente, prophyllum 1 mm Ige. stipitatum in utriculum ovato- 
lanceolatum 3:5—5°'5 mm |g. compressum enervem levem 
fere totum connatum, rhachilla linearis levis illi’ aequilonga, 
ovarium obovatum 15 mm lg. longe apiculatum leve, stigmata 
3 loneFa; @' ca. 10, squamae ovatae sensim breviaristatae 
usque obtusae subenerves, antherae brunneae 3 mm 18. 

Prov. Setschwan austro-occ.: In turfosis reg. temperatae 
territorii Lolo prope urbem Ningyüen, 2600 — 2700 m, ad vicum 
_ Lanba (Nr. 1767) et in jugo Schao-schan (Nr. 1376), legi 15. 
et 25. IV. 1914. | 

Proxima €. Prainii differt dense cespitosa, dioica, vaginis 
brunneis valde laceratis, spicula multo angustiore etc. 


Cobresia Kükenthaliana Hand.-Mzt. 
Sect. Eucobresia. 


Rhizoma ascendenti-repens vaginis cartilagineis ovatis 
griseo-brunneis nitidis subintegris et culmis et fasciculis folio- 
rum seriato-fasciculatis dense obsitum. Culmus.tenuis 20 — 37 cm 
lg. triqueter apice asper. Vaginae virides adcumbentes; ex- 
teriores fusco-marginatae obtusae totae fissae; interiores ca. 
4 foliiferae 6—8 et 11 cm lg. clausae ligulis brevissimis; lamina 
ima 2—4 cm, superiores 10— denique ultra 50 cm lg., flaccidae 
planae 1:5—2'5 mm It. acutae olivaceae. Spicula 2:64 cm 
lg., 6—8 mm It. laxiuscula brunnea nitida, spieulis propriis 
androgynis sessilibus ad 15-20, 5—10 mm |Igis. simplieci- 
bus angustis partim excurvis lobata, rhachide scabriuscula. 
Squamae membranaceae ovatae infinae nervo viridi interdum 
aristatae spiculam propriam paulo superantes, superiores partim 
obtusae. Spiculae partiales 1-florae sessiles; infima 1 9, pro- 


291 


phyllum glabrum leve 4—-4 5 mm Ig, 15 mm It. late ob- 
tusatum 2-nerve pallidum brunnescens expansum marginibus 
basi tantum conniventibus, rhachilla brevissima atra saepe 0, 
nux piriformis apiculata paulum compressa ad 3 mm lg. pal- 
lida, stigmata 3 longa; % ca. 10 farctae ao 1-15 mm 
distantes, antherae brunneae ad 4 mm |g. angustissimae. 

Prov. Setschwan: In turfo jugi Schao-schan (Nr. 1375). 

Proxima monente cl. Kükenthal €. laxae, quae dimen- 
sionibus, prophyllo fere clauso rostrato margine scabro etc. 
valde differt. 


Plantae anno 1920 descriptae. 
Akademischer 
Anzeiger Nr. 


Acer Schoenermarkiae var. oxycolpum ........».. 29 
Allium funckiaefohum .............-.- RE 15 
ESEL EL ee re RE 19 
FANDEN ASTANGE NS seele Sa 23 
NOTEN Se De Er 19 
EEE EL ZA SE RE ER 12 

> an N NE RTN 4 

» SERMEIGEANG.. 222 2..2. 0:20 ee 4 

> VER ee 4 
ZBUNdmMaRIeN brevipaniculaia :..-...--=->-..=2.= 19 
Bothriospermum hispidissimum................ 19 
WAIRUIGERERREVSSSIHENSIS =... nenn nen 19 
AR N N oe 23 
BEIDPEHE DB UNMaMENnSIS....:0.=+-- mem san 25 
Kobresia, Rorkeninalama ...::....2 nes -euneane 27 

» HE Senne n ae are ee 24 

» SARBEAINNG : 22 2@.2. nn landen 5 
Cormaalis hesmdicentra........ mac anon essen. 8 

» ana ee a ee 5 
Cremanthodium microcephalum................ 163) 
Eimiosiema lonfistipulum .......-.-ssuncuacunae 19 
Er eamdelii.....:-.2- 0 oncmane nennen 25 
Brtocamon Schochianum......---»sausecuanaaa 19 
era Rerhapperl... 22.5.0: nun ans 15 


Anzeige: Nr. 27. 39 


292 


Akademischer 
Anzeiger Nr. 


Gentiäna. epichysanlla ,: 1... Yosemite Sa Be 15 
FHaplosph@erg ;DBABU. : Sean. 02 a ee 12 
Hierael)be pallıaa.. were as ie Mens a 25 
LORICEFA N GHEPT ART 22. 08 een 2 ee 28 
Meconopsis venusta (»leonticifolia«) ........-- % E Ä 
Nannoglottis carpesioides var. Yünnanensis ..... 1a 
PaABonia, OPEL na: 20% ee N 23 
Pedicwlas is. 1wedusbarbS.. Sera dee sen ee 10 
> DOBCROEHMBU.. Ne. een = orten & 10 
>» DATESOMAN“ u. 1er arte ann ee S 
» psendoversicolor...... TORI 10 
FOIESESEEHSIDUNSN ne en er ee ee 27 
Pılea »Diel tan... a ne ea ee ee 19 
PriMNARCONBIOSTCHAr Mr has. SO er ar RT 8 
> CHIIMATGTORar* 2. ren an ee er De 
» X DSCHUMSdIeWensis... .12. Pe A 8 
» INDOOR E. -eee le ee ee 19 
> KEIKACHR 0 ee ee ae or 15 
Ranünculus’ micrönivalisı - „=... 2. er man 4 
Rhododendron' hirsuticostatum...........- +. -.. 2 
>» " Ningyüenense ...... Ne 27 
Rohdea"mroßepalae 2. - sense BER: - WEEIERRE 25 
Rubns. suihlabeianals._. 20... 2: 20 See BB URE: 29 
a 72 12110122.27 DIR ET 20% 
SansSurea \CENMOBa..... :.... nr.» see Re 12 
> Wettsteiniana ....... a RE 1 
Sarifrasa. omphnledafola ..:-.. 2 u... negeen ® 5 
Senecio filiferus var. dilatatus ......-.--.z:-.28; 19 


Österreichische Staatsdruckerei. 13937 2U 


N ya N 


m ü 
Vgl M A) 
NEN. 
u ARRNN 
UURD ll 
a 
HR or 
‚ us E 
H u Aryı 
{} RN Jı 
Wh 
I. IE 


D, 
> 
> 
> 
> 
» 
2 


N 


MIN NINA 
\ NAAAIAAR RR Ar | AANAF an 
ARNAERSNAARAAAAAINAA 

YO ARARRARADRARN AA AA AA. 


h ar Ar Vn 7 A 
"ER: BR N 


N 
A 


SAARRARAAR: 


Fan 


A 
RA 


AA | 

Mn MARIANEN AaaaaaasıK 
JA NAAARR AA AA MA ä a ZYN = M N & A 
A IN \ AAAY A RAR AAAM | 


AAA Y Ana AR 
ARTNET NAAAAAAA RAR 


Anh AAaANAR 


vrr 


NANAAAAARIAIIAAAR AR ANARNA NAAR 
A AAAAAAN aan AAAR MARK RN 
A DARANBARAAAARR AN 
gu = AA 


\ 


AAAATVAAAAAAAAA 


NN 
ARAR SARARAARTER ADIAAAR 
A A N 
Na MARAAARATARHR 


KARATE 
LAAAARAAAARANAAA AA AA 


___ , NN 


3 9088 01298